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Abstract. We introduce a framework for computing statistically optimal estimates of geometric reconstruction prob-
lems. While traditional algorithms often suffer from either local minima or non-optimality—or a combination of
both—we pursue the goal of achieving global solutions of the statistically optimal cost-function.

Our approach is based on a hierarchy of convex relaxations to solve non-convex optimization problems with poly-
nomials. These convex relaxations generate a monotone sequence of lower bounds and we show how one can detect
whether the global optimum is attained at a given relaxation. The technique is applied to a number of classical vision
problems: triangulation, camera pose, homography estimation and last, but not least, epipolar geometry estimation.
Experimental validation on both synthetic and real data is provided. In practice, only a few relaxations are needed for
attaining the global optimum.

Keywords: non-convex optimization, structure from motion, triangulation, LMI relaxations, global optimization,
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1. Introduction

Minimizing globally a rational function of several vari-
ables is a difficult optimization problem in general.
Multivariate polynomial minimization, a special case of
rational minimization, is a hard problem already for de-
gree 4 polynomials. For example (Jibetean and de Klerk,
2006), the problem of deciding whether an integer se-
quence a1, . . . , an can be partitioned, i.e. whether there
exists x ∈ {±1}n such that

∑n
i=1 ai xi = 0, or equiva-

lently whether zero is the global minimum of polynomial
(
∑

i ai xi )
2 + ∑

i (x
2
i − 1)2, is known to be NP-complete.

Many geometric computer vision problems can be
formulated as a minimization problem where the objec-
tive function is a rational polynomial in the unknown
variables. These rational polynomials arise due to the
perspective mapping of the camera. In this paper, we
show how such problems can be recast as a polynomial

optimization problem using linear matrix inequalities
(LMIs) and polynomial matrix inequalities (PMIs). Such
problems have been under intense research during the
last few years in the control community, e.g. Lasserre
(2001), and Henrion and Garulli (2005). We leverage
on these results in order to solve a number of geometric
reconstruction problems, such as triangulation, camera
pose and epipolar geometry estimation.

Our main contributions are:

(i) A general framework for computing globally opti-
mal estimates for geometric vision problems is in-
troduced. We apply this technique to problems for
which current state-of-the-art uses local, iterative op-
timization techniques. Such methods are dependent
on good initialization which is often hard to obtain
in practice. Therefore they risk getting stuck in local
minima.
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(ii) We extend the theory of convex LMI relaxations by
showing that even though only partial relaxations are
employed, it is still possible to obtain global esti-
mates, and more importantly, to detect if global opti-
mality is achieved. As we shall see, this result makes
it possible to avoid a combinatorial explosion of re-
laxation variables and many of the problems we con-
sider become computationally tractable even when
many unknown variables are involved. The price to
pay for using only partial relaxtions contrary to full
relaxations is that we cannot ensure that the sequence
of generated relaxations converges to the global op-
timum.

1.1. Related Work

Structure and motion problems in computer vision are
core problems and have been studied for quite some time
now. Many good algorithms can be found in recent text-
books, e.g. Hartley and Zisserman (2004), and Ma et al.
(2003). It is well-known that local minima frequently oc-
cur and they have been analyzed in more detail in Szeliski
and Kang (1997), Soatto and Brockett (1998), and Olien-
sis (2002). The reconstruction methods can be classified
into three categories:

• Non-optimal methods use some simplified error cri-
teria in order to obtain an estimate, often in closed-
form. A classical example is the 8-point algorithm
(Hartley and Zisserman, 2004) or alternatively a mini-
mal method (Kahl et al., 2001), which was improved in
Chesi et al. (2002) by enforcing the singularity of the
fundamental matrix in the estimation process. These
non-optimal schemes often serve as an initialization
for a local method.

• Local methods such as Newton-based or gradient de-
scent refinements, also known as bundle adjustment
(Triggs et al., 1999) do optimize the correct cost-
function, but they are very sensitive to initialization
point.

• Global methods are relatively rare in the vision lit-
erature. The triangulation problem for two views for
different optimality criteria was solved in Hartley and
Sturm (1997), Oliensis (2002), and Nistér (2001).
However, the problem is rather limited in complex-
ity and it is hard to generalize even for three views
(except in the case of L∞-norm (Hartley and Schaffal-
itzky, 2004; Kahl, 2005)). For the statistically optimal
L2-norm and arbitrary number of views, this was pre-
viously an open problem.

The factorization algorithm (Tomasi and Kanade,
1992) computes a global estimate for both structure
and motion with respect to the optimal L2-norm, but
this is unfortunately only valid for the affine camera
model. Other interesting methods are graph-cuts which

have successfully been applied to multi-view stereo
matching (Kolmogorov and Zabih, 2002) and inter-
val analysis applied to auto-calibration (Fusiello et al.,
2004). However, one of the drawbacks of Fusiello et al.
(2004), which is also true for many other global meth-
ods is that they are computationally highly demanding.

We propose another strategy to achieve globally op-
timal estimates, which is still tractable from a com-
putational point of view and which can handle harder
problems than, for instance, the two-view triangulation
problem. The method is global in the sense that it solves
the problem when finite convergence occurs and it also
provides a numerical certificate of global optimality.
The formulation is based on the LMI formalism and
we make extensive use of convex semidefinite program-
ming (SDP). In particular, we rely on efficient SDP-
solvers publicly already available, e.g. Sturm (1999),
which avoids the tedious and considerably difficult work
of developing a specific optimizer. In addition, easy-to-
use Matlab interfaces such as GloptiPoly (Henrion and
Lasserre, 2003) are also readily available.

The most closely related work we are aware of is Chesi
et al. (2002). A convexification scheme is also employed
to solve a non-convex problem, namely the problem of
estimating the fundamental matrix F subject to the cubic
constraint det F = 0. However, the objective function is
the algebraic cost-function used in the 8-point algorithm.
This problem can be simplified to a non-linear problem
with two unknowns. Their approach of computing the so-
lution involves solving a series of convex LMI problems
via a bisection method.

A shorter version of this work has appeared in the con-
ference paper (Kahl and Henrion, 2005). In parallel to this
work, some recent contributions have also appeared. In
Stewénius et al. (2005), the three-view triangulation prob-
lem is solved with a Gröbner basis technique. In Agarwal
et al. (2006), fractional programming using branch-and-
bound is proposed to solve a subset of the problems con-
sidered in this paper. Also, independently of our work,
(Waki et al., 2006) exploits structured sparsity of LMI
relaxations in order to reduce computational complex-
ity. The idea is similar to the one of partial relaxations
presented in this paper.

2. Convex LMI Relaxations of Non-Convex
Problems

This section is a brief introduction to the use of con-
vex LMI relaxations for non-convex polynomial pro-
gramming. As recalled in the introduction, polynomial
or rational minimization is a difficult problem in general,
typically a non-convex one, with many local or global
optima. Recently, it has been realized that non-convexity
in polynomial programming can be approached by
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relaxation to convex optimization problems, and more
specifically via semidefinite programming, a versatile ex-
tension of linear programming to the cone of symmet-
ric matrices with non-negative eigenvalues. Semidefinite
programming is also known as linear matrix inequality
(LMI) optimization. See the excellent textbook (Boyd
and Vandenberghe, 2004) for an introduction to semidef-
inite programming and LMIs in the context of convex
optimization.

In Lasserre (2001) LMI optimization techniques are
proposed to deal with non-convexity in polynomial pro-
gramming. The author describes an approach which is
based on the primal theory of moments in functional
analysis and the dual representation of a polynomial pos-
itive on a given semi-algebraic set (i.e. a set described
by polynomial inequalities) as a sum of squares of poly-
nomials. Links with the standard Lagrange duality are
also unveiled, and it is shown that the approach can be
viewed as an extension to polynomial (as opposed to
constant) Lagrange multipliers vanishing at the global
optima.

In this framework non-convex polynomial program-
ming can be given the interpretation of a linear
(hence convex) programming problem in the infinite-
dimensional (and difficult to represent) space of positive
measures supported on a given semi-algebraic set. Any
optimal measure corresponds to a linear combination of
Dirac measures supported at any finite subset of the global
optima. To deal with infinite-dimensionality, a hierarchy
of finite-dimensional relaxations can be derived by trun-
cating to finite moment sequences. To exploit as much as
possible the structure of the space of measures, these re-
laxations are formulated in the cone of positive semidef-
inite matrices, hence resulting in LMI relaxations. These
relaxations feature a so-called moment matrix, which is
an LMI constraint in the space of truncated moments of
the measure to be found.

2.1. Scalar Polynomial Optimization

The problem class considered in Lasserre (2001) consists
of scalar polynomial optimization problems

min g0(x)

s.t. gi (x) ≥ 0, i = 1, 2 . . . , m
(1)

where gi (x) are scalar multivariate polynomials of the
vector indeterminate x ∈ Rn . Let p∗ denote the mini-
mum objective value (if it exists) of the above problem.
Then, a convex relaxation is, by construction, a convex
optimization problem with minimum objective value p∗

r
such that p∗

r ≤ p∗. Hence, by solving the relaxed prob-
lem, a lower bound of the original objective function is
obtained.

When optimizing a scalar objective polynomial func-
tion subject to polynomial constraints, convex relaxations
can be obtained by gradually adding lifting variables and
constraints corresponding to linearizations of monomials
up to a given degree. This is the technique we will adopt
and we will exemplify the lifting idea below.

The LMI relaxation covering monomials up to a given
even degree 2δ is referred to the LMI relaxation of order δ.
The standard Shor relaxation in mathematical program-
ming (Shor, 1998) can be regarded as a first-order LMI
relaxation. It turns out that for many of the non-convex
polynomial optimization problems described in the tech-
nical literature, global optima are reached at a given ac-
curacy for a moderate number of lifting variables and
constraints, hence for an LMI relaxation of moderate or-
der. Standard routines of numerical linear algebra can be
applied to provide a numerical certificate of global opti-
mality based on computing ranks of moment matrices. In
particular, a sufficient condition for reaching the global
optimum is that the moment matrix has rank one.

We will start with an illustrative example of the LMI
relaxation technique and then state the general procedure.
Consider the non-convex optimization problem

p∗ = max x2

s.t. g1(x) = 3 + 2x2 − x2
1 − x2

2 ≥ 0

g2(x) = −x1 − x2 − x1x2 ≥ 0

g3(x) = 1 + x1x2 ≥ 0

(2)

where the linear objective function is maximized over
a non-convex feasible set delimited by circular and hy-
perbolic arcs. The feasible region is shown in Fig. 1(a).
This example was originally described in Henrion and
Lasserre (2004).

The first LMI relaxation (δ = 1) is

max y01

s.t. 3 + 2y01 − y20 − y02 ≥ 0

−y10 − y01 − y11 ≥ 0

1 + y11 ≥ 0⎡⎢⎣ 1 y10 y01

y10 y20 y11

y01 y11 y02

⎤⎥⎦ � 0

with optimal value p∗
1 = 2. In this relaxation, the 3 × 3

positive semidefinite matrix (denoted by � 0) is a mo-
ment matrix of order up to 2. Problem constraints are
linearized with the help of lifting variables: a monomial
xk1

1 xk2

2 is replaced with yk1k2
. Let v1(x) = [ 1, x1, x2 ]� be

a basis for polynomials of degree 1. The moment matrix is
obtained by linearizing the trivial relation v1(x)v1(x)� �
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Figure 1. Problem (2). (a) The feasible set (shaded region) is non-convex and delimited by circular and hyperbolic arcs. (b) Feasible set of the first

convex LMI relaxation (blue region) is obtained by projecting the first-order moments onto the plane. The optimum is attained at the upper vertex

(green dot). The optimum is an upper bound on the global optimum of the original non-convex polynomial optimization problem. (c) Feasible set of

the second convex LMI relaxation (blue region) is obtained by projecting the first-order moments onto the plane. The optimum of the second LMI

relaxation equals the global optimum (green dot).

0, that is,

v1(x)v1(x)� =

⎡⎢⎣ 1 x1 x2

x1 x2
1 x1x2

x2 x1x2 x2
2

⎤⎥⎦ � 0

valid for any x ∈ R2. Note that the matrix v1(x)v1(x)�

has rank one.
In Fig. 1(b) we show the projection of the feasibility

set of LMI relaxation onto the plane y10, y01 of first-order
moments. This convex feasibility set inscribes the origi-
nal non-convex feasible set. We can see that the optimum
of the LMI relaxation is achieved at a point that is infea-
sible for the original non-convex problem (2).

The second LMI relaxation (δ = 2) is

max y01

s.t.⎡⎢⎣ 3 + 2y01 − y20 − y02 3y10 + 2y11 − y30 − y12 3y01 + 2y02 − y21 − y03

3y10 + 2y11 − y30 − y12 3y20 + 2y21 − y40 − y22 3y11 + 2y12 − y31 − y13

3y01 + 2y02 − y21 − y03 3y11 + 2y12 − y31 − y13 3y02 + 2y03 − y22 − y04

⎤⎥⎦ � 0

⎡⎢⎣−y10 − y01 − y11 −y20 − y11 − y21 −y11 − y02 − y12

−y20 − y11 − y21 −y30 − y21 − y31 −y21 − y12 − y22

−y11 − y02 − y12 −y21 − y12 − y22 −y12 − y03 − y13

⎤⎥⎦ � 0

⎡⎢⎣ 1 + y11 y10 + y21 y01 + y12

y10 + y21 y20 + y31 y11 + y22

y01 + y12 y11 + y22 y02 + y13

⎤⎥⎦ � 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 y10 y01 y20 y11 y02

y10 y20 y11 y30 y21 y12

y01 y11 y02 y21 y12 y03

y20 y30 y21 y40 y31 y22

y11 y21 y12 y31 y22 y13

y02 y12 y03 y22 y13 y04

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
� 0

with optimal value p∗
2 = 1.6180, which is the global op-

timum p∗ within numerical accuracy. In addition, first-
order moments (y∗

10, y∗
01) = (−0.6180, 1.6180) provide

an optimal solution of the original problem. This prob-
lem features a 6 × 6 moment matrix corresponding to
moments of order up to 4, in addition to three 3 × 3
LMI constraints relaxing the polynomial inequality con-
straints. Let v2(x) = [ 1, x1, x2, x2

1 , x1x2, x2
2 ]� be a basis

for polynomials of degree 2. The 6 × 6 moment matrix
constraint is obtained by linearizing the rank one matrix
constraint v2(x)v2(x)� � 0, that is,

v2(x)v2(x)� =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 x1 x2 x2
1 x1x2 x2

2

x1 x2
1 x1x2 x3

1 x2
1 x2 x1x2

2

x2 x1x2 x2
2 x2

1 x2 x1x2
2 x3

2

x2
1 x3

1 x2
1 x2 x4

1 x3
1 x2 x2

1 x2
2

x1x2 x2
1 x2 x1x2

2 x3
1 x2 x2

1 x2
2 x1x3

2

x2
2 x1x2

2 x3
2 x2

1 x2
2 x1x3

2 x4
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� 0

(again, valid for any x ∈ R2) and the other LMI con-
straints correspond to linearizing gi (x)v1(x)v1(x)� � 0,
that is,

gi (x)v1(x)v1(x)� = gi (x)

⎡⎢⎣ 1 x1 x2

x1 x2
1 x1x2

x2 x1x2 x2
2

⎤⎥⎦ � 0
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for i = 1, 2, 3, where gi (x) originates from the three
inequality constraints in (2).

In Fig. 1(c) we show the projection of the feasibility set
of the second LMI relaxation onto the plane y10, y01 of
first-order moments. By construction, the feasibility set of
the second LMI relaxation is included in the feasibility set
of the first LMI relaxation. We can see that the feasibility
set of the second LMI relaxation is the convex hull of the
original non-convex feasible set, and the global optimum
is now attained because the objective function is linear in
the first-order moments.

The same relaxation technique illustrated above can be
applied to a polynomial optimization problem in general
form, cf. Problem (1). For an LMI relaxation of order
δ, let vδ(x) be a vector containing all monomials up to
degree δ. To form the relaxed optimization problem, the
following steps are required:

1. Linearize the objective function g0(x) by lifting:
xk1

1 xk2

2 . . . xkn
n is replaced with yk1k2...kn .

2. Apply lifting to the LMI constraint gi (x)vδ−1(x)
vδ−1(x)� � 0 for each constraint gi (x) ≥ 0.

3. Add the LMI moment matrix constraint which
corresponds to linearizing the trivial constraint
vδ(x)vδ(x)� � 0.

If the feasible set {x | gi (x) ≥ 0, i = 1, . . . , m} is com-
pact and under some mild additional assumptions akin to
qualification constraints in mathematical programming,
it is shown in Lasserre (2001) that the hierarchy of re-
laxations converges asymptotically limk→∞ p∗

k = p∗.
Convergence is proved using results of real algebraic
geometry, namely the primal decomposition of a multi-
variate polynomial as a sum-of-squares, as well as the
dual theory of moments of a measure localized on a
semialgebraic set. If the solution to the relaxed prob-
lem is not tight, that is, p∗

k < p∗, then an approximate
solution may be obtained by simply keeping the lift-
ing variables corresponding to first-order moments. In
general, such a solution may not be feasible, but that
will not be an issue for the problems considered in this
paper.

2.2. Polynomial Matrix Optimization

The scalar approach of Lasserre (2001) can be extended
to polynomial matrix optimization problems

min g0(x)

s.t. G(x) � 0

where G(x) is a symmetric matrix polynomial map-
ping of the vector indeterminate x . The (typically non-
convex) constraint G(x) � 0 is a polynomial matrix in-
equality (PMI), and it can be viewed as an extension of
LMIs.

Using Descartes’ rule of sign, or by enumeration of the
diagonal minors, the PMI G(x) � 0 can be expressed as a
conjunction of scalar polynomial inequalities gi (x) ≥ 0,
i = 1, 2 . . . . However by doing so we typically de-
stroy the matrix structure of the problem. In Henrion and
Lasserre (2006) the LMI relaxation approach of Lasserre
(2001) is extended to PMI. Numerical examples coming
from control theory illustrate the relevance of keeping the
matrix structure.

In this paper we will face polynomial optimization
problems where the constraints are not scalar, but polyno-
mial matrix inequalities. For computational reasons we
will not follow the general relaxation procedure devel-
oped in Henrion and Lasserre (2006) for PMIs. Instead
we develop an alternative technique, tailored for our spe-
cific problems. It turns out that only a limited subset of
the decision variables enter in a non-linear and hence
possibly non-convex way in the PMIs. The main differ-
ence (compared to a scalar formulation) is that by using
PMIs, we reduce the degree of the monomials and some
decision variables appear linearly. As there are no non-
linear interactions for this subset of variables, it makes
sense to drop the moment matrix constraints for this set.
So, the lifting procedure will be applied to the non-linear
monomials only and the moment matrix constraint will
be restricted to lifting variables, a technique that we will
refer to as a partial relaxation. More precisely, to form
the relaxed problem, we first linearize the objective func-
tion as well as all the non-linear entries in the PMIs
by lifting (as described in the previous section). Thus,
the matrix structure of the problem is kept. Then we
add the moment matrix constraint for the set of lifting
variables. Note that the procedure still results in a con-
vex LMI relaxation which gives a lower bound of the
original objective function. Examples will be given in
later sections. A similar approach for reducing computa-
tional complexity is pursued in Waki et al. (2006) with
excellent results for various polynomial optimization
problems.

On the one hand, this partial relaxation technique re-
sults in a dramatic drop in the number of LMI variables
and constraints when compared with the full relaxation.
On the other hand, in contrast with the scalar case, we are
not able to ensure asymptotic convergence to the global
optimum. However, if the moment matrix corresponding
to this limited subset of non-convex variables has rank
one, then we have a numerical certificate of global opti-
mality just as in the scalar case.
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Ideally, the relaxed problem has a solution with a mo-
ment matrix of rank one, then the gap between the re-
laxed problem and the original problem is zero. The re-
laxation is then said to be tight. Experimentally, it has
been observed that minimizing the trace of the moment
matrix generally results in a low rank moment matrix. In
practice, in an LMI relaxation, we can add to the objec-
tive function the trace of the moment matrix weighted
by a sufficiently small positive scalar ε. Thus, instead
of just optimizing g0(x), the objective function is re-
placed with g0(x) + εtr(M) where M is the moment
matrix. This heuristic is further motivated and discussed
in Kim and Mesbahi (2004), Fazel et al. (2004), and
Henrion and Lasserre (2005) and we elaborate on it in
Section 8.

3. Optimal Structure and Motion

Given image coordinates in one or several views, our goal
is to infer the scene points and/or the camera motion. In
this section, we formulate the problem and specify what
is meant by an optimal estimate.

A perspective camera projects a point U in 3D space
to a point u in the image plane as

λu = PU. (3)

Here the points are represented by homogeneous coor-
dinates. In this expression, P is a rank-3 matrix of size
3×4 called the camera matrix and λ is a (positive) scalar
accounting for depth.

Assume that the measured image points, denoted by
ûi , i = 1, . . . , N , are corrupted by independent Gaus-
sian noise, but otherwise, an ideal perspective cam-
era model. Then the statistically optimal cost-function
is the least-squares error between measured and re-
projected image points (Hartley and Zisserman, 2004).
Hence, our goal is to solve the following optimization
problem,

min
N∑

i=1

d(ûi , ui (x))2 s.t. λi (x) > 0, (4)

where d(·, ·) is the Euclidean distance. Here ui (x) denotes
the reprojected image point coordinates as a function of
the unknown variables x . These variables parametrize
3D points and/or camera matrices depending on the
exact application (see Sections 5 and 6). Each term
in the cost-function can be expressed as a rational
function,

d(ûi , ui (x))2 = fi1(x)2 + fi2(x)2

λi (x)2
, (5)

where fi1(x), fi2(x) and λi (x) are polynomials in x . In
addition, one can require that the depth function λi (x) >

0, since all points should be in front of the cameras.
Minimizing the sum of rational functions can be

achieved by reducing to the same denominator and apply-
ing the LMI relaxation technique described in Jibetean
and de Klerk (2006), which is an extension of the tech-
nique of Lasserre (2001). However, this approach is com-
putationally demanding and not tractable if N is large,
due to the high degree of the resulting denominator.

Instead, suppose each residual in (5) has an upper
bound γi , that is, ( fi1(x)2 + fi2(x)2)/λi (x)2 ≤ γi . Then,
the formulation in (4) is equivalent to

min γ1 + γ2 + · · · + γN

s.t. fi1(x)2 + fi2(x)2 ≤ γiλi (x)2

λi (x) > 0 i = 1, . . . , N .

(6)

The hierarchy of LMI relaxations described in Section 2.1
can be applied to this polynomial optimization problem.
Denoting by δ the highest degree of x occurring in poly-
nomials fi1(x), fi2(x), λi (x), the constraints in the above
problem have degree 2δ + 1, meaning that the first LMI
relaxation to be tried has order δ.

4. Schur Formulation

In this section we will show how the polynomial opti-
mization problem in the previous section can be recast
and relaxed using polynomial matrix inequalities.

The LMI relaxations can directly be applied to the for-
mulation in (6) and this approach will be tested in the next
section. However, using the standard polynomial relax-
ations to the formulation in (6) requires generally large
LMIs since all variables are involved in non-linear ex-
pressions. By using PMIs, the degree of the polynomials
can in fact be reduced.

Before we continue, we need to introduce a concept
due to Schur (Boyd and Vandenberghe, 2004). Let

M =
[

A B

B� C

]
.

be a symmetric matrix and suppose that A 
 0. Then,
the following are equivalent:

M � 0 ⇐⇒ C − B� A−1 B � 0.

The matrix C − B� A−1 B is called the Schur complement
of M .

Now, set A = diag(λi (x)2, λi (x)2), B = [ fi1(x),
fi2(x) ]� and C = γi . It follows immediately that the
Schur complement condition C − B� A−1 B � 0 is
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equivalent to the inequality in (6) and hence we have
the following reformulation:

min γ1 + γ2 + · · · + γN

s.t.

⎡⎢⎣λi (x)2 0 fi1(x)

0 λi (x)2 fi2(x)

fi1(x) fi2(x) γi

⎤⎥⎦ � 0

λi (x) > 0 i = 1, . . . , N .

(7)

We will refer to this as the Schur form. Note that γi ap-
pears only as a linear term and the only non-linearity
remaining is due to λi (x)2 if the polynomials fi1(x) and
fi2(x) are of degree one. Thus in order to take advantage
of the result in Section 2.2, it is enough to apply LMI
relaxations on x = [x1, x2, . . . ]T and it is not necessary
to relax γi , i = 1, . . . , N provided the global optimality
check is fulfilled for some relaxation order. If we were to
apply full relaxations to all variables, the problem would
become intractable for small N .

5. Example: Triangulation

We will first illustrate the convexification schemes on
a simple geometric reconstruction problem, namely the
triangulation problem. Then, other applications will be
given in the next section.

In the triangulation problem, the camera matrices Pi ,
i = 1, . . . , N are considered to be known and the goal is
to recover the unknown scene point U = [ x, 1 ]� =
[ x1, x2, x3, 1 ]�. It is easy to verify that the polyno-
mials fi1(x), fi2(x) and λi (x) in (5) have degree one
and that the coefficients are determined by the ele-
ments in the camera matrix and the measured image
coordinates.

As an example, consider the following camera triplet,

P1 =

⎡⎢⎣1 0 0 0

0 1 0 0

0 0 0 1

⎤⎥⎦ , P2 =

⎡⎢⎣−1 −1 −1 0

1 0 −1 1

0 0 1 1

⎤⎥⎦ ,

P3 =

⎡⎢⎣ 0 −1 0 0

0 0 −1 1

−1 −1 0 1

⎤⎥⎦
and assume that the measured image point in each view
is at the origin (which is no restriction since it can be
accomplished by changing coordinate systems). What is
the optimal 3D point in terms of minimal reprojection
errors?

The polynomial functions defined in (5) for the first
camera are particularly simple f11(x) = x1, f12(x) =
x2, λ1(x) = 1. Note that the first residual is actually a

polynomial. Introduce the squared upper bounds γ 2
2 and

γ 2
3 for the second and third residuals.1 Then, the scalar

formulation (6) can be stated as

min x2
1 + x2

2 + γ 2
2 + γ 2

3

s.t. (x1 + x2 + x3)2 + (1 + x1 − x3)2 ≤ γ 2
2 (1 + x3)2

x2
2 + (1 − x3)2 ≤ γ 2

3 (1 − x1 − x2)2.

The inequality constraints are of degree four and hence
the lowest possible relaxation order is two. Relaxation is
required for all five variables (x1, x2, x3, γ2, γ3). We have
ignored the positive depth constraint, though, it would be
straightforward to incorporate.

The Schur formulation (7) of this problem is given by

min γ1 + γ2 + γ3

s.t.

⎡⎢⎣ 1 0 x1

0 1 x2

x1 x2 γ1

⎤⎥⎦ � 0

⎡⎢⎣ (1 + x3)2 0 −x1 − x2 − x3

0 (1 + x3)2 1 + x1 − x3

−x1 − x2 − x3 1+x1 − x3 γ2

⎤⎥⎦ � 0

⎡⎢⎣(1 − x1 − x2)2 0 −x2

0 (1 − x1 − x2)2 1 − x3

−x2 1 − x3 γ3

⎤⎥⎦ � 0.

Similar to problem (2), the LMI relaxed formulation is
obtained by the lifting procedure: a monomial xk1

1 xk2

2 xk3

3

is replaced with the lifting variable yk1k2k3
and adding that

the moment matrix should be positive semidefinite.
The results of the two LMI relaxations are summarized

in Table 1. The best estimate of the polynomial formula-
tion was also refined using bundle adjustment,2 resulting
in the following 3D point estimates for the three different

Table 1. Data from the triangulation example, from left to right: prob-

lem formulation, Root Mean Squares (RMS) errors in pixels, LMI re-

laxation order δ, the size of the moment matrix and the total number of

decision variables.

Form RMS Order Moments Variables

Polynomial .362 2 21 × 21 125

.181 3 56 × 56 461

.162 4 126 × 126 1286

Schur .175 1 4 × 4 12

.164 2 10 × 10 37

.162 3 20 × 20 86

Bundle adj. .161 n.a. n.a. 3
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schemes:

Upoly =

⎡⎢⎢⎢⎣
−.176

−.110

.780

1

⎤⎥⎥⎥⎦ , USchur =

⎡⎢⎢⎢⎣
−.182

−.138

.826

1

⎤⎥⎥⎥⎦ ,

Ubundle =

⎡⎢⎢⎢⎣
−.181

−.113

.813

1

⎤⎥⎥⎥⎦ .

Examining the moment matrix of the estimates, the ra-
tio of the two largest singular values, σ2/σ1, is 0.03 and
0.3 for the polynomial method and the Schur form, re-
spectively. The moment matrices are close to rank one
which would guarantee global optimality, cf. Section 2.
However, since the matrices are not exactly rank one, one
cannot draw any definite conclusions. More simulations
are given in Section 7 for the triangulation problem.

Remark. It is important to note that in the polynomial
scheme, the number of decision variables increases dras-
tically while the increase in the Schur form is more mod-
erate. In the above example, for relaxation order δ, the
size of the moment matrix and the total number of vari-
ables are given by

(
5+δ

δ

)
and

(
5+2δ

2δ

) − 1, respectively, for
the polynomial scheme as all 5 variables are involved
in the lifting procedure. In the Schur form, the size of
the moment matrix and the total number of variables are
given by

(
3+δ

δ

)
and

(
3+2δ

2δ

) + 3 − 1, respectively, as only
3 decision variables (i.e. x1, x2, x3) are involved in the
lifting. The complexity of the polynomial approach for
problems with (i) more than three views or (ii) more
degrees of freedom is computationally very demanding.
Therefore, we will focus on the more promising Schur
method in the remaining part of the paper.

6. More Applications

6.1. Camera Pose

In the problem of camera pose, also known as camera
resectioning or absolute orientation, the camera matrix
is the object of interest. Given a set of known 3D points
{Ui }N

i=1 in the scene, the goal is to reconstruct the camera
matrix P . Let

P =

⎡⎢⎣x1 x2 x3 x4

x5 x6 x7 x8

x9 x10 x11 1

⎤⎥⎦ .

The polynomials fi1(x) fi2(x) and λi (x) will again be
affine functions (that is, having degree one) and the co-

efficients are determined by the scene points Ui and
the measured points ûi . While fi1(x) and fi2(x) will
generally depend on all 11 variables in x , the depth
function λi (x) depends only on three variables, namely
λi (x) = λi (x9, x10, x11). Thus, in the optimization pro-
cess, it will suffice to do partial relaxations on these three
variables, as described in Section 2.2. If all 11 variables
were to be relaxed, then the problem would have become
computationally impossible, or at least hard, already for
relaxation orders greater than two.

6.2. Homography Estimation

A homography is a projective transformation from Pn to
Pn . The problem of estimating a homography is similar
to that of camera pose. For example, suppose we are
given a collection of 3D points {Ui }N

i=1 on a plane, then
there exists a homography, which can be represented by
a 3 × 3 matrix H , mapping these points to the image
plane, as λi ui = HUi where ui and Ui are represented
by homogeneous coordinates. Hence, by setting

H =

⎡⎢⎣x1 x2 x3

x4 x5 x6

x7 x8 1

⎤⎥⎦ ,

the problem can be put in the standard form (7) with LMI
relaxations on x7 and x8.

More generally, if we are given two collections of
points in Pn , then we can compute the homography
H : Pn → Pn , mapping one set to the other. All mea-
surement errors will be assumed to be in one of the point
sets and it will suffice to relax the variables appearing
in the last row of the homography matrix in accordance
with the principle of partial relaxation, cf. Section 2.2.

In the case of a plane-to-image homography as de-
scribed above, it makes sense to speak of the optimal
homography. However, for other problems involving pro-
jective transformations, it may not be the best choice to
optimize the L2-norm. For example, for an inter-image
homography it would be better to use a symmetrical cost-
function. We do not pursue the topic of general homo-
graphies from Pn to Pn any further.

6.3. Epipolar Geometry

Given corresponding image points in two views, we could
in principle follow the same strategy as before in order
to reconstruct both camera matrices and scene structure.
But this would unfortunately lead to an intractable prob-
lem since there are simply too many variables that would
appear in non-linear polynomials.

Therefore, we will reformulate the problem once again.
Given corresponding points u and u′ in two images, the
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epipolar constraint should be fulfilled:

u′T Fu = 0,

where F is a 3 × 3 matrix of rank two. Given F , one can
recover uniquely two camera matrices modulo projec-
tive coordinate system (Hartley and Zisserman, 2004). In
Zhang (1998), the following optimization criterion was
analyzed:

min
∑

i

(
û′

i
T Fûi

)2

(Fûi )
2
1 + (Fûi )

2
2 + (

F�û′
i

)2

1
+ (

F�û′
i

)2

2

s.t. det F = 0.

It was shown that the criterion can be regarded as a first-
order approximation of the optimal two-view structure
and motion problem. Moreover, for certain motion con-
figurations, it is even equivalent. From a practical per-
spective, the reconstructed motion using the criterion was
very close to the statistically optimal one.

Analogously to the derivation in Section 4, let γi be
an upper bound on the i th residual term. Using a Schur
complement argument, the problem can be reformulated
as,

min γ1 + γ2 + · · · + γN

s.t.

[
(Fûi )

2
1 + (Fûi )

2
2 + (F�û′

i )
2
1 + (F�û′

i )
2
2 û′

i
T Fûi

û′
i
T Fûi γi

]
� 0

det F = 0 i = 1, . . . , N .

Finally, by parameterizing the fundamental matrix by

F =

⎡⎢⎣x1 x2 x3

x4 x5 x6

x7 x8 1

⎤⎥⎦ ,

the problem is given in a Schur form. As the determi-
nant constraint is cubic in x , a relaxation order of at least
two is required. All elements in x appear in non-linear
expressions and hence all eight variables need to be re-
laxed. In addition to det F = 0 one can add xi det F = 0,
i = 1, . . . , 8 without increasing the complexity and to
tighten the LMI relaxations of the non-convex problem.

7. Experimental Validation

The proposed approach for geometric reconstruction
problems has been validated on both simulated and real
data. The goal has been to determine if a global estimate
is actually obtained and if so, at what accuracy. This is
not an easy task, however, since there are no other inde-
pendent methods to compute the global estimate.

We have compared our algorithms with standard lin-
ear techniques as well as bundle adjustment (Hartley
and Zisserman, 2004). In all experiments, the bundle ad-
justment has been initialized with (i) our method, (ii)
the linear algorithm and when available, (iii) the syn-
thetically generated ground truth.3 Out of these bundle
results, only the one with lowest reprojection error is re-
ported. For easier comparison, the Root Mean Squares
(RMS) errors are given instead of the sum of squares
errors.

7.1. Implementation Details

All the described reconstruction algorithms have been
implemented under the Matlab environment in the
publicly available package GloptiPoly (Henrion and
Lasserre, 2003) using the conic programming solver Se-
DuMi (Sturm, 1999). The computation times (i.e. the
cputime for the solver SeDuMi) vary from .23 s for three-
view triangulation to 3.4 s for epipolar geometry with
104 correspondences on a Pentium 4 with 2.8 GHz. In
all experiments but the last one, an LMI relaxation or-
der equal to 3 has been used with ε = 0.001 for the
trace of the moment matrix, cf. Section 2.2. For the es-
timation of epipolar geometry, the corresponding num-
bers are LMI order 2 and ε = 0.00001. These settings
have been found empirically. There are many tuning pa-
rameters in the algorithm that can significantly impact
on the performance and accuracy (including all the tun-
ing parameters of the SeDuMi solver). It is out of the
scope of this paper to give a comprehensive descrip-
tion of the respective and relative influences of all these
parameters.

Normalization of the input coordinates is essential,
both for the linear algorithms and for the Schur method.
The moment matrices contain lifting variables of high-
order monomials making the optimization sensitive to
data scaling. This preprocessing step has been done by
changing coordinate systems in order to get coordinates
with magnitude around one, see (Hartley and Zisserman,
2004). In the Schur formulation, only transformations
invariant to the cost-function are applied. Numerical ex-
periments reveal that the numerical behavior of conic
programming solvers is significantly improved (in terms
of convergence speed and quality of the computed opti-
mizers) when moment matrices feature entries with mag-
nitude less than one (Henrion and Lasserre, 2005).

In all parameterizations of the unknowns, one element
in a homogeneous vector is dehomogenized, normally
the last element. This may cause numerical problems
when the last element happens to be close to zero. On the
other hand, the situation is detectable via, for instance, the
global optimality check and one can then dehomogenize
another element in the vector and rerun the algorithm.
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7.2. Synthetic Data

All simulated data was generated in the following man-
ner. Uniformly random 3D points with coordinates within
[ −1, 1 ] units were projected to cameras with focal
lengths of 1 pixel. The camera centers were (randomly)
chosen at distances of 5 units from the origin in aver-
age. The cameras’ viewing directions were also random,
though biased towards the origin. In addition, the image
coordinates were corrupted by zero-mean Gaussian noise
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Figure 2. Triangulation: (a)–(d). Camera pose: (e)–(h). See text for details.

with varying levels of standard deviation. This procedure
typically gives coordinates with absolute values less than
a pixel. Considering the imaging geometry and that the
(absolute) image coordinates are less than a pixel, a noise
level around 0.05 pixels corresponds to a high noise level.

We have tested the Schur formulations for triangulation
and camera pose on simulated data. The results are pre-
sented in Fig. 2 and the graphs show the average result of
500 repetitions. The behavior of the two Schur algorithms
relative the other methods is similar when noise levels and
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ruasoniD)b(rodirroC)a(

Figure 3. First images of the corridor (a) and dinosaur (b) sequences with epipolar lines with respect to the second view. While the first camera is

moving forwards (or backwards), the other one is moving sideways.

the number of points/views, respectively, are varied.
In Figs. 2(a) and (e), one can see that the errors for the

Schur formulations follow very close to that of the best
obtained with bundle adjustment. Recall that the bundle
adjustment is initialized with the Schur estimate and the
linear estimate as well as the ground truth. The result with
the lowest RMS error is kept. The linear algorithm yields
worse estimates, as expected.

Figures 2(b) and (f) depict the percentage of times the
refined estimates (obtained by applying bundle adjust-
ment) equal the estimate of the (best) optimum, where
initialization is done with either the Schur or the linear
method. Generally, the Schur estimates attain the opti-
mum and the moment matrices are close to rank one.
Hence, it is likely that the global optimum is retrieved.
The refined linear estimates risk getting stuck in local
optima.

When the number of views or points are varied, the
Schur algorithms also closely follow the bundle result,
see Figs. 2(c) and (g), and generally the optimum is at-
tained, cf. Figs. 2(d) and (h). As more views or points
are taken into account, the differences between the linear
and the Schur method decrease.
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Figure 4. Estimation results of homographies (a) and two-view epipolar geometries (b) for consecutive images in the corridor sequence.

7.3. Real Data

We have worked with two publicly available sequences
with given point correspondences4 to test the perfor-
mance on real image data. The first one is a corridor
sequence with a forward-moving camera motion con-
sisting of 104 correspondences visible in all 11 images.
The second one is a turn-table sequence of a dinosaur
with 36 images and in total 328 points with lots of
occlusions, cf. Fig. 3.

Out of the 104 correspondences in the corridor se-
quence, 23 points lie on the left, frontal wall and hence
the points should be coplanar in space. These points were
used to compute inter-image homographies between con-
secutive views.5 In Fig. 4(a), the errors are shown. The
linear algorithm performs well, but generally the Schur
algorithm performs better and it has similar performance
as bundle adjustment.

The two-view epipolar geometries for consecutive im-
ages in the corridor and the dinosaur sequences have also
been computed. In the corridor sequence, all 104 corre-
spondences were used and the RMS errors are presented
in Fig. 4(b). The epipolar lines for the first image pair are
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illustrated in Fig. 3. The performance of the Schur method
is again comparable to the result of bundle adjustment.

We have also computed the epipolar geometries for
consecutive views in the dinosaur sequence, cf. Fig. 3.
The average RMS errors for the 35 image pairs are .209,
.209 and .201 for our method, the 8-point algorithm and
bundle adjustment, respectively. Hence, the three meth-
ods are similar in performance for this scene.

We have noticed that the Schur algorithm for epipo-
lar geometry estimation is more sensitive to data scaling
than for the other tasks. Also, it is usually not good prac-
tice to dehomogenize the last element in the fundamental
matrix since it will vanish if the optical axes intersect.
Due to this sensitivity, one may have to rerun the Schur
algorithm several times if an element in the fundamental
matrix is dehomogenized which has small magnitude. A
priori, it may be hard to say which element has the largest
magnitude, or more importantly, which element gives the
most accurate result. Such numerical aspects need to be
further investigated. A possible reason for this sensitiv-
ity is that there are more variables involved in non-linear
expressions compared to the other applications.

8. Discussion

The area of geometric reconstruction problems is a ma-
ture field and state-of-the-art methods are quite sophisti-
cated. For example, linear methods with proper data nor-
malization perform often satisfactorily for low noise lev-
els. Still, our approach gives generally better estimates,
particularly, for higher noise levels. In fact, our exper-
iments indicate that the estimates are very close to the
global optimum and that the risk of getting stuck in a
local minimum is small.

We have extended the existing theory of LMI relax-
ations of scalar polynomial optimization problems to ma-
trix polynomial optimization problems. Instead of lin-
earizing all the monomials, we used partial relaxations,
i.e. we considered only a limited subset of variables cor-
responding to non-linear, hence potentially non-convex
terms in the PMIs. In general, these structure-exploiting
partial relaxations are of smaller size than the full re-
laxations described in Lasserre (2001). On the negative
side, contrary to the full relaxations, we cannot guarantee
asymptotic convergence to the global optimum. However,
practice reveals that the moment matrix has numerical
rank close to one for LMI relaxations of moderate or-
der, which ensures global optimality in most cases. Re-
cently, the asymptotically converging hierarchy of LMI
relaxations—originally proposed for scalar polynomial
optimization in Lasserre (2001)—has been extended to
PMI problems, using sum-of-squares decompositions of
polynomial matrices (Henrion and Lasserre, 2006). Bet-
ter convergence properties and a more favorable nu-

merical behavior of the conic programming solver are
expected since these new relaxations exploit the partic-
ular matrix structure. Note however that these new re-
laxations have not yet been applied to the PMI problems
described in our paper.

Several numerical aspects related with these LMI re-
laxations deserve to be studied in further detail. Since
the LMI relaxations are built on moment matrices which
may feature monomials of relatively high order, the use
of alternative polynomial bases (Chebyshev, orthogonal
polynomials) may be interesting. Appropriate definitions
of numerical analysis concepts such as conditioning or
scaling of these moment matrices would also be required
in this context. Moreover, evaluating the rank of a numer-
ical matrix is a difficult task. The underlying numerical
analysis problem is ill-posed, in the sense that the rank
function maps a continuous set (reals) onto a discrete
set (integers) and a vanishing perturbation can affect the
output. Evaluating the rank requires to set up an arbi-
trary threshold on the eigenvalues (absolute or relative)—
a sensitive task.

Interior-point algorithms used in most of the conic
programming solvers (e.g. in SeDuMi) to solve LMI
problems consist in applying a Newton scheme (on a
Lagrangian built via a suitably defined barrier function)
yielding iterates in the interior of the feasibility region,
i.e. in the interior of the cone of positive semidefinite
matrices. Only at the optimum, the iterate may reach the
boundary of the cone, resulting in rank-deficient posi-
tive semidefinite matrices. However, the final iterate has
typically maximum rank amongst all possible optimiz-
ers. This may be in conflict with our expectations of
a low-rank (ideally rank-one) moment matrix allowing
to guarantee global optimality (Henrion and Lasserre,
2005). Unfortunately, it is known that rank-minimization
under LMI constraints is a difficult, non-convex op-
timization problem in general. As already mentioned,
numerical experiments reveal that minimizing the trace
of the moment matrix generally results in low-rank opti-
mizers, but this is only a heuristic.
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Notes

1. Experimentally, we have found that replacingγi withγ 2
i works better

from a relaxation point of view. Note that this does not increase the

LMI relaxation order, which is still δ.

2. Bundle adjustment also optimizes the sum-of-squares cost-function,

but it is based on iterative, gradient descent minimization.

3. The ground truth gives only zero reprojection error when no image

noise is added.

4. Available at http://www.robots.ox.ac.uk/∼vgg/data.html.

5. Our optimization criterion is not the best choice in this case, since

it is implicitly assumed that there is no noise in one image.
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