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Abstract

e Represent video motion using a set of
particles.

e Each particle is an image point with a long-
duration trajectory and other properties.

 To optimize particles trajectories
- measure consistency along the particle

trajectories
- measure distortion between particles



Keywords

* Video motion estimation
- The problem for video motion estimation is
how to adequately represent the changes, or
differences, between two video frames.

* Feature tracking
- follows a sparse set of salient image points
over many frames.



Keywords (cont.)

e Optical flow
- estimates a dense motion field from one
frame to the next. Generally, optical flow
corresponds to the motion field, but not
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Fig.1 The motion field and optical flow of a barber’s pole.



Introduction

 Normally, video motion estimation is performed
using feature tracking or optical flow.

 Their goal is to combine feature tracking and
optical flow to produce motion estimation that
are both long-range and moderately dense.
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Feature Tracking Optical Flow Particle Video
Fig.2 Each diagram represents point correspondences between frames of a hypothetical
sequence. Feature tracking is long-range but sparse. Optical flow is dense but short-

range. Their particle video representation is denser than feature tracking and longer
range than optical flow.
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Introduction (cont.)

e Useful
- Multiple observations of each scene point

can be combined for super-resolution, noise
removal and segmentation.

* Particle Video Representation

- Their approach represents video motion using a
set of particles that move through the time.

- Each particle denotes an interpolated image
point sample with a long-duration trajectories.



Related Work

 Multi-Frame Optical Flow
- Most optical flow algorithms estimate
correspondences between a pair of image, but
some use more than two images.

* Occlusion Detection for Optical Flow
- Normally, handling occlusion boundaries is
robustness in data and smoothness term.



Optical Flow Algorithm

Their optical flow algorithm combines the
variational approach of Brox et al.(2004) with
bileteral filtering approach of Xiao et al.(2006).

Their particle video algorithm uses frame-to-
frame optical flow to provide an initial guess for
particle motion.

They estimate optical flow independently for
each frame pair.

The algorithm optimizes a flow field over a
sequence of resolutions! (as shown in Fig.3).

1: Sequence of resolution is obtained by recursively reducing the original resolution by a factor n=0.9 and
the smallest value is n=0.05 ( i.e. if input video has resolution 720x480 pixels, the largest resolution is
648x432 and smallest resolution is 36x24 pixels )



Optical Flow Algorithm (cont.)

» After scaling image, they apply a Gaussian
smoothing filter with o =1.

28 L=

down sample (or reduction)

g &= 720x480

Fig.3 Sequence of resolutions



Optical Flow Algorithm (cont.)

e At each resolution, the algorithm performs the
following 3 steps:

Step 1: optimize the flow field using a variational
objective with robust data and smoothness terms
- data term measures the variation of a multi-
channel image

- sSmoothness term measures the variation of the
flow field using the robust norm



Optical Flow Algorithm (cont.)

Step 2: identify the occluded image regions
using flow field divergence and pixel
projection difference

- The divergence! of an optical flow field
distinguishes between different types of
motion boundaries.

- Pixel projection difference represents
difference of image point between frame t
and t+1.

1: In vector calculus, divergence is an operator that measures the magnitude of vector field. The divergence
of vector field is a (signed) scalar.



Optical Flow Algorithm (cont.)
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Fig.4 In this diagram, the motion discontinuities (red) include occluding boundaries,

disoccluding boundaries, and shear boundaries. The occluded region is the set of pixels
that are not visible in the subsequent frame



Optical Flow Algorithm (cont.)

Step 3: improve flow boundaries using a
occlusion-aware bilateral filter

- to improve boundary sharpness
- the filter computes weights for a
neighborhood of pixels around each pixel



Optical Flow Algorithm (cont.)

Fig.5 shows flow field generated by optical flow algorithm. Each flow field is generated
between a video frame(left) and the subsequent video frame. The flow field is visualized
(right) using hue to denote flow direction and saturation to denote flow magnitude.
The black regions are labeled by the algorithm as occluded.



Particle Video Algorithm

e A particle video is a set of particles
corresponding to a video.

e Particle i has a time-varying position (x;(t), y; (t))

that is defined between the particle’s start
and end frames.



Top-Level Particle Video Algorithm

 Their algorithm builds a particle video by

moving forward and backward across the
video.

By moving through the video in both

directions, new particles can be extended in
both directions.



Top-Level Particle Video Algorithm
(cont.)

For each processed frame, the following step are
performed :

— Propagation. Particles terminating in adjacent frame
are extended into the current frame according to
forward and reverse flow field.

— Linking. Particle links are updated.
— Optimization. Particle positions are optimized.

— Pruning. Particles with high post-optimization error
are pruned.

— Addition. New particles are add in gaps between
existing particles.



Top-Level Particle Video Algorithm

Fig.6 Each plot denotes a
pair of consecutive frames.
The algorithm propagates
particles (black) from one
frame to the next according
to the flow field, excluding
particles (blue) that lie
within the flow field’s
occluded region. The
algorithm then adds links
(red curves), optimizes all
particle positions, and
prunes particles with high
error after optimization.

Finally, the algorithm inserts Fropagate

new particles (yellow) in

gaps between existing
particles.

(cont.)
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Particle Channels

 The particle video algorithm uses the same 5

channels as the flow estimation algorithm:

- image brightness

- green minus red channel

- green minus blue channel

- X gradient

-y gradient
k denotes the channel index; at time t the kth
image channels is IkI(t).



Propagating Particles

 To propagate particle i from frame t-1 to t,
they use the flow field u(x,y,t-1), v(X,y,t-1):
X (t) =% (t=1)+u(x (t-1),y;(t-1),t-1)
yi(t) = y; (t=1) +v(x; (t=1), y; (t -1),t -1)
e |f the optical flow field indicates that a

particle becomes occluded, the particle is
not propagated.

e Backward propagation from frame t+1 to tis
defined analogously.

Propagate



Particle Links

e Their algorithm creates links between

particles using a constrained Delaunay
triangulation.

* For a given frame, particle link will be
created if the corresponding

triangulation edge exists for the frame or
adjacent frame.

Link



Particle Links (cont.)

Fig.7 Links are added using particle triangulation



Particle Links (cont.)

 The algorithm assign weight to each link based
on difference between the trajectories of the
linked particles.

e |f particles have similar trajectories, they
probably arise from same scene surface, and
thus should be strongly linked.

e |f the particles are separated by an occlusion

boundary, the weight should be zero or near
Zero.



Particle Links (cont.)

* Mean squared motion difference between
linked particles i and j over set T of frames is
calculated by following equation:

D(i, j) = ﬁzwi ()~ (0) +(v; () —; (1))’

where u (t)=x (t)—x (t-1)
Vi (t) =Y, (t) —Y, (t _1)

Then algorithm computes link weight using
zero-mean Gaussian prior ( o, =1.5 ).

l;, = N(\/D(i’ 1);01)




Particle Optimization

* Flow field provides an initial location for
each particle in the given video frame.

* Optimization process repositions
particles.

Optimize



Particle Optimization : Particle
Objective Function

 The algorithm repositions particles to locally minimize an
objective function that includes two components for each
particle: a data term and a distortion term.
They define the energy of particle i in frame t as:

E(i,t)= D Egau(it)+@ 2 Epgo(i, 1)

keK; (1) Jeli(t)

K (t) denotes the set of active chanels

L. (t) denotes the set of particles linked to particle i in
frame t

e Given a set P of particles indices and a set F of frame
indices, the complete objective function is:

E= ) E(it)

teF,ieP



Particle Optimization : Data Energy

 The data energy term measures how well a
particles’s appearance matches the pixel values.

e For particleiattime t, the kth channel of
particles’s appearance is:

G (1) = 1M (x (©), y; (0), 1)
 The data term measures the difference between
the observed appearance and filtered
appearance:
Epata (i 1) =y ([ (1) - &4 (O°)
where ¢ (t) is filtered appearance which is
slowly- varying apearrance

w(s?) =+s?+¢&2:e=0.001




Particle Optimization : Distortion Energy

 The distortion term measures the relative
motion of particles. For two linked particles
which in the same frame t,
- if they move in different directions, they will
have large distortion
- if they move in same direction, they will have a
smaller distortion

e The distortion term resists incorrect motions

that could be caused by the data term, especially
near occlusion boundaries.



Particle Optimization : Distortion Energy
(cont.)

 The distortion term is defined between a pair
of linked particles j and .

Episiore (15 1, 1) = L ([u; (1) —u; (O +[v; (1) —V; )1°)
where
u; (t) = x; (1) — %, (t-1)
vi(t) =y, (1) -y (t-1)

l; is link weight between particles i and j



Particle Optimization : Constructing a
Sparse Linear System

 Within objective function E, they substituted
dx, (t) + x,(t) for x;(t) (and instances of y
accordingly).

 Taking partial derivatives to obtain a system
of equations.

B _,_CE
odx,(t)  ady, (t)

The dx (t) and dy.(t) values produced by

solving this system are added to the current
particle positions ( x.(t) and vy, (t) ).

=O‘ie P,te F}



Pruning Particles

o After optimizing the particles, the
particles that continue to have high
energy values will be pruned.

 These particles have high distortion
(large appearance mismatch), indicating
possible occlusion.

 Each particle’s energy values is filtered
by using a Gaussian. If in any frame the
filtered energy value is greater than
threshold, the particle is deactivated in
that frame.

Prune



Adding Particles Using Scale Maps
S

e After optimization and pruning,
the algorithm adds new particles
in gap between existing particles.

 The algorithm arranges for higher
particle density in regions of

greater visual complexity, in
order to model complex motions.
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Evaluation

* To quantify the algorithm’s performance, they
use video that are constructed to return to
starting frame.

 They replace the second half of each
evaluation video with temporally reversed
copy of the first half.

* Then, they compute the fraction of particles

that survive from the start frame to the end
frame.



Table 1 The evaluation videos
include various camera motions
and object motions. B denotes
rotation and T denotes
translation

Evaluation Videos

Name Camera motion Occlusion Object motion Frames
VBranches Hand-held R +T Yes Mone S0
VCars Hand-held E+T Yes E+T S0
WHall Hand-held E+T Yes MNone S0
YVHand Hand-held R +T Yes E + T: deformation 70
WYMouth Static Yes E + T: deformation 70
VPerson Tripod K Yes E + T: deformaticn S0
VPlant Hand-held R +T Yes Mone 70
VShelf Crane T Yes Mone S0
VTiee Hand-held E+T Yes E + T deformation 70
VTreeTrunk Hand-held R +T Yes Mone S0
VZoomln Static Mo Mone 40
VZoomOut Static Mo Mone 40
VRotate Ortho Static Mo 14 o0
VRotate Persp Static Mo E Q0
VEectSlow Static Yes R a0
VERectFast Static Yes K &0
VRectLight Static Yes K a0
VCylSlow Static Yes R S0
VCylFast Static Yes 4 S0
VCylLight Static Yes K S0




Results of Particle Video Algorithm
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Evaluation Results

Configuration Return Return Mean Mean Run
fraction error count length time
FlowConcat 0.581 4.05 N/A IN/A IN/A
PVBaseline 0.65 .12 13260 31.68 40.53
PVSweepl 0.71 0.99 11468 28.96 15.73
PVSweep4 0.66 1.24 14644 30.51 73.65
PVNoOcc 0.66 L.17 13178 32.90 5747
PVPruneMore 0.43 0.83 14684 23.11 71.69
PVPruneLess 0.75 .73 13304 37.15 20.11

PVBaseline -performs a forward sweep followed by a backward sweep.

PVSweepl- performs a single forward sweep.

PVSweep4-This sweeps forward, backward, forward again, then backward again.

PVNoOcc-This configuration ignores the occlusion maps.

PVPruneMore-This configuration lowers the pruning threshold to 6 = 5, resulting in more pruning.

PVPruneLess-This configuration raises the pruning threshold to & = 20, resulting in less pruning.
FlowConcat. This is a simple concatenation of flow fields for each particle position in the first video frame.



Conclusion

e Particle representation differs from standard
motion representations such as vector field,
layers and tracked feature patches.

 Their approach differs from optical flow by
enforcing long-range appearance consistency
and motion coherence.

 Their implementation represent occlusion
boundaries using weight links between
particles.



Thank you
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