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Abstract We propose a model of the shape, motion and ap-
pearance of a scene, seen through a sequence of images,
that captures occlusions, scene deformations, unconstrained
viewpoint variations and changes in its radiance. This model
is based on a collection of overlapping layers that can move
and deform, each supporting an intensity function that can
change over time. We discuss the generality and limita-
tions of this model in relation to existing ones such as tra-
ditional optical flow or motion segmentation, layers, de-
formable templates and deformotion. We then illustrate how
this model can be used for inference of shape, motion, de-
formation and appearance of the scene from a collection of
images. The layering structure allows for automatic inpaint-
ing of partially occluded regions. We illustrate the model on
synthetic and real sequences where existing schemes fail,
and show how suitable choices of constants in the model
yield existing schemes, from optical flow to motion segmen-
tation and inpainting.

Keywords Shape modeling - Appearance modeling -
Non-rigid registration - Rigid registration - Active contours
1 Introduction

We are interested in modeling video sequences where
changes occur over time due to viewer motion, motion or de-
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formation of objects in the scene—including occlusions—
and appearance variations due to the motion of objects rel-
ative to the light sources. A suitable model will trade off
generality, by allowing variations of shape, motion and ap-
pearance, with tractability, by being amenable to inference
and analysis. The goal of modeling is to support inference,
and depending on the application one may be more inter-
ested in recovering shape (e.g. in shape analysis, classifi-
cation, recognition, registration), or recovering motion (e.g.
tracking, optical flow), or appearance variations (e.g. seg-
mentation) including restoration (inpainting). Traditionally,
the modeling task has been approached by making strict
assumptions on some of the unknowns in order to recover
the others, for instance the brightness-constancy assump-
tion in optical flow, or the affine warping in shape analy-
sis and registration. This is partly justified because in any
image-formation model there is ambiguity between the three
factors—shape, motion and appearance—and therefore the
most general inference problem is ill-posed. In some appli-
cations, for instance video compression, the ambiguity is
moot since all that matters is for the model to capture the
sequence as faithfully and parsimoniously as possible. Nev-
ertheless, since all three factors affect the generation of the
image, a more germane approach would call for modeling
all three jointly, then letting complexity dictate the responsi-
bility of each factor, and the application dictate the choice of
suitable regularizers to make the inference algorithms well
posed. We therefore concentrate our attention on modeling,
not on any particular application.

We propose a model of image formation that is general
enough to capture shape, motion and appearance variations
(Sect. 2), and simple enough to allow inference (Sect. 4).
We want to be able to capture occlusion phenomena, hence
our model will entail a notion of hierarchy or layering; we
want to capture image variability due to arbitrary changes
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in viewpoint for non-planar objects, hence our model will
entail infinite-dimensional deformations of the image do-
main. Such deformations can be due to changes in view-
point for a rigid scene, or changes of shape of the scene
seen from a static viewpoint, or any combination thereof.
Our model will not attempt to resolve this ambiguity, since
that requires higher-level knowledge. Furthermore, we want
to capture large-scale motion of objects in the scene, as op-
posed to deformations, hence we will allow for a choice of
a finite-dimensional group, e.g. Euclidean or affine, separate
from infinite-dimensional deformations. An added benefit of
this approach is that higher-level knowledge of viewpoint
changes may be incorporated through an added prior on this
finite-dimensional group to resolve the ambiguity addressed
above. Finally, we want to capture changes in appearance,
hence scene radiance will be one of the unknowns in our
model. Changes in radiance can come from changes in re-
flectance or changes in illumination, including changes in
the mutual position between the light sources and the scene;
again we do not attempt to resolve this ambiguity, since
that requires higher-level knowledge. The image-formation
model we propose is not the most general that one can con-
ceive; far from it. Indeed, it is far less general than the sim-
plest models considered acceptable in Computer Graphics,
and we illustrate the lack of generality in Sect. 3. Neverthe-
less, it is more general than any other model used so far for
motion analysis in Computer Vision, as we discuss also in
Sect. 3, and is complex enough to be barely tractable with
the analytical and computational tools at our disposal today.
We pose the inference problem within a variational frame-
work, involving partial differential equations, integrated nu-
merically in the level set framework (Osher and Sethian
1988), although any other computational scheme of choice
would do, including stochastic gradients or Markov-chain
Monte Carlo. The point of this paper is to propose a model
for shape and appearance of layers and therefore a scene and
show that it can be inferred with at least one particular com-
putational scheme, not to advocate a particular optimization
technique.

1.1 Relation to Existing Work

This work relates to a wide body of literature in scene mod-
eling, motion estimation, shape analysis, segmentation, and
registration which cannot be properly reviewed in the lim-
ited space available. In Sect. 3 we illustrate the specific
relationship between the model we propose and existing
models. These include Layers (Wang and Adelson 1994;
Hsu et al. 1992), which only model affine deformations of
the domain and can therefore only capture planar scenes un-
der small viewer motion or small aperture, and where there
is no explicit spatial consistency within each layer and the
appearance of each layer is fixed. As we will illustrate, our

@ Springer

model allows deformations that can model arbitrary view-
point variation, model layer deformation and enforce spa-
tial coherence within each layer. One could think of our
work as a generalization of existing work on Layers to ar-
bitrary viewpoint changes, or arbitrary scene shape, and to
changes in radiance (texture), all cast within a variational
framework.

Our work relates to a plethora of variational algorithms
for optical flow computation, for instance (Schnorr 1992;
Alvarez et al. 1999; Deriche et al. 1995) and references
therein, except that we partition the domain and allow ar-
bitrary smooth deformations as well as changes in appear-
ance (that would violate the brightness constancy constraints
that most work on optical flow is based on, with a few ex-
ceptions, e.g. Haussecker and Fleet 2001). It also relates to
various approaches to motion segmentation, where the do-
main is also partitioned and allowed to move with a simple
motion, e.g. Euclidean or affine, see for instance (Cremers
2003) and references therein. Such approaches do not allow
deformations of the region boundaries, or changes in the in-
tensity within each region. Furthermore, they realize a par-
tition, rather than a hierarchy, of domain deformations, so
our model can be thought of as motion segmentation with
moving and deforming layers with changes in intensity and
inpainting (Bertalmio et al. 2000). In this, our work relates
to (Soatto and Yezzi 2002), except that we allow layers to
overlap. So, our work can be thought of as a layered version
of Deformotion with changes in region intensities. Also rele-
vant to our work is (Paragios et al. 2003) where one distance
function is registered to another using rigid and non-rigid
transformations. Our work relates to deformable templates
(Grenander 1993; Miller and Younes 1999), in the sense that
each of our layers will be a deformable template. However,
we do not know the shape and intensity profile of the tem-
plate, so we estimate that along with the layering structure.
A one-layer version of our work is similar to (Trouve and
Younes 2005) where the author describes energies on the
manifold G x M where g € G is a group action (possibly a
C diffeomorphism or an affine transformation) and M is a
manifold consisting of a collection of landmark points or im-
ages). For the example of G being the set of C*° diffeomor-
phisms and M being the set of images, the geodesic between
two points (g1,m1), (g2, my) € G X M describes metamor-
phoses from one “group-image” pair to another. Our work is
also related to active appearance models (Cootes et al. 1998;
Baker et al. 2003), in that we seek the same goal, although
rather than imposing regularization of shape and appear-
ance by projection onto suitably inferred linear subspaces
we employ generic regularizers. One can therefore think
of our work as a generalization of active appearance mod-
els to smooth shape and intensity deformations, cast in a
variational framework. Of course this work relates more
generically to active contours, e.g. (Blake and Isard 1998;
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Kichenassamy et al. 1995; Caselles et al. 1997; Paragios and
Deriche 2000) and references therein. Finally, our joint es-
timation of both geometric and photometric unknowns fol-
lows a similar spirit found in (Marks et al. 2005) where pose
and texture are jointly estimated through the use of condi-
tionally Gaussian filters. In the next section we introduce
our model, and in Sect. 4 we illustrate our approach to infer
its (infinite-dimensional) constitutive elements.

2 Modeling

We represent a scene as a collection of L overlapping lay-
ers. Each layer, labeled by an index k =1, ..., L, is a func-
tion that has associated with it a domain, or shape QK cR?,
and a range, or radiance p* : 2 — R*. Layer boundaries
model the occlusion process, and each layer k undergoes a
motion, described by a (finite-dimensional) group action g¥,
for instance g* € SE(2) (the group of rigid motion on the
plane) or the affine group A(2), and a deformation, or warp-
ing, described by a diffeomorphism w* : 2% — R2, in or-
der to generate an image / at a given time ¢. The warping
models changes of viewpoint for non-planar scenes, or ac-
tual changes in the shape of objects in the scene. Since each
image is obtained from the given scene after a different mo-
tion and deformation, we index each of the image’s corre-
sponding variables by ¢: gf, w{‘, and /,. Finally, since lay-
ers occlude each other, there is a natural ordering in k which,
without loss of generality, we will assume to coincide with
the integers: Layer k = 1 is occluded by layer k = 2 and so
on. But since this occlusion model could change, say layer
k = 2 goes behind layer k = 3 and then later layer k = 2 is in
front of layer k = 3, there is a function / = max{k | x € 22X}
that indicates the layer that will contribute to the intensity at
a pixel in a given image which is the frontmost layer that in-
tersects the warped domain. For simplicity we assume that
29 =TR? (the backmost layer, or “the background”). With
this notation, the model of how the value of the generic
image I; : 20 — R™ at the location x € 2° c R? is gen-
erated can be summarized as I; (gf o wf (x)) = pl(x), with
x € 2!, 1 = max{k | x € £2}. To simplify the notation, we
call x! = g! o w!(x), which sometimes we indicate, for sim-
plicity, as x;, so that

L(xh = pl(x),

x; = gg o wj(x),

xe.Ql,
[ = max{k | x € 2K}.

ey

Our goal in this work is to infer, to the extent possi-
ble, the radiance family {,ok}kzl,w L, the shape family
{£2%)k=1,...L, the motions {gf}x=1....1:1=1,...n and the de-
formations {wf}k:I ,,,,, L:t=1,....~ that minimize the discrep-
ancy of the measured images from the ideal model (1), sub-
ject to generic regularity constraints. Such a discrepancy is
measured by a cost functional qb(.Qk, pk, wf, gf) to be min-
imized

N
o= /Q o) = o) o gl (e
=1
L L
+ ds + % f Vot )|%d
ck;fm s ; Vet @

L,N
Yy /er(wﬁ‘)(x)dx

k,t=1

subject to [ = max{k | x € .Qk}. 2)

Here r is a regularizing functional, for instance r(w) =
|w| + ﬁ where |w| is the determinant of the Jacobian Ma-
trix (with respect to x) of w. Since it is desirable to keep
w to be a one-to-one function this regularizer r keeps |w|
close to one. If |w| deviates from 1 then either one of the
terms |w| and hL_\ gets bigger. A, i, and ¢ are positive con-
stants. Note that [ is a function, specifically  : 20 — Z+.
We have chosen the two-norm for the data-dependent term
and the regularizer for simplicity, but other choices would of
course do as well.

3 Generality of the Model

It can be easily shown that (1) models images of 3-D scenes
with piecewise smooth geometry exhibiting Lambertian re-
flection with piecewise smooth albedo' viewed under dif-
fuse illumination from an arbitrarily changing viewpoint. It
does not capture global or indirect illumination effects, such
as cast shadows or inter-reflections, complex reflectance,
such as specularities, anisotropies or sub-surface scattering.
These are treated as modeling errors and are responsible for
the discrepancy between the model and the images, which
is measured by ¢ in (2). We lump these discrepancies to-
gether with sensor errors and improperly call them “noise.”
Although far from general, (1) is nevertheless a more ambi-
tious model than has ever been used in the context of motion
estimation and tracking. In fact, many existing models are
special cases of (1).

We start by showing how the model includes traditional
optical flow as a special case. In particular, if we assume
a single layer to represent the whole image domain (i.e.
L =0), a trivial group action (i.e. g = Id) and no regularity
in the modeled radiance p = p° (i.e. A = 0) then the result-
ing minimization problem includes only the radiance p and

the warps w; = w? and wy = wg as unknowns (we consider

IThe model can be further generalized by allowing p’ to be vector-
valued to capture a set of radiance statistics such as the coefficients of
a filter bank or other texture descriptors, but this is beyond the scope of
this paper.
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the case of just two images I; and I, for now). We are there-
fore left with the much simpler energy

2
b =Y [ i) = pw 50 P
t=1

2
+ud [ reedr. G)
t=1

If our goal is just to find the warp w = wj o wf] that reg-
isters I; to I (through the common radiance model p),
then we may further simplify things by setting w; = Id
and wy = w, thereby eliminating yet another unknown and
yielding (up to a change of measure corresponding to the
Jacobian Matrix of w, which is w)

¢(p,w) = /Q RUIGE () + (L(w(x) — p(x))*dx

+,u/ r(w)(x)dx. 4)
00

Since we have omitted the smoothness penalty on p, it is
straightforward to show for a given choice of w that (4)
is minimized by setting p(x) to the mean of I;(x) and
I (w(x)). Thus, in this special case (no smoothness on p)
we may replace the joint optimization in (4) with a direct
optimization of w through this substitution of p. The result-
ing energy

1
¢w) =3 / (11 (x) — L(w(x)))*dx
_QO

—|—,u/ r(w)(x)dx, 5)
_QO

depending upon the choice of the regularizer r (note that
r typically depends on the derivatives of w rather than its
direct values), corresponds to either the classical optical flow
in (Horn and Schunk 1981) or to one of its many variants.

Our model has the advantage of not enforcing global reg-
ularization (regularization is imposed within layers, but not
across layers), of not comparing images to each other, but
to an underlying model (this carries significant advantages
when it comes to robustness to noise, as we illustrate with
experiments), and of having an explicit model of the appear-
ance of the scene, which allows “inpainting” individual lay-
ers while preserving their motion boundaries.

Choosing L =1, w = Id, » =0, u = 0 yields motion
segmentation, that has also been addressed by many, see
for instance (Cremers 2003) and references therein for the
case of affine motion g € A(2). In motion segmentation one
partitions the domain into a number of individually moving
segments, each of which is assumed to move with a constant
(finite-dimensional) motion. Like in optical flow, there is no
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model of appearance, and the data-dependent term consists
of the brightness constancy constraint which forces direct
image-to-image comparison:

$(gh. 24 = /Q o)~ Iy (8 ()
+ / (o) — 1 (¥))dx + ¢ / ds (6)
Lok a2k

where
Qo = 20\ (2F U gk (25). )

Note that, in this case, we have allowed 2% to be one of
the unknowns since w* is no longer part of the inference,
although one could easily define £2F = w*(£2)), as we have
discussed in the previous section.

Choosing L = 1, p = const, and r(w) = (Vu, Vu)
+(Vv, Vv) yields a model called Deformotion in (Soatto
and Yezzi 2002), and has also been extended to grayscale
images L =1, r(w) = (Vu, Vu) + (Vv, Vv). Our work is
the natural extension of Deformotion to layers.

Choosing L > 1, w = Id, 2% unconstrained and
g € A(2) would yield a variational version of the Layers
model (Wang and Adelson 1994), that to the best of our
knowledge has never been attempted. Note that this is dif-
ferent than simpler variational multi-phase motion segmen-
tation, since in that case the motion of a phase affects the
shape of neighboring phases, whereas in the model (1) layers
can overlap without distorting underlying domains. One can
think of the Layer model as a multi-phase motion segmen-
tation with inpainting (Bertalmio et al. 2000) of occluded
layers and shape constraints.

The model also relates to deformable templates, where
p = const in the traditional model (Grenander 1993) and
p = smooth in the more general version (Miller and Younes
1999). Another relevant approach is Active Appearance
Models where the regions, warping and radiances are mod-
eled as points in a linear space.

wk(x) = wf () + Wr)s, (8)

where wq : 2% — R? and W¥ : 2% — R” denotes a set of
basis functions or principal components, and s, € R", t =
I,..., N is a vector of shape coefficients. Similarly,

p*(x) = pF(x) + PF(x)ak )

where p¥ : 2K — R and PK(x) : 2F — R" is a vector of
principal components, and «X € R” a vector of appearance
parameters. Note that the functions P* and W¥ have to sat-
isfy orthogonality constraints, and these have to be enforced
during the inference of the bases. The model (1) does not
impose such restrictions, and render the problem well-posed
by generic regularization instead.
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Finally, by virtue of the regularization imposed on p, our
scheme relates to image inpainting, except that we per-
form inpainting both by layer transfer from multiple im-
ages and by regularization. The advantage of our method
is that it can exploit whatever information is there: If mul-
tiple views are available, their contribution is weighted rel-
ative to the harmonic interpolation term. If only one image
is available, then intensity regularization dictates the filling
process.

4 Inference

Minimizing the cost functional in (2) is a tall order. It de-
pends upon each domain 2% and its boundary (a closed pla-
nar contour), its deformation (a flow of planar diffeomor-
phisms) wf‘, the radiance (a piecewise smooth function) ok,
all of which are infinite-dimensional unknowns. In addition,
it depends on a group action per layer per instant, gf ,and on
the occlusion model, which is represented by the discrete-
valued function /(x) = max{k | x € .Qk}, and all of this for
eachlayerk=1,..., L.

We proceed by minimizing the functional (2) using si-
multaneous gradient flows with respect to the groups (mo-
tion), the radiances (appearance) and the diffeomorphisms
(deformation). The detailed evolution equations are a bit
complicated depending upon the number of layers and the
occlusion structure between layers. To help avoid exces-
sive subscripting and superscripting and multiple-case defi-
nitions according to occlusion relationships, we will outline
some of the key properties of the various gradient terms for
the case of a background layer £2°, a single image /, and
a single foreground layer £2'. We will also, to help keep
the illustration simple, assume that the group action g° and
the warp w” for the background layer are simply the iden-
tity transforms. This is the simplest possible scenario that
will allow us to still show the key properties of the gradient
flows.

We first use another simplification, letting g = ¢! and
w=w'. Let £ = g(w(x)) and 2! = g(w(£2")). With this
notation, we may write our energy functional as follows.

E =/A1<1(£> —plw og (D)) dk
2
+ f UG - p°())dr
20\ 2!

+/ r(w)(x)+/ ds. (10)
2! !

If n denotes any single parameter (e.g. horizontal transla-
tion) of the group g, then differentiating yields

oE X A Lo =1 —1,a\\2
= =/A <—,N>((I(x)—,0 (wog (X))
an a1\ an

— (I®)—p (@) Hds

+2/_@1<1<2>—p‘<w*‘og”@>)>
S R v 0 1\ e
x<Vp(w CCON (TR h P <x>>dx (n

where N and d3 denote the outward unit normal and the ar-
clength element of 9! respectively. For multi-dimensional
group, the procedure can be repeated for each parameter in
the local coordinate representation of the group.

We are able to note two things. First, the update equations
for the group involve measurements both along the boundary
of its corresponding layer (first integral) as well as measure-
ments within the layer’s interior (second integral). Notice
that this latter integral vanishes if a constant radiance p is
utilized for the layer. We also see that it is not necessary to
differentiate the image data /. Derivatives land on the es-
timated smooth radiance p instead, which is a significant
computational perk of our model that results in considerable
robustness to image noise (Yezzi and Soatto 2001).

A similar gradient structure arises for the case of the infi-
nite dimensional warp w (boundary-based terms and region-
based terms for each layer are similar to previous integrals).
However, additional terms arise in the gradient flow equa-
tions for w depending upon the choice of regularization
terms in the energy functional (smoothness penalties, mag-
nitude penalties, etc.).

Here we solve for the transformations of layer 1 so the su-
perscript is dropped on w and g. Let w(x) =[x +u(x), y +
v()]T and r(w)(x) = (Vu(x), Vu(x)) + (Vox), Vox)).

To solve for u and v at time n we use the following iter-
ative explicit method:

u" (x)

v (x)

_ [u"’l(x) —dtx (@2 *u" ) +ul 7 (x) - Au"*‘(x))]
Lo ) —dex (3R x v ) + v ) — AT ()

(12)
where
ue(x)
Ve (x)
[N ()
I DAIEY
x[(Togow(x) —p'(x)* = (I —p%) o gow(x))*]
(13)
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Fig. 1 Tracking a balloon: Three sample views are shown from a se-
quence of a deflating balloon moving with an erratic motion while
changing its shape from a drop-like shape to a circle. In the top row
we show the boundary of the first layer as estimated by a rigid layer
model with a single scaling term that does not allow for layer deforma-
tion, akin to a variational implementation of traditional layer models.

and
ur(x) _ ATI
|:vr(x):| — —21¢/|[w/ ()]
(I ogowx) - p'(¥))(—p) (x))]
- [(logow(x)—pl(x»(—p;(x)) -9
Here

c6d 5O
k= [—SG c9i|

is the rotation matrix,

xs 0
S_[O ys}

is the scaling matrix and

=[40]

is the 90° rotation matrix and

Nx(x) _ T pT y./.,/ T | N*(x)
[Ny(x)]_s R Jgw (x)J I:Ny(x):l' (15)

The curve evolution is also similar to the boundary-based
term for the evolution of g:

aC R
—=—(UXx)—p (w

Lo o=13)))2
o g (X))

— (&) = p"@)HN. (16)

Finally, the optimality conditions for the smooth radiance
functions p? and p! are given by the following Poisson-type

@ Springer

As it can be seen, the model tracks the motion of the layer, but it fails
to capture its deformation. On the botfom row we show the same three
images with the first layer superimposed, where the layer is allowed
to both move (rigidly) and deform (diffeomorphically), yielding 82%
lower RMS residual error, and capturing the subtler shape variations

Fig. 2 Victory sign, with deforming hand, moving in front of a par-
tially occluded background portraying a spiral. The goal here is to re-
cover the radiance of each layer (the spiral in the background and the
constant black intensity of the hand), as well as the motion and defor-
mation of the foreground layer. Note that current layer models based
only on affine motion would fail to capture the phenomenology of this
scene by over-segmenting the region into three regions, each moving
with independent affine motion. Our model captures the overall motion
of the layer with an affine group, and then the relative motion between
the fingers as a deformation, as we illustrate in the next Fig. 3

equations

Ap'(x) =1(p'(x) = I(gow(x))), xef', (17)

Ap’(x) = A (18)
AP%(x) — I (x)), xe°\ L.

Notice that the background radiance p° is “inpainted” in re-
gions occluded by the foreground layer £2! by harmonic
interpolation from the boundary of Ql, since p satisfies
Laplace’s equation Ap® = 0. Once all the terms are put to-
gether we can generate a gradient flow that simultaneously
evolves all layer assignments, boundaries and intensities. In
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Fig. 3 Multiple layers mapping
onto multiple images: The

Layerl

inference process returns an —_
estimate of the albedo in each
layer (top). Since we are

assuming smooth albedo, the j' L
spiral is smoothed. The * '
deformation of each layer is
estimated (second row) together —
with its affine motion, to yield -

an approximation of the image

(third row). This is used for
comparison with the measured wo
images (bottom row) that drives
the optimization scheme

2
wl W

e
mE

H

Image2

the next section we illustrate some of the features of the
model and the resulting optimization, as it compares with
existing schemes.

Here for completeness, we expand (11). For a single pa-
rameter 1 from the mapping g;‘ from layer k to an image ¢:

oE 0
— = / az(k,xt)<ﬁ, N,><(fk(x,>)2 — (W™ (x,))?)dss,
an a2k an

+2 f 810k, x0) (f* (1)
o

—1 —1 -1 3 -1
><<Vp"(wf o gk (x)), (wk )’%gi‘ (xt)>dx,

19)

where

P =100) = Pl o gk () (20)
and

") = 10e) = p" @ o g (xr)) 1)

and &;(k, x;) is 1 when I(x;) = k and O otherwise and m =
I —1whenk=1I.

5 Experiments

In the first experiment we illustrate the capability of our
model to track deforming layers. In Fig. 1 we show three
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Fig. 4 Rotating sphere and
segmentation obtained using
deformotion

images of a sequence where a deflating balloon is under-
going a rather erratic motion while deforming from an ini-
tial waterdrop shape to a circular one, finally to a drop-like
shape. On the top row of Fig. 1 we show the layer bound-
aries for a model that only allows for rigid deformations of
the initial contour (a circle) using a single scaling term. This
is essentially a variational implementation of the model of
(Wang and Adelson 1994). As it can be seen, it captures
the gross motion of the balloon, but it cannot capture the
subtler shape variations. The second row shows the same
three sample images with the boundary of the first layer su-
perimposed, where the layer is allowed to deform accord-
ing to the model we have introduced. The data fidelity term
used is a Mumford-Shah term so the radiances representing
each layer are smooth functions. As it can be seen, the layer
changes shape to adapt to the deforming balloon, all while
capturing its rather erratic motion. The average RMS (root
mean squared) error per image for the affine layer model
is 30.87, whereas the residual for the case of the deform-
ing layers is 5.51. More importantly, the phenomenology
of the scene, visible in the figure, has been correctly cap-
tured.

In the next experiment we illustrate all the features of our
model by showing how it recovers the background behind
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partially occluded layers while recovering their motion and
deformation. In Fig. 2 we show a few samples from a dataset
where the silhouette of a moving hand forms a victory sign
while moving the relative position between the fingers. The
background, which is partially occluded, is a spiral. Here we
use an average hand shape (constructed from segmentations
of other hand images) as the initial shape of the foreground
layer to find its affine motion, and then the diffeomorphic
warp w;. Again we assume smooth radiance within each
layer, so when we recover the background layer we show a
slightly smoothed version of the spiral (of course we could
further segment the black spiral from the background and
thus obtain sharp boundaries, but this is standard and would
not help us illustrate the feature of the model, therefore we
do not illustrate it here.)

In Fig. 3 we illustrate the results of this experiments,
arranged to summarize the modeling process. On the top
row we show the recovered layers. Since we are assuming
a smooth radiance within each layer, we can only recover
a smoothed version of the spiral. These layers are deformed
according to a diffeomorphism, one per layer, defined on the
domain of the layer (second row) and then moved according
to an affine motion. The third row shows the image gener-
ated by the model, which can therefore be though of as a de-
terministic generative model since it performs comparisons
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Fig. 5 Optical flow; ground truth; deformotion: Standard optical flow
(left) imposes global regularization, which results in errors at the
boundary (the vector field is more spread out than the model proposed,
on the right). The ground truth is in the middle. The average angu-
lar errors for optical flow and deformotion are 11.49° and 6.31° re-

Fig. 6 Our model to optical
flow: Optical flow (/eft) can be
obtained from the general model
(right) by allowing A — 0.
Compare the results with
parameters dt = 0.028,
iterations = 71000, o = 20,

n =0.55, A =20 on the bottom
row with 200 on the middle row.
Note that the two models (left
and right) are closer on the
bottom row. In comparison to
the ground truth vector field, the
vector field given by optical
flow has an average angular
error of 8.12. Our model with a
smoothness weight of 200 gives
an average angular error of 9.99.
Reducing the smoothness
weight to 20 gives an average
angular error of 8.11 which is
closer to the result of optical
flow

spectively. The standard deviation for the angular errors are 1.37° and
1.44°. The parameters and regularization constants used were dt = 0.2,
iterations = 10000, o = 10 (data fidelity), u = 0.5 (smoothness of w),
X =5 (smoothness of p)
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at the image level, not via some intermediate representation.
The corresponding images are displayed in the last row, with

the layers superimposed for

comparison.

The next set of experiments, using standard sequences
used for optical flow analysis, is designed to illustrate the

difference between our model and standard optical flow.
A representative set of results of the motion field estimated
by optical flow (left) and our model (right) is reported in
Fig. 5. Our model does not rely on global regularization, but
only regularization within each layer segmented in Fig. 4.
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Fig. 7 L1 and L2 versions of
our model and optical flow: L2
is on the middle row with our
model first and optical flow
second. The average angular
errors are 4.83° and 4.74°
respectively. L1 is on the bottom
row with average angular errors
of 4.80° and 4.67°. The
parameters used are dt = 0.1,
iterations = 20000, o =1,
n=>500,r=1
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Therefore, the boundaries of the motion field are better re-
solved.

Naturally, our model is a superset of those commonly
used for optical flow computation. We illustrate this point by
reducing the weight of the smoothness term for p in Fig. 6,
which yields results closer to standard optical flow. In com-
parison to the ground truth vector field, the vector field given
by optical flow has an average angular error of 8.12°. Our
model, with a smoothness weight A of 200, gives an average
angular error of 9.99°. Reducing the smoothness weight X to
20 gives an average angular error of 8.11° which is closer to
the result of optical flow.

There can be some benefit in changing r(w) from an L2
type norm to an L.1 norm which has been done in (Papenberg
et al. 2006) to improve optical flow. Instead of an L2 norm

r(w)(x) = /(Vu(x), Vu(x)) + (Vv(x), Vu(x))dx,

@ Springer

we use an L1 norm

r(w)(x) = / \/(Vu(x), Vu(x)) + (Vo(x), Vu(x)) + €2dx

where € is small, € = .001. We compare using the two norms
combined with our model and then optical flow in Fig. 7.

A beneficial side-effect of having an explicit model of
the scene, simple as it is (a regular irradiance pattern, with
smoothness controlled by 1), is the possibility of comparing
individual images to a (noiseless) model, rather than com-
paring noisy images to each other. The effects are visible in
Fig. 8, where the flow field obtained with our model with L1
on artificially corrupted sequences is closer to the cleaner
version of the sequence than using L1 standard optical flow.

The comparison with optical flow illustrates the neces-
sity for partitioning the domain into independently moving
objects. This is a motion segmentation task. Therefore, here
we compare our model with more standard ones that par-
tition the flow into affine segments, while still relying on
the brightness constancy constraint and without an explicit
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Fig. 8 Noisy Case of L1 vs. L2
versions of our model and
optical flow: The images have
been corrupted with Gaussian
noise of zero mean and a
variance of 0.05. L2 is on the
middle row with our model first
and optical flow second. The
average angular errors are
11.93° and 13.23° respectively.
L1 is on the bottom row with
average angular errors of 11.26°
and 11.88°. The L1 version of

our model attains the best result
with the angular error of 11.26°.
The parameters used are

dt = 0.1, iterations = 20000,
a=1, u=5000,x1=30
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model of the appearance of the scene. Such models can be
obtained simply by increasing the regularization of the layer
deformation (i.e. the entire layer moves with the same finite-
dimensional motion: translational, Euclidean or affine). Fig-
ure 9 illustrates this effect.

Note that our model, by virtue of having an explicit repre-
sentation of the appearance of each layer, can automatically
fill in the appearance of underlying layers, as we illustrate in
Fig. 10.

In Fig. 11 we illustrate inpainting using our model. In
this example there is some camera motion, which makes it
so the whiteboards in the two images are not quite lined up.
Also there has been some corruption of the images which is
modeled as the foreground layer that is moved around via
an affine group. The whiteboard (background layer) is re-
covered with its own affine registration and the inpainted
whiteboard is shown.

The conclusion we would like to draw from these ex-
periments is that our model, being a superset of existing
schemes (optical flow, motion segmentation, deformotion,

inpainting), allows the user to apply existing algorithms sim-
ply by proper choice of constants. Naturally the price to pay
for such flexibility and for the added power stemming from a
richer model is computational complexity. However, all the
experiments we have shown have been run on a Pentium M
2 GHz PC and takes five minutes per 1000 iterations.

6 Discussion

We have presented a generative model of the appearance
(piecewise smooth albedo), motion (affine transformation)
and deformation (diffeomorphism) of a sequence of images
that exhibit occlusions. We have used this model as a ba-
sis for a variational optimization algorithm that simultane-
ously tracks the motion of a number of overlapping lay-
ers, estimates their deformation, and estimates the albedo of
each layer, including portions that were partially occluded.
Where no information is available, the layers are implicitly
inpainted by their regularizers.
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Fig. 9 The model proposed can
be used to perform motion
segmentation by increasing the
regularization p of the domain
deformation for each layer
(parameters used: dt = %,
iterations = 20000, o = 20,

© =4000, » =2000)

Fig. 10 Our model yields
“inpainted” layers. The fop row
shows the boundaries of layers,
the middle row the reconstructed
appearance of the layers (p) and
the bottom row the

warpings (w). Parameters used:
dt = 0.2, iterations = 2000,
a=20,u=1.0,2=0.8,

¢ = 3.0 (arclength weight)
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Fig. 11 Image Inpainting with
our model. First two images:
corrupted images of a teacher’s
whiteboard with some camera
jitter, Last image: Image
inpainting result

This model generalizes existing layer models to the case
of deforming layers. Alternatively, one can think of our al-
gorithm as a layered version of deformable tracking algo-
rithms, or as a generalized version of optical flow or motion
segmentation where multiple layers are allowed to occlude
each other without disturbing the estimate of adjacent and
occluded ones.

Our numerical implementation of the flow-based algo-
rithm uses level set methods, and is realized without taking
derivatives of the image, a feature that yields significant ro-
bustness when compared with boundary-based approaches
to estimating optical flow. We have illustrated our approach
on simple but representative sequences where existing meth-
ods fail to capture the phenomenology of the scene by either
over-segmenting it, or by failing to capture its deformation
while only matching its affine motion.
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