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Object class recognition

@ Object class recognition is a key issue in computer vision.
@ People use Shape and/or Appearance to categorize objects.
@ In this paper they combine both shape and appearance.

@ The alphabet is the basis for a codebook representation of object
categories.

@ The main focus of the paper is on representation and use of
shape and geometry rather than appearance.
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Object class recognition
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Boundary-Fragment-Model(BFM)

“

@ A BFM is restricted to a codebook of boundary fragments and
does not represent appearance at all.

@ The boundary represents the shape of many object classes quite
naturally without requiring the appearance (e.g. texture) to be
learnt and thus we can learn models using less training data to
achieve good generalization.
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System Overview
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System Overview
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Figure: (a) Two alphabet entries (one region, one Boundary-Fragment). (b)
Two weak detectors (one region-based, one Boundary-Fragment based).
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Training Data

To train the model following data are required:
@ A training image set with the object delineated by a bounding box.

@ A validation image set with counter examples (the object is not
present in these images), and further examples with the object’s
centroid (but the bounding box is not necessary).
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Learning is performed in two stages.
@ Alphabet entries are added to a codebook.
e An alphabet entry can either be a Boundary-Fragment (BF-a piece
of linked edges), or a patch (salient region and its descriptor).
e Each entry also casts at least one centroid vote, which is
represented as a vector.
@ Weak detectors are formed as pairs of two alphabet entries, and
Boosting is used to select a strong detector.
e A strong detector consists of many weak detectors.
e This process selects the weak detectors which perform best on
positive validation images and rejects the negative images
(including a good centroid estimate).
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Implementation Details

@ Linked edges are obtained for each image in the training and in
the validation set using a Canny edge detector.

@ Training images provide the candidate boundary fragments ~; by
selecting random starting points on the edge map of each image.

@ Then at each such point they grow a boundary fragment along the
contour.

@ Growing is performed from a certain fragment starting length Lgat
in steps of Lstep pixels until a maximum length Lgp is reached.
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Weak detector

@ The combination of boundary fragments to form a weak detector
h;. It fires on an image if the k boundary fragments (y; and ~p)
match image edge chains, the fragments agree in their centroid
estimates (within an uncertainty of 2r). In the case of positive
images, the centroid estimate agrees with the true object centroid
(Op) within a distance of d;
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Matching weak detectors

@ The top row shows a weak detector with k = 2, that fires on two
positive validation image because of highly compact center votes
close enough to the true object center (black circle). In the last
column a negative validation image is shown. There the same
weak detector does not fire (votings do not concur). Bottom row:
the same as the top with kK = 3.

Irshad Ali (Department of CS, AIT) 09-June-2009 11/20



Learning a Strong Detector

@ From a weak detector consisting of k boundary fragments and a
threshold thy; they learn this threshold and form a strong detector
H out of T weak detectors h; using AdaBoost.

@ First they calculate the distances D(h;, /;) of all combinations of
boundary fragments (using k elements for one combination) on all
(positive and negative) images of validation set 14, ..., /.

@ Then in each iteration 1, ..., T they search for the weak detector
that obtains the best detection result on the current image
weighting.
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Detection and Segmentation

@ First the edges are detected.

@ The boundary fragments of the weak detectors are matched to
this edge image.

@ In order to detect (one or more) instances of the object (instead of
classifying the whole image) each weak detector h; votes with a
weight wp, in a Hough voting space.

@ Votes are then accumulated as follows:

e For all candidate points x, found by the strong detector in the test
image I+ they sum up the (probabilistic) voting of the weak
detectors h; in a 2D Hough voting space.
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Detection and Segmentation
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The BFM for Multiple Categories

@ Building the alphabet of shape for many categories is based on
the process for the one-class BFM.

@ They also search over other categories to see if a boundary
fragment can be shared.

e The boundary fragment matches on many positive validation
images of another category and gives a roughly correct prediction
of the object centroid. In this case they just update the alphabet
entry with the new costs for this category and sharing is possible.

e The boundary fragment matches well on many positive validation
images, but the prediction of the object centroid is not correct,
though often the predictions for each match are consistent with
each other. In this case they add a new centroid vector to the
alphabet entry.

e The third obvious case is where the boundary fragment matches
arbitrarily in validation images of a category in which case high
costs emerge and sharing is not possible
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Results
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Table 4 Confusing cows and horses: The first 3 rows show the failures
made by the three different models (FP = false positive, FN = false
negative, M = multiple detection). The last row shows the RPC-equal-
error rate for each model

Cow-BFM Horsel-BFM Horse2-BFM
FP 0 3 0
FMN 0 13 12
M | 1 2
RFC-eq. 0% 23% 195
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@ The first ten weak detectors learnt in the UM for the categories:
Cars-side (UIUC), Cars-rear, Airplanes, Motorbikes and Faces
(Caltech).
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Conclusion and Discussion

@ Less False positives.
@ Less Training data.
@ Processing Time??
@ Scaling and Rotation.
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