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Abstract We describe a method of representing human ac-
tivities that allows a collection of motions to be queried
without examples, using a simple and effective query lan-
guage. Our approach is based on units of activity at seg-
ments of the body, that can be composed across space and
across the body to produce complex queries. The presence of
search units is inferred automatically by tracking the body,
lifting the tracks to 3D and comparing to models trained us-
ing motion capture data. Our models of short time scale limb
behaviour are built using labelled motion capture set. We
show results for a large range of queries applied to a col-
lection of complex motion and activity. We compare with
discriminative methods applied to tracker data; our method
offers significantly improved performance. We show exper-
imental evidence that our method is robust to view direction
and is unaffected by some important changes of clothing.

Keywords Human action recognition · Video retrieval ·
Activity · HMM · Motion capture

1 Introduction

Understanding what people are doing is one of the great un-
solved problems of computer vision. A fair solution opens
tremendous application possibilities, ranging from medical
to security. The major difficulties have been that (a) good
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kinematic tracking is hard; (b) models typically have too
many parameters to be learned directly from data; and (c) for
much everyday behaviour, there isn’t a taxonomy. Tracking
is now a usable, if not perfect technology (Sect. 4). Build-
ing extremely complex dynamical models from heteroge-
nous data is now well understood by the speech community,
and we borrow some speech tricks to build models from mo-
tion capture data (Sect. 3) to minimize parameter estimation.
Desirable properties of an activity recognition and retrieval
system are:

– it should handle different clothings and varying motion
speeds of different actors

– it should accommodate the different timescales over
which actions are sustained

– it should allow composition across time and across the
body

– there should be a manageable number of parameters to
estimate

– it should perform well in presence of limited quantities of
training data

– it should be indifferent to viewpoint changes
– it should require no example video segment for querying

Building such a system has many practical applications.
For example, if a suspicious behaviour can be encoded
in terms of “action word”s—wrt arms and legs separately
whenever needed—one can submit a text query and search
for that specific behaviour within security video recordings.
Similarly, one can encode medically critical behaviours and
search for those in surveillance systems.

Understanding activities is a complex issue in many as-
pects. First of all, there is a shortage of training data, be-
cause a wide range of variations of behaviour is possible.
A particular nuisance is the tendency of activity to be com-
positional (below). Discriminative methods on appearance
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may be confounded by intraclass variance. Different sub-
jects may perform the actions with different speeds in vari-
ous outfits and these nuisance variations make it difficult to
work directly with appearance. Training a generative model
directly on a derived representation of video is also fraught
with difficulty. Either one must use a model with very little
expressive power (for example, an HMM with very few hid-
den states) or one must find an enormous set of training data
to estimate dynamical parameters (the number of which typ-
ically goes as the square of the number of states). This issue
has generated significant interest in variant dynamical mod-
els, which we review below.

The second difficulty is the result of the composite nature
of activities. Most of the current literature on activity recog-
nition deals with simple actions. However, real life involves
more than just simple “walk”s. Many activity labels can
meaningfully be composed, both over time—“walk”ing then
“run”ing—and over the body—“walk”ing while “wave”ing.
The process of composition is not well understood (see the
review of animation studies in Forsyth et al. 2006), but is
a significant source of complexity in motion. Examples in-
clude: “walking while scratching head” or “running while
carrying something”. Because composition makes so many
different actions possible, it is unreasonable to expect to pos-
sess an example of each activity. This means we should be
able to find activities for which we do not possess examples.

A third issue is that tracker responses are noisy, espe-
cially when the background is cluttered. For this reason, dis-
criminative classifiers over tracker responses work poorly.
One can boost the performance of discriminative classifiers
if they are trained on noise-free environments, like carefully
edited motion capture datasets. However, these will lack the
element of compositionality.

All these points suggest having a model of activity which
consists of pieces which are relatively easily learned and are
then combined together within a model of composition. In
this study, we try to achieve this by

– learning local dynamic models for atomic actions dis-
tinctly for each body part, over a motion capture dataset

– authoring a compositional model of these atomic actions
– using the emissions of the data with these composite mod-

els

To overcome the data shortage problem, we propose to
make use of motion capture data. This data does not con-
sist of everyday actions, but rather a limited set of Ameri-
can football movements. There is a form of transfer learning
problem here—we want to learn a model in a football do-
main and apply it to an everyday domain—and we believe
that transfer learning is an intrinsic part of activity under-
standing.

We first author a compositional model for each body part
using a motion capture dataset. This authoring is done in

a similar fashion to phoneme-word conjunctions in speech
recognition: We join atomic action models to have more
complex activity models. By doing so, we achieve the min-
imum of parameter estimation. In addition, composition
across time and across body is achieved by building separate
activity models for each body part. By providing composi-
tion across time and space, we can make use of the available
data as much as possible and achieve a broader understand-
ing about what the subject is up to.

After forming the compositional models over 3D data, we
track the 2D video with a state-of-the-art full body tracker
and lift 2D tracks to 3D, by matching the snippets of frames
to motion capture data. We then infer activities with these
lifted tracks. By this lifting procedure, we achieve view-
invariance, since our body representation is in 3D.

Finally, we write text queries to retrieve videos. In this
procedure, we do not require example videos and we can
query for activities that have never been seen before. Mak-
ing use of finite state automata, we employ a simple and
effective query language that allows complex queries to be
written in order to retrieve the desired set of activity videos.
Using separate models for each body part, compositional na-
ture of our system allows us to span a huge query space.

Our particular interest is everyday activity. In this case,
a fixed vocabulary either doesn’t exist, or isn’t appropriate.
For example, one often does not know words for behaviours
that appear familiar. One way to deal with this is to work
with a notation (for example, Laban notation); but such no-
tations typically work in terms that are difficult to map to
visual observables (for example, the weight of a motion).
We must either develop a vocabulary or develop expressive
tools for authoring models. We favour this third approach
(Sect. 5).

We compare our method with several controls. Each has
a discriminative form, and we justify this choice in Sect. 6.2.
First, we built discriminative classifiers over raw 2D tracks.
We expect that discriminative methods applied to 2D data
perform poorly because intra-class variance overwhelms
available training data. In comparison, our method benefits
by being able to estimate dynamical models on motion cap-
ture dataset. Second, we built classifiers over 3D lifts. Al-
though classifiers applied to 3D data could be view invariant,
we expect poor performance because there is not much la-
belled data and the lifts are noisy. Our third control involves
classifiers trained on 3D motion capture data and applied to
lifted data. This control also performs poorly, because noise
in the lifting process is not well represented by the train-
ing data. This also causes problems with the composition.
On contrary, our model supports a high level of composition
and its generative nature handles different lengths of actions
easily. In our experiments section, we evaluate the effect of
all these issues and also analyze the view-invariance of our
method in greater detail (Sect. 6).
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A shorter version of this paper appeared in CVPR
2007 (Ikizler and Forsyth 2007).

2 Related Work

There is a long tradition of research on interpreting activi-
ties in the vision community (see, for example, the exten-
sive survey in Hu et al. 2004; Forsyth et al. 2006). There
are three major threads. First, one can use motion clusters
of the same type and explore the statistics or relative order-
ing of these clusters. Second, one can use (typically, hidden
Markov) models of dynamics or temporal logics to repre-
sent the crucial order relations between states that constrain
activities. Third, one can use discriminative methods, either
with spatio-temporal templates or using ‘bag-of-words’.

Timescale A wide range of helpful distinctions is avail-
able. Bobick (1997) distinguishes between movements, ac-
tivity and actions, corresponding to longer timescales and
increasing complexity of representation; some variants are
described in two useful review papers (Aggarwal and Cai
1999; Gavrila 1999).

2.1 Motion Primitives

A natural method for building models of motion on longer
time scales is to identify clusters of motion of the same type
and then consider the statistics of how these motion prim-
itives are strung together. There are pragmatic advantages
to this approach: we may need to estimate fewer parame-
ters and can pool examples to do so; we can model and ac-
count for long term temporal structure in motion; and match-
ing may be easier and more accurate. Feng and Perona de-
scribe a method that first matches motor primitives at short
timescales, then identifies the activity by temporal relations
between primitives (Feng and Perona 2002). In animation,
the idea dates at least to the work of Rose et al., who describe
motion verbs—our primitives—and adverbs—parameters
that can be supplied to choose a particular instance from a
scattered data interpolate (Rose et al. 1998). Primitives are
sometimes called movemes. Matarić et al. represent motor
primitives with force fields used to drive controllers for joint
torque on a rigid-body model of the upper body (Matarić
et al. 1998, 1999). Del Vecchio et al. define primitives by
considering all possible motions generated by a paramet-
ric family of linear time-invariant systems (Vecchio et al.
2003). Barbic̆ et al. compare three motion segmenters, each
using a purely kinematic representation of motion (Barbič
et al. 2004). Their method moves along a sequence of frames
adding frames to the pool, computing a representation of

the pool using the first k principal components, and look-
ing for sharp increases in the residual error of this repre-
sentation. Fod et al. construct primitives by segmenting mo-
tions at points of low total velocity, then subjecting the seg-
ments to principal component analysis and clustering (Fod
et al. 2002). Jenkins and Mataric segment motions using
kinematic considerations, then use a variant of Isomap (de-
tailed in Jenkins and Matarić 2004) that incorporates tempo-
ral information by reducing distances between frames that
have similar temporal neighbours to obtain an embedding
for kinematic variables (Jenkins and Matarić 2003). Li et al.
segment and model motion capture data simultaneously us-
ing a linear dynamical system model of each separate primi-
tive and a Markov model to string the primitives together by
specifying the likelihood of encountering a primitive given
the previous primitive (Li et al. 2002).

2.2 Methods with Explicit Dynamical Methods

Hidden Markov Models (HMM’s) have been very widely
adopted in activity recognition, but the models used have
tended to be small (e.g, three and five state models in Brand
et al. 1997). Such models have been used to recognize: ten-
nis strokes (Yamato et al. 1992); pushes (Wilson and Bo-
bick 1995); and handwriting gestures (Yang et al. 1997).
Feng and Perona (2002) call actions “movelets”, and build
a vocabulary by vector quantizing a representation of im-
age shape. These codewords are then strung together by an
HMM, representing activities; there is one HMM per ac-
tivity, and discrimination is by maximum likelihood. The
method is not view invariant, depending on an image cen-
tered representation. There has been a great deal of inter-
est in models obtained by modifying the HMM structure, to
improve the expressive power of the model without compli-
cating the processes of learning or inference. Methods in-
clude: coupled HMM’s (Brand et al. 1997; to classify T’ai
Chi moves); layered HMM’s (Oliver et al. 2004; to repre-
sent office activity); hierarchies (Mori et al. 2004; to recog-
nize everyday gesture); HMM’s with a global free parame-
ter (Wilson and Bobick 1999; to model gestures); and en-
tropic HMM’s (Brand and Kettnaker 2000; for video pup-
petry). Building variant HMM’s is a way to simplify learn-
ing the state transition process from data (if the state space is
large, the number of parameters is a problem). But there is an
alternative—one could author the state transition process in
such a way that it has relatively few free parameters, despite
a very large state space, and then learn those parameters; this
is the lifeblood of the speech community.

Stochastic grammars have been applied to find hand ges-
tures and location tracks as composites of primitives (Bo-
bick and Ivanov 1998). However, difficulties with tracking
mean that there is currently no method that can exploit the
potential view-invariance of lifted tracks, or can search for
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models of activity that compose across the body and across
time.

Finite state methods have been used directly. Hongeng et
al. demonstrate recognition of multi-person activities from
video of people at coarse scales (few kinematic details are
available); activities include conversing and blocking (Hon-
geng et al. 2004). Zhao and Nevatia use a finite-state model
of walking, running and standing, built from motion cap-
ture (Zhao and Nevatia 2004). Hong et al. use finite state
machines to model gesture (Hong et al. 2000).

2.3 Methods with Partial Dynamical Models

Pinhanez and Bobick (1997, 1998) describe a method for de-
tecting activities using a representation derived from Allen’s
interval algebra (Allen 1984), a method for representing
temporal relations between a set of intervals. One deter-
mines whether an event is past, now or future by solving
a consistent labelling problem, allowing temporal propaga-
tion. There is no dynamical model—sets of intervals pro-
duced by processes with quite different dynamics could be
a consistent labelling; this can be an advantage at the be-
haviour level, but probably is a source of difficulties at the
action/activity level. Siskind (2003) describes methods to
infer activities related to objects—such as throw, pick up,
carry, and so on—from an event logic formulated around a
set of physical primitives—such as translation, support rela-
tions, contact relations, and the like—from a representation
of video. A combination of spatial and temporal criteria are
required to infer both relations and events, using a form of
logical inference. Recently, Ryoo and Aggarwal use context-
free grammars to exploit the temporal relationships between
atomic actions to define composite activities (Ryoo and Ag-
garwal 2007).

2.4 Methods with Discriminative Methods

Methods Based on Templates The notion that a motion
produces a characteristic spatio-temporal pattern dates at
least to Polana and Nelson (1993). Spatio-temporal patterns
are used to recognize actions in Bobick and Davis (2001).
Ben-Arie et al. (2002) recognize actions by first finding
and tracking body parts using a form of template matcher
and voting on lifted tracks. Bobick and Wilson (1997) use
a state-based method that encodes gestures as a string of
vector-quantized observation segments; this preserves or-
der, but drops dynamical information. Efros et al. (2003)
use a motion descriptor based on optical flow of a spatio-
temporal volume, but their evaluation is limited to matching
videos only. Blank et al. (2005) define actions as space-time
volumes. An important disadvantage of methods that match
video templates directly is that one needs to have a template
of the desired action to perform a search.

Bag-of-Words Approaches Recently, ‘bag-of-words’ ap-
proaches originated from text retrieval research are being
adopted to action recognition. These studies are mostly
based on the idea of forming codebooks of ‘spatio-temporal’
features. Laptev et al. first introduce the notion of ‘space-
time interest points’ (Laptev and Lindeberg 2003) and use
SVMs to recognize actions (Schuldt et al. 2004). P. Dol-
lár et al. extract cuboids via separable linear filters and
form histograms of these cuboids to perform action recog-
nition (Dollár et al. 2005). Niebles et al. apply a pLSA ap-
proach over these patches (i.e. the cuboids extracted with
the method of (Dollár et al. 2005)) to perform unsuper-
vised action recognition (Niebles et al. 2006). Recently,
Wong et al. propose using pLSA method with and implicit
shape model to infer actions from spatio-temporal code-
books (Wong et al. 2007). They also show the superior per-
formance of applying SVMs for action recognition. How-
ever, these methods are not viewpoint independent and very
likely to suffer from complex background schemes.

Transfer Learning Recently, transfer learning has become
a very hot research topic in machine learning community.
It is based on transfering the information learned from one
domain to the another related domain. In one of the ear-
lier works, Caruana approached this problem by discovering
common knowledge shared between tasks via “multi-task
learning” (Caruana 1997). Evgeniou and Pontil (2004) uti-
lize SVMs for multi-task learning. Ando and Zhang (2005)
generate some artificial auxiliary tasks to use shared pre-
diction structures between similar tasks. A recent applica-
tion involves transfering American Sign Language (ASL)
words learned from a synthetic dictionary to real world data
(Farhadi et al. 2007).

3 Representing Acts, Actions and Activities

Timescale In terms of acts and activities, there are many
quite different cases. Motions could be sustained (walking,
running) or have a localizable character (catch, kick). The
information available to represent what a person is doing de-
pends on timescale. We distinguish between short-timescale
representations (acts), like a forward-step; medium time-
scale actions, like walking, running, jumping, standing,
waving, whose temporal extent can be short (but may be
long) and are typically composites of multiple acts; and long
timescale activities, which are complex composites of ac-
tions.

Since we want our complex, composite activities to share
a vocabulary of base units, we use the kinematic configura-
tion of the body as distinctive feature. We ignore limb veloc-
ities and accelerations because actions like reach/wave can
be performed at varying speeds. However, one should note
that velocity and acceleration is a useful clue when differen-
tiating motion pairs like run and walk.
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We want our representation to be as robust as possible to
view effects and to details of appearance of the body. Fur-
thermore, we wish to search for activities without possessing
an example. All this suggests working with an inferred rep-
resentation of the body’s configuration (rather than, say, im-
age flow templates as in Efros et al. 2003; Blank et al. 2005).
An advantage of this approach is that models of activity, etc.
can be built using motion capture data, then transferred to
use on image observations, and this is what we do.

3.1 Acts in Short Timescales

Individual frames are a poor guide to what the body is up to,
not least because transduction is quite noisy and the frame
rate is relatively high (15–30 Hz). We expect better behav-
iour from short runs of frames. At the short timescale, we
represent motion with three frame long snippets of the lifted
3D representation. We form one snippet for each leg and
one for each arm; we omit the torso, because torso mo-
tions appear not to be particularly informative in practice
(see Sect. 6). Each limb in each frame is represented with
the vector quantized value of the snippet centered on that
frame. That is, we apply k-means to the 3D representation
of snippets the limbs. We use 40 as the number of clusters
in vector quantization, for each limb. One can utilize differ-
ent levels of quantization, but our experiments show that for
this dataset, using 40 for each limb provides good enough
generalization.

3.2 Limb Action Models

Using a vague analogy with speech, we wish to build a
large dynamical model with the minimum of parameter es-
timation. In speech studies, in order to recognize words,
phoneme models are built and joined together to form word
models. By learning phoneme models and joining them to-
gether, word models share information within the phoneme
framework, and this makes building large vocabularies of
word models possible.

By using this analogy, we first build a model of the ac-
tion of each limb (arms, legs) for a range of actions, using
HMM’s that emit vector quantized snippets we formed in
the previous step. We choose a set of 9 actions by hand,
with the intention of modelling our motion capture collec-
tion reasonably well; the collection is the research collec-
tion of motion capture data released by Electronic Arts in
2002, and consists of assorted football movements. Motion
sequences from this collection are sorted into actions us-
ing the labelling of Arikan et al. (2003). The original an-
notation includes 13 action labels; we have excluded ac-
tions with the direction information (3 actions named turn
left, turn right, backwards) and observed that
reach and catch actions do not differ significantly in

practice, so we joined the data for these two actions and la-
belled them as reach altogether. Moreover, this labelling is
adapted to have separate action marks for each limb. Since
actions like wave cannot be definable for legs, we only used
a subset of 6 actions for labelling legs and 9 for labelling
arms.

For each action, we fit to the examples using maximum
likelihood, and searching over 3–10 state HMM models. Ex-
perimentation with the structures shows that 3-state models
represent the data well enough. Thus, we take 3-state HMMs
as our smallest unit for action representation. Again, we em-
phasize that the action dynamics are completely built on 3D
motion capture data.

3.3 Limb Activity Models

Having built atomic action models, we now string the limb
models into a larger HMM by linking states that have sim-
ilar emission probabilities. That is, we put a link between
states m and n of the different action models A and B if the
distance

dist(Am,Bn) =
N∑

om=1

N∑

on=1

p(om)p(on)C(om,on) (1)

is minimal. Here, om and on are the emissions, p(om) and
p(on) are the emission probabilities of respective action
model states Am and Bn, N is the number of possible
emissions and C(om,on) is the Euclidean distance between
the emissions centers, which are the cluster centers of the
vector-quantized 3D joint points.

The result of this linkage is a dynamical model for each
limb that has a rich variety of states, but is relatively eas-
ily learned. States in this model are grouped by limb model,
and we call a group of states corresponding to a particu-
lar limb model a limb activity model (Fig. 1). While linking
these states, we assign uniform probability to transition be-
tween actions and transition to the same action. That is, the
probability of the action staying the same is set equal to the
probability of transferring to another action.

4 Transducing the Body

4.1 Tracking

We track motion sequences with the tracker of Ramanan
et al. (2005); this tracker obtains an appearance model by
detecting a lateral walk pose, then detects instances in each
frame using the pictorial structure method of Felzenszwalb
and Huttenlocher (2005). The advantage of using this tracker
is that it is highly robust to occlusions and complex back-
grounds. There is no need for background modelling, and
this tracker has been shown to perform well on changing
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Fig. 1 First, single action HMMs for left leg, right leg, left arm, right
arm are formed using motion capture dataset. Actions are chosen by
hand to conform with the available actions in this largely synthesized
motion capture set (provided by Electronic Arts, consisting of Amer-
ican Football movements). Second, single action HMMs are joint to-

gether by linking the states that have similar emission probabilities.
This is analogous to joining phoneme models to recognize words in
speech recognition. This is loosely a generative model, we compute
the probability that each sequence is generated by a certain set of ac-
tion HMMs

Fig. 2 Here are some example tracks from our video collection. These
are two sequences performed by two different actors wearing differ-
ent outfits. Top stand-pickup sequence. Bottom walk-jump-
reach-walk sequence. The tracker is able to spot most of the body

parts in these sequences. However, in most of the sequences, especially
in lateral views, only two out of four limbs are tracked because of the
self-occlusions

backgrounds (see also Sect. 6.4). Moreover, it is capable of
identifying the distinct limbs, which we need to form our
separate limb action models.

Kinematic tracking is known to be hard (see the review
in Forsyth et al. 2006) and, while the tracker is usable, it

has some pronounced eccentricities (Fig. 3, Ramanan et al.
2007). Note that the noise introduced by this behaviour is a
part of the activity understanding procedure and by lifting
2D tracks to 3D, we want to suppress the effects of such
noise as much as possible.
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Fig. 3 Due to motion blur and similarities in appearance, some frames
are out of track. First: appearance and motion blur error. Second: legs
mixed up because of rectangle search failure on legs. Third and fourth:
one leg is occluded by the other leg, the tracker tries to find second

leg, mistaken by the solid dark line. Fifth: motion blur causes tracker
to miss the waving arm, legs scrambled. Note that all such bad tracks
are a part of our test collection and non-perfect tracking introduces
considerable amount of noise to our motion understanding procedure

4.2 Lifting 2D Tracks to 3D

The tracker reports a 2D configuration of a puppet figure
in the image (Fig. 2), but we require 3D information. Sev-
eral authors have successfully obtained 3D reconstructions
by matching projected motion capture data to image data by
matching snippets of multiple motion frames (Howe 2004;
Howe et al. 2000; Ramanan and Forsyth 2003). A com-
plete sequence incurs a per-frame cost of matching the
snippet centered at the frame, and a frame-frame transi-
tion cost which reflects (a) the extent of the movement and
(b) the extent of camera motion. The best sequence is ob-
tained with dynamic programming. The smoothing effect of
matching snippets—rather than frames—appears to signifi-
cantly reduce reconstruction ambiguity (see also the review
in Forsyth et al. 2006).

The disadvantage of the method is that one may not have
motion capture that matches the image well, particularly if
one has a rich collection of activities to deal with. We use a
variant of the method. In particular, we decompose the body
into four quarters (two arms, two legs). We then match the
legs using the snippet method, but allowing the left and right
legs to come from different snippets of motion capture, mak-
ing a search over 20 camera viewing directions. The per-
frame cost must now also reflect the difference in camera
position in the root coordinate system of the motion cap-
ture; for simplicity, we follow (Ramanan and Forsyth 2003)
in assuming an orthographic camera with a vertical image
plane. We choose arms in a similar manner conditioned on
the choice of legs, requiring the camera to be close to the
camera of the legs. In practice, this method is able to obtain
lifts to quite rich sequences of motion from a relatively small
motion capture collection. Our lifting algorithm is given in
Algorithm 1.

4.3 Representing the Body

We can now represent the body’s behaviour for any sequence
of frames with P(limb activity model|frames). The model
has been built entirely on motion capture data. By comput-
ing a forward-algorithm pass of the lifted sequences over
the activity models, we get a posterior probability map rep-

Algorithm 1 Lifting 2D Tracks to 3D
for each camera c ∈ C do

for all pose p ∈ mocap do
σpc ← projection(p, c)

end for
camera_transition_cost δ(ci, cj ) ← (ci − cj ) × α

end for
for each lt ∈ L (leg segments in 2D) do

for all p ∈ mocap and c ∈ C do
λ(lt , σpc) ← match_cost(σpc, lt )

γ (lt , lt+w)

← transition_cost(λ(lt , σpc), λ(lt+w,σpc))

end for
end for
do dynamic programming over δ,λ, γ for L

clegs ← (minimum cost camera sequence)
for each at ∈ A (arm segments in 2D) do

for cε ← neighborhood ε of clegs and pose p ∈ mocap
do

compute λ(at , σ ) ← match_cost(σpcε , at )

compute γ (at , at+w)

← transition_cost(λ(at , σpcε ), λ(at+w,σpcε ))

end for
end for
do dynamic programming over δ,λ, γ for A

resentation for each video, which indicates the likelihood of
each snippet to be in a particular state of the activity HMMs
over the temporal domain.

The posterior probability of a set of action states
λ = (s1, . . . , st ) given a sequence of observations σk =
o1, o2, . . . , ot and model parameters θ can be computed
from the joint. In particular, note

P(λ|σk, θ) ∝ P(λ,σk|θ)

= P(s1)

⎛

⎝
t−1∏

j=1

P(oj |sj )P (sj+1|sj )
⎞

⎠P(ot |st )

(2)
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where the constant of proportionality P(σk) can be com-
puted easily with the forward-backward algorithm (for
more details, see, for example Rabiner and Juang 1993).
We follow convention and define the forward variable
αt (i) = P(qt = i, o1, o2, . . . , oT |θ), where qt is the state
of the HMM at time t and T is the total number of
observations. Similarly, the backward variable βt (i) =
P(ot+1, . . . , oT |qt = i, θ). We write bj (ot ) = P(ot |qt = j),
aij = P(qt = j |qt−1 = i) and so have the recursions

αt+1(j) = bj (ot+1)

[
N∑

i=1

αt (i)aij

]
(3)

βt (j) =
N∑

i=1

aij bj (ot+1)βt+1(j) (4)

where aij is the transition probability from state i to j , πi

and bis are the initial state and observation probabilities, N

is the number of states of the HMM and

α1(i) = πibi(o1) (5)

βT (i) = 1 (6)

This gives

P(σk) =
N∑

i=1

αT (i) (7)

Our activity model groups states with an equivalence re-
lation. For example, several different particular configura-
tions of the leg might correspond to walking. We can com-
pute a posterior over these groups of states in a straightfor-
ward way. We assume we have a total of M ≤ N groups of
states. Now assume we wish to evaluate the posterior proba-
bility of a sequence of state groups λg = (g1, . . . , gt ) condi-
tioned on a sequence of observations σk = (o1, . . . , ot ). We
can regard a sequence of state groups as a set of strings �g ,
where a string λ ∈ �g if and only if s1 ∈ g1, s2 ∈ g2, . . . ,

st ∈ gt . Then we have

P(λg,σk) =
∑

λ∈�g

P (λ,σk) (8)

This allows us to evaluate the posterior on activity models
(see, for example, Fig. 4).

As example sequences in Figs. 5 and 6 indicate, this rep-
resentation is quite competent at discriminating between dif-
ferent labellings for motion capture data. In addition, we
achieve automatic segmentation of activities using this rep-
resentation. There is no need for explicit motion segmenta-
tion, since transitions between action HMM models simply
provide this information.

Fig. 4 Posterior probability map of a walk-pickup-carry video
of an arm. This probability map corresponds to a run of forward algo-
rithm through the activity HMM for this particular video. The action
models are quite discriminative, therefore we can expect a good search
for a composition. Moreover, the action models give a good segmenta-
tion in and of themselves. Despite some noise, we can clearly observe
transitions between different actions within the video

5 Querying for Activities

We can compute a representation of what the body is do-
ing from a sequence of video. By using this representation,
we would like to be able to build complex queries of com-
posite activities, such as carrying while standing, or wav-
ing while running. We can address composition across the
body because we can represent different limbs doing differ-
ent things; and composition in time is straightforward with
our representation.

This suggests thinking of querying as looking for strings,
where the alphabet is a product of possible activities at limbs
and locations in the string represent locations in time. Gen-
erally, we do not wish to be precise about the temporal loca-
tion of particular activities, but would rather find sequences
where there is strong evidence for one activity, followed by
strong evidence for another, and with a little noise scattered
about. In turn, it is natural to start by using regular expres-
sions for motion queries (we see no need for a more expres-
sive string model at this point).

An advantage of using regular expressions is that it is
relatively straightforward to compute

∑

strings matching RE

P(string|frames) (9)

which we do by reducing the regular expression to a finite
state automaton and then computing the probability this au-
tomaton reaches its final state using a straightforward sum-
product algorithm.

This query language is very simple: Suppose we want
to find videos where the subject is walking and waving his
arms at the same time. For legs, we form a walk automaton.
For arms, we form a wave automaton. We simultaneously
query both limbs with these automata. Figures 8 and 9 show
the corresponding automata for example queries.

Finite State Representation for Activity Queries A fi-
nite state automaton (FSA) is defined with the quintuple
(Q,�, δ, s0,F ), where Q is the finite non-empty set of
states of the FSA, � is the input alphabet, δ is the state
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Fig. 5 Using activity models for each body part, we compute posteri-
ors of sequences. After that, HMM posteriors for right and left parts of
the body are queried together using finite state automata of the query
string. Top: Average HMM posteriors for the legs and arms of sequence
walk-pickup-carry (performed by a male subject) are shown. As
it can be seen, maximum likelihood goes from one action HMM to

the other within the activity HMM as the action in the video changes.
This way, we achieve automatic segmentation of activities and there
is no need to use other motion segmentation procedures. Bottom: Cor-
responding frames from the subsequences are shown. This sequence
is correctly labeled and segmented as walk-pickup-carry as the
corresponding query is evaluated

transition function where δ : Q × � → Q, s0 is the (set) of
initial states, and F is the set of final states. In our repre-
sentation, each state qi ∈ Q corresponds to the case where
the subject is inside a particular action. Transitions between
states (δ) represent the actions taking place. Transitions of
the form xux means action x sustained for ux length, which
means that actions shorter than their specified unit length do
not cause the FSA to change its state. More specifically, each
xux (shown over the transition arrows) represents a smaller
FSA on its own, as shown in Fig. 7. This small FSA reaches
in its end state when the action is sustained for ux number
of frames. This regulation is needed in order to eliminate the
effect of short-term noise.

While forming the finite state automata, as in Fig. 8, each
action is considered to have a unit length ux . A query string
is converted to a regular expression, and then to an FSA
based on these unit lengths of actions. Unit action length
is based on two factors: first is the fps of the video, second
is the action’s level of sustainability. Actions like walking
and running are sustainable; thus their unit length is chosen
to be longer than those of localizable actions, like jump and
reach.

We have an FSA F , and wish to compute the posterior
probability of any string accepted by this FSA, conditioned
on the observations. We write �F for the strings accepted by
the FSA. We identify the alphabet of the FSA with states—
or groups of states—of our model, and get

P(F |o1, . . . , oT , θ) ∝
∑

σ∈�F

P (σ, o1, . . . , oT |θ) (10)

where the constant of proportionality can be obtained from
the forward-backward algorithm, as in Sect. 4.3. The term∑

σ∈�F
P (σ, o1, . . . , oT |θ) requires some care. We label

the states in the FSA with indices 1, . . . ,Q. We can com-
pute this sum with a recursion in a straightforward way:
Write

Qijs = P {a string of length i that takes F to state j and

has last element s, joint with o1, . . . , oi}
=

∑

σ∈strings of length i with
last character s that take F to j

P (σ, o1, . . . , oi |θ) (11)
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Fig. 6 Another example sequence from our system, performed by a
female subject. In this sequence, the subject first walks into the scene,
stops and waves for some time, and then walks out of the sequence.
A query for walk-wave-walk for arms and walk-stand-walk
for legs returned this sequence as top one, despite the noise in tracking.

Again, by examining the posterior maps for each limb, we can iden-
tify the transitions between actions. Top: Posterior probability maps
for legs and arms. Bottom: Corresponding frames from the correctly
identified subsequences are shown

Fig. 7 The FSA for a single action is constructed based on its unit
length. Here the expansion of the walk FSA is shown (w represents
walk). As an example, unit length of walk is set to 5 frames (uw = 5).
So the corresponding FSA consist of five states and the probability of it
reaching its final state requires that we observe five consecutive frames
of walk.

Write Pa(j) for the parents of state j in the FSA (that is, the
set of all states such that a single transition can take the FSA
to state j ). Write δi,s(j) = 1 if F will transition from state i

to state j on receiving s and zero otherwise; then we have

Q1js =
∑

u∈s0

P(s, o1|θ)δu,s(j) (12)

and

Qijs =
∑

k∈Pa(j)

δk,s(j)P (oi |s, θ)

[
∑

u∈�

P (s|u, θ)Q(i−1)ku

]

(13)

Then
∑

σ∈�F

P (σ, o1, . . . , oT |θ) =
∑

u∈�,v∈se

QT vu (14)

and we can evaluate Q using the recursion. Notice that noth-
ing major changes if each item u of the FSA’s alphabet rep-
resents a set of HMM states (as long as the sets form an
equivalence relation). We must now modify each expression
to sum states over the relevant group. So, for example, if
we write su for the set of states represented by the alphabet
term u, we have

Q1ju =
∑

u∈s0

∑

v∈su

P (v, o1|θ)δu,s(j) (15)

and

Qiju =
∑

k∈Pa(j),v∈su

δk,v(j)P (oi |v, θ)

×
⎡

⎣
∑

u∈�,w∈su

P (v|w,θ)Q(i−1)ku

⎤

⎦ (16)
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Fig. 8 To retrieve complex
composite activities, we write
separate queries for each of the
body parts. Here, example query
FSAs for a sequence where the
subject walks into the view,
stops and waves and then walks
out of the view are shown. Top:
FSA formed for the legs
walk-stand-walk. Bottom:
The corresponding query FSA
for the arms with the string
walk-wave-walk. Here, w is
for walk, s for stand, wa for
wave and ux ’s are the
corresponding unit lengths for
each action x

Fig. 9 Query for a video where
the person walks, pickups
something and carries it. Here,
w is for walk, c for crouch,
p for pickup and ca is for carry
actions. Notice the different and
complex representation
achievable by writing queries in
this form. Arms and legs are
queried separately, composited
across time and body. Also note
that, since pickup and
crouch actions are very
similar in dynamics for the legs,
we can form an OR query and do
more wide-scale searches

A tremendous attraction of this approach is that no vi-
sual example of a motion is required to query; once one
has grasped the semantics of the query language, it is easy
to write very complex queries which are relatively success-
ful.

The alphabet from which queries are formed consists in
principle of 62 × 92 terms (one has one choice each for each
leg and each arm). We have found that the tracker is not suf-
ficiently reliable to give sensible representations of both legs
(resp. arms). It is often the case that one leg is tracked well
and the other poorly, mainly because of the occlusions. We
therefore do not attempt to distinguish between legs (resp.
arms), and reduce the alphabet to terms where either leg
(resp. either arm) is performing an action; this gives an al-
phabet of 6 × 9 terms (one choice at the leg and one at the
arm). This is like a noisy OR operation over the signals com-
ing from top and bottom parts of the body. When any of the
signals are present we take the union of them to represent
the body pose.

Using this alphabet, we can write complex composite
queries, for example, searching for strings that have several
(l-walk; a-walk)’s followed by several (l-stand;
a-wave) followed by several (l-walk; a-walk)
yields sequences where a person walks into view, stands and
waves, then walks out of view (see Fig. 8 for corresponding
FSAs).

6 Experimental Results

Using limb activity models, we can do complex activity
search with fair accuracy.

Clothing presents a variety of problems. We know of no
methods that behave well in the presence of long coats, puffy
jackets or of skirts. Our subjects wear a standard uniform of
shirt and trousers. However, as Fig. 12 shows, the colour,
arm-length and looseness of the shirts varies, as does the
cut of the trousers and the presence of accessories (a jersey).
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These variations are a fairly rich subset of those that preserve
the silhouette. Our method is robust to these variations, and
we expect it to be robust to any silhouette preserving change
of clothing.

Datasets We collected our own set of motions, involving
three subjects wearing a total of five different outfits in a
total of 73 movies (15 Hz). Each video shows a subject in-
structed to produce a complex activity. The sequences differ
in length. The complete list of activities collected is given in
Table 1.

For viewpoint evaluation, we collected videos of 5 ac-
tions: jog, jump, jumpjack, wave and reach. Each action is
performed in 8 different directions to the camera, making a
total dataset of 40 videos (30 Hz). Fig. 14 shows example
frames of this dataset.

For evaluating our system on complex backgrounds and
also on football movements, we used video shootage from
the TV series Friends. We have extracted 19 sequences of
varying activities from the episode in which the charac-
ters play football in the park. The result is an extremely
challenging dataset; the characters change orientation fre-
quently, the camera moves, there are zoom-in and zoom-out
effects and a complex and changing background. Different
scales and occlusions make tracking even harder. In Fig. 17,
we show example frames from this dataset with superim-
posed tracks.

Performance over a set of queries is evaluated using mean
average precision (MAP) of the queries. Average precision
of a query is defined as the area under the precision-recall
curve for that query and a higher average precision value
means that more relevant items are returned earlier.

More formally, average precision AveP over a set S is
defined as

AveP =
∑N

r=1(P (r) × rel(r))

number of relevant documents in S

Here, r is the rank of the item, N is the number of retrieved
items and rel(r) is the binary relevance vector for each item
in S and P(r) precision at a given rank.

Limb activity models were fit using a collection of 10938
frames of motion capture data released by Electronic Arts in
2002, consisting of assorted football movements. To model
our motion capture collection reasonably well, we choose
a set of 9 actions. While these actions are abstract building
blocks, the leg models correspond reasonably well to: run,
walk, stand, crouch, jump, pickup (total of 6 actions). Sim-
ilarly, the arm models correspond reasonably well to: run,
walk, stand, reach, crouch, carry, wave, pickup, jump mo-
tions (total of 9 actions). Figure 10 shows the posterior for
each model applied to labelled motion capture data; this can
be interpreted as a class confusion matrix within the mo-
tion capture dataset itself. Limb activity models require that

Table 1 Our collection of video sequences, named by the instructions
given to actors

Context # videos Context # videos

crouch-run 2 run-backwards-wave 2

jump-jack 2 run-jump-reach 5

run-carry 2 run-pickup-run 5

run-jump 2 walk-jump-carry 2

run-wave 2 walk-jump-walk 2

stand-pickup 5 walk-pickup-walk 2

stand-reach 5 walk-stand-wave-walk 5

stand-wave 2 crouch-jump-run 3

walk-carry 2 walk-crouch-walk 3

walk-run 3 walk-pickup-carry 3

run-stand-run 3 walk-jump-reach-walk 3

run-backwards 2 walk-stand-run 3

walk-stand-walk 3

3D coordinates of limbs be vector quantized. The choice
of procedure has some effect on the outcome (details in
Sect. 6.5).

Controls In order to analyse the performance of our ap-
proach, we have implemented three controls. Control 1 is
single action SVM classifiers over raw 2D tracks (details in
Sect. 6.2.1). We expect that discriminative methods applied
to 2D data perform poorly because intra-class variance over-
whelms available training data. In comparison, our method
benefits by being able to estimate dynamical models on mo-
tion capture dataset. Control 2 is action SVMs built on 3D
lifts of the 2D tracks (for details see Sect. 6.2.2). Although
they have view-invariance aspect, we also expect them per-
forming poorly, because they suffer from data shortage and
noise in lifts. And finally, Control 3 is the SVM classifiers
over 3D motion capture dataset (details in Sect. 6.2.3). They
are also insufficient in tolerating the different levels of sus-
tainability and different speeds of activities. This also causes
problems with the composition. On contrary, our model sup-
ports high level of composition and its generative nature
handles different lengths of activities easily.

6.1 Searching

We evaluate our system by first identifying an activity to
search for, then marking relevant videos, then writing a reg-
ular expression, and finally determining the recall and preci-
sion of the results ranked by P(FSA in end state|sequence).
On the traditional simple queries (walk, run, stand),
MAP value is 0.9365; only a short sequence of run action is
confused with walk action. Figures 12 and 13 show search
results for more complex queries. Our method is able to re-
spond to complex queries quite effectively. The biggest dif-
ficulty we faced was to find an accurate track for each limb
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Fig. 10 Local dynamics is quite a good guide to a motion in the mo-
tion capture data set. Here we show HMM interpretation of these dy-
namics. Each column represents 5 frame average HMM posteriors for
the motion capture sequences (left: legs, right: arms). These images
represent the expressive and generative power of each action HMM.
For example, pickup HMM for the legs gives high likelihood for
pickup and crouch action, whereas crouch HMM for the legs is
more certain when it observes a crouch action, therefore it produces
a higher posterior as opposed to pickup. The asymmetry present in

this figure is due to the varying number of training examples available
in motion capture dataset for each action. The higher the number of
examples for an action, the better HMMs are fit. This image can also
be interpreted as a confusion matrix between actions. Most of the con-
fusion occurs between dynamically similar actions. For example, for
pickup motion, the leg HMMs may fire pickup or crouch mo-
tions. These two actions are in fact very similar in dynamics. Likewise,
for reach motion, arm HMMs show higher posteriors for reach,
wave or jump motions

due to the discontinuity in track paths and left/right ambigu-
ity of the limbs. That’s why some sequences are identified
poorly.

We have evaluated several different types of search.
In Type I queries, we encoded activities where legs and
arms are doing different actions simultaneously, for instance
“walking while carrying”. In Type II queries, we evaluated
the cases where there are two consecutive actions, same
for legs and arms (like a crouch followed by a run).
Type III queries search for activities that are more com-
plex; these are activities involving three consecutive ac-
tions where different limbs may be doing different things
(ex: walk-stand-walk for legs; walk-wave-walk
for arms). MAP value for these sets of complex queries is
0.5636 with our method.

The performance over individual type of activities is pre-
sented in Table 2. Based on this evaluation, we can say that
our system is more successful in retrieving complex activ-
ities as in Type III queries. That’s mostly because complex
activities occur within longer sequences which are less af-
fected by the short-term noise of tracking and lifting.

Torso Exclusion In our method, we omit the torso informa-
tion and query over the limbs only. This is because we found
that torso information is not particularly useful. The results
demonstrating this case is given in Fig. 11. When we query
using the whole body, including torso, we get an Mean Av-
erage Precision of 0.501, whereas if we query using limbs
only, we get a MAP of 0.5636. We conclude that using torso
is not particularly informative. This is mostly because in our
set of actions, the torso HMMs fire high posteriors for more
than one action, and therefore, they don’t help much in dis-
criminating between actions.

Table 2 The Mean Average Precision values for different types of
queries. We have three types of query here. Type I: single activities
where there is a different action for legs and arms (ex: walk-carry).
Type II: two consecutive actions like crouch followed by a run.
Type III: activities that are more complex, consisting of three consec-
utive actions where different body parts may be doing different things
(ex: walk-stand-walk for legs; walk-wave-walk for arms)

Query type MAP

Type I 0.5562

Type II 0.5377

Type III 0.5902

6.2 Controls

We cannot fairly compare to HMM models because complex
activities require large numbers of states (which cannot be
learned directly from data) to obtain a reasonable search vo-
cabulary. However, discriminative methods are rather good
at classifying activities without explicit dynamical models,
and it is by no means certain that dynamical models are nec-
essary (see Sect. 2.4 in the discussion of related work). Dis-
criminative models regard changes in the temporal structure
of an action as likely to be small, and so well covered by
training data. For this reason, we choose to compare with
discriminative methods. There are three possible strategies,
and we compare to each. First, one could simply identify
activities from image-time features (like, for example, the
work of Blank et al. 2005; Efros et al. 2003; Schuldt et al.
2004). Second, one could try to identify activities from lifted
data, using lifted data to train models. Finally, one could try
to identify activities from lifted data, but perform training
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Fig. 11 Mean Average Precision values of our method with respect to
torso inclusion. The MAP of our method over the whole body is 0.501
when we query with the torso, whereas it is 0.5636 when we query over
the limbs only. For some queries, including torso information increases
performance slightly, however, on the overall, we see that using torso
information is not very informative

using motion capture data.

6.2.1 Control 1: SVM Classifier over 2D Tracks

To evaluate the effectiveness of our approach, we imple-
mented an SVM-based action classifier over the raw 2D
tracks. Using the tracker outputs for 17 videos as training set
(chosen such that 2 different video sequences are available
for each action), we built action SVMs for each limb sepa-
rately. We used RBF kernel and 7 frame snippets of tracks
to build the classifiers for this setting has given the best re-
sults for this control. A grid search over parameter space of
the SVM is done and best classifiers are selected using 10-
fold cross-validation. The performance of these SVMs are
then evaluated over the remaining 56 videos. Figures 12 and
13 show the results. MAP value over the sets of queries is
0.3970 with Control 1. Note that for some queries, SVMs
are quite successful in marking relevant documents. How-
ever, on the overall, SVMs are penalized by the noise and
variance in dynamics of the activities. Our HMM limb ac-
tivity models, on the other hand, deal with this issue by the
help of the dynamics introduced by synthesized motion cap-
ture data. SVMs would need a great deal of training data to
discover such dynamics.

6.2.2 Control 2: SVM Classifier Over 3D Lifts

We have also trained SVM classifiers over 3D lifted track
points. Mean average precision of the whole query set in this
case is 0.3963. This is not surprising, since there is some
noise introduced by lifting 2D tracks, causing the perfor-
mance of the classifier to be low. In addition, HMM method

still has the advantage of using the dynamics introduced by
motion capture dataset. The corresponding results are pre-
sented in Figs. 12 and 13. These results support the fact that
motion capture dataset dynamics is a good clue for human
action detection in our case.

6.2.3 Control 3: SVM Classifier Over 3D Motion Capture
Set

Our third control is based on SVM classifiers built over
3D motion capture data set. We used the same vector-
quantization as in building our HMM models, for general-
ization purposes. Mean average precision of the query set
here is 0.3538. Although they rely on extra information
added with the presence of motion capture data set, we ob-
served that, these SVMs are also insufficient in tolerating
the different levels of sustainability and different speeds of
activities. This also causes problems with the composition.
Generative nature of HMMs eliminates such difficulties and
handles with varying length actions/activities easily.

6.3 Viewpoint Evaluation

To evaluate our method’s invariance to viewpoint, we
queried 5 single activities (jog, jump, jumpjack,
reach, wave) over the data set that has 8 different view
directions of the subjects (Fig. 14). We assume that if these
simple sequences produce reliable results, the complex se-
quences will be accurate as well. Results of this evaluation
are shown in Figs. 15 and 16.

As Fig. 15 shows, the performance is not significantly af-
fected by the change in viewpoint, however there is slight
lost of precision in some angles due to tracking and lift-
ing difficulties in those view directions. Examples of non-
reliable tracks are also shown in Fig. 15. Due to occlu-
sions and motion blur, the tracker tends to miss the mov-
ing arms quite often, making it hard to discriminate between
actions.

Figure 16 shows the overall precisions averaged w.r.t. an-
gles for each action. Not surprisingly, most confusion occurs
between reach and wave actions. If the tracker misses the
arm during these actions, it is highly likely that the dynamics
of these actions will not be recovered and those two actions
will resemble each another. On the other hand, jumpjack
action is a combination of wave and jump actions, which is
also subject to high confusion.

6.4 Activity Retrieval Over Football Sequences with
Complex Backgrounds

In order to see how well our algorithm will behave in foot-
ball sequences with complicated settings, we tested our
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Fig. 12 Our representation can give quite accurate results for complex
activity queries, regardless of the clothing worn by the subject. The re-
sults of ranking for 15 queries over our video collection. In these im-
ages, a colored pixel indicates a relevant video. An ideal search would
result in an image where all the colored pixels are on the left of the
image. Each color represents a different outfit. We have three types of
query here (see text for details). Top left: The ranking results of our
activity modeling based on joint HMMs and motion capture data. We
have used k = 40 in vector quantization. Note that the videos retrieved
in top columns are more likely to be relevant and the retrieval results
are more condensed to the left. Note that the choice of the outfit doesn’t

affect the performance. Top right: Control 1: Separate SVM classifiers
for each action over the 2D tracks of the videos. Composite queries
built on top of a discriminative (SVM) based representation are not as
successful as querying with our representation. Again, clothing does
not affect the result. Bottom left: Control 2: SVM classifiers over 3D
lifted tracks. Bottom right: Control 3: SVM classifiers over 3D motion
capture data. While these classifiers benefit from dynamics of mocap
data, they suffer due to lack of composition. For some queries, SVM
performances are good, however, on the overall, precision and recall
rate is low. Also, note that the relevant videos are all scattered through
the retrieval list

approach over football sequences taken from Friends TV
Show. We have constructed a dataset, consisting of 19
short clips, in which characters play football in park (from
Episode 9 of Season 3). We then annotated the actions of a
single person in these clips by our available set of actions.
This dataset is extremely challenging; the characters change

orientation frequently, the camera moves, there are zoom-
in and zoom-out effects and a complex and changing back-
ground. Examples frames from these sequences are shown
in Fig. 17.

Since we built our activity models using a dataset of mo-
tion captured American football movements, we expect to
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Fig. 13 Average precision values for each query. Our method gives a mean average precision (MAP) of 0.5636 over the whole query set. Control
1’s MAP value is 0.3970. Control 2 acquires a MAP of 0.3963, while it is 0.3538 for Control 3

Fig. 14 Example frames from
our dataset of single activities
with different views. Top row:
Jogging 0 degrees, Jump 45
degrees, jumpjack 90 degrees,
reach 135 degrees. Bottom row:
wave 180 degrees, jog 225
degrees, jump 270 degrees,
jumpjack 315 degrees

have a higher accuracy in domains with similar actions. We
test our system using 10 queries, ranging from simple to
complex, and results are given in Fig. 18. For 9 out of 10
queries, the top retrieved video is a relevant video which in-
cludes the queried activity. Our MAP of 0.8172 over this
dataset shows that our system is quite good in retrieving
football movements, even in complicated settings.

6.5 Vector Quantization for Action Dynamics

We vector quantize 3D coordinates of the limbs when form-
ing the action models. This quantization step is useful to
have a more general representation of the domain. We use
k-means as our quantization method. Since k-means is very
dependent on the initial cluster centers, we run each clus-
tering 10 times and choose the best clusters such that the
inter-cluster distance is maximized and intra-cluster distance

is minimized. Our experiments show that when we choose
number of clusters k in k-means as low as 10, the retrieval
process suffers from information loss due to excessive gen-
eralization. Using k = 40 gives the best results over this
dataset. Note that, one can try different levels of quantiza-
tion for different limbs, however, our empirical evaluation
shows that doing so does not provide a significant perfor-
mance improvement.

7 Discussions and Conclusion

There is little evidence that a fixed taxonomy for human mo-
tion is available. However, research to date has focused on
multi-class discrimination of simple actions. Everyday ac-
tivities are more complex in nature. People tend to perform
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Fig. 15 For evaluating our methods invariance to view direction
change, we have a separate dataset of single activities 1-jog 2-
jump 3-jumpjack 4-reach 5-wave. (a) Average precision
values for each viewing direction. Some viewing directions has slightly
worse performance due to the occlusion of the limbs and poor track-
ing response to bendings of the limbs in some view directions. Here,
we show some representative frames with tracks for the wave action.
As it can be seen, tracker sometimes misses the moving arm, caus-

ing the performance of the system to degrade. However, we can say
that on the overall, performance is not significantly affected with the
change in viewpoint. (b) The ranking of the five queries of single
actions separately. The poorest response comes from reach action,
which inevitably confuses with wave, especially when the arms are
out of track in the middle of the action. Here, note that SVMs would
need to be retrained for each viewing direction, while our method does
not

composite activities both on the spatio and temporal dimen-
sions.

We have demonstrated a representation of human motion
that can be used to query for complex activities in a large
collection of video. We build our queries using finite state
automata and for each limb, we write separate queries. We
are aware of no other method that can give comparable re-
sponses for such queries.

Our representation uses a generative model, built using
motion capture and applying it over video data. By join-
ing models of atomic actions to form activity models, we
perform minimum parameter estimation. This can also be

thought as an instance of transfer learning; we transfer the
knowledge we gain from 3D motion capture data, to 2D
everyday activity data.

We expect these HMM’s to simulate rendered activity
extremely poorly, as they are not constructed to produce
good transitions between frames. We are not claiming that
the generative model concentrates probabilities only on cor-
rect human actions, and we don’t believe that any other
work in activity makes this claim; the standards of perfor-
mance required to do credible human animation are now ex-
tremely high (e.g. Kovar et al. 2002; Lee et al. 2002; Arikan
and Forsyth 2002; review in Forsyth et al. 2006), and it is
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Fig. 16 (a) The mean precisions of each action averaged over the
viewpoint change. The most confusion occurs between reach and
wave actions. (b) Respective precision-recall curves for each action
averaged over the angles. SVMs would need to be retrained for each
viewing direction, while our method does not

known to be very difficult to distinguish automatically be-
tween good and bad animations of humans (Ren et al. 2005;
Ikemoto et al. 2007; Forsyth et al. 2006). Instead, we believe
that the probability that appears on actions that are not nat-
ural, does not present difficulties as long as the models are
used for inference, and our experimental evidence bears this
out. Crucially, when one infers activity labels from video,
one can avoid dealing with sequences that do not contain
natural human motion.

One of the strengths of our method is that, when search-
ing for a particular activity, no example activity is required
to formulate a query. We use a simple and effective query
language; we simply search for activities by formulating
sentences like “Find action X followed by action Y ” or
“Find videos where legs doing action X and arms doing ac-
tion Y ” via finite state automata. Matches to the query are
evaluated and ranked by the posterior probability of a state
representation summed over strings matching the query. Us-
ing a strategy like ours, one can search for activities that
have never been seen before.

As our results show, query responses are unaffected by
clothing, and our representation is robust to aspect. Our
representation significantly outperforms discriminative rep-
resentations built using image data alone. It also outper-
forms models built on 3D lifted responses, meaning that the
dynamics transferred from motion capture domain to real
world domain helps in retrieval of complex activities. In ad-
dition, the generative nature of HMM models helps to com-
pensate the different levels of sustainability of the actions
and makes composition across time easier.

Moreover, since our representation is in 3D, we don’t
need to retrain our models separately for each viewing di-
rection. We show that our representation is mostly invariant
to change in viewing direction.

Fig. 17 Example frames from the Friends dataset. This dataset con-
sists of 19 short clips compiled from the Friends TV show (from
Episode 9 of Season 3). This is a challenging dataset, in which there
are lots of camera movement, scale and orientation changes, zoom-in

and out effects. In addition, occlusions make the tracking harder in this
dataset. In this figure, frames with relatively good tracks (which are
superimposed) are shown
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Fig. 18 Results of our retrieval system over the Friends dataset. Our
system is quite successful over this dataset. Since our activity models
are formed using motion capture dataset which consists of American

football movements, this dataset is a natural application domain for our
system. In 9 out of 10 queries, our system returns a relevant video as
the top result and we achieve a MAP of 0.8172 over this dataset

The biggest difficulty we faced was to properly track
the fast moving limbs and then lifting to 3D in the pres-
ence of such tracking errors and ambiguities. That’s why we
can say that there is much room for improvement; a better
tracker would give better results immediately. Further im-
provements would involve a richer vocabulary of actions, or
some theory about how a canonical action vocabulary could
be built; a front-end of discriminative features (after Smin-
chisescu et al. 2005a, 2005b); improved lifting to 3D; and,
perhaps, a richer query interface.
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