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Abstract. This paper gives a new method for image rectification, the process of resampling pairs of stereo images
taken from widely differing viewpoints in order to produce a pair of “matched epipolar projections”. These are
projections in which the epipolar lines run parallel with thex-axis and consequently, disparities between the images
are in thex-direction only. The method is based on an examination of the fundamental matrix of Longuet-Higgins
which describes the epipolar geometry of the image pair. The approach taken is consistent with that advocated by
Faugeras (1992) of avoiding camera calibration. The paper uses methods of projective geometry to determine a pair
of 2D projective transformations to be applied to the two images in order to match the epipolar lines. The advantages
include the simplicity of the 2D projective transformation which allows very fast resampling as well as subsequent
simplification in the identification of matched points and scene reconstruction.
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1. Introduction

An approach to stereo reconstruction that avoids the ne-
cessity for camera calibration was described in (Hartley
et al., 1992; Faugeras, 1992). In those papers it was
shown that the 3-dimensional configuration of a set
of points is determined up to a projectivity of the
3-dimensional projective spaceP3 by their config-
uration in two independent views from uncalibrated
cameras. The general method relies strongly on tech-
niques of projective geometry, in which configurations
of points may be subject to projective transformations
in both 2-dimensional image space and 3-dimensional
object space without changing the projective configu-
ration of the points. In (Hartley et al., 1992) it is shown
that the fundamental matrix, F , (Longuet-Higgins,
1981) is a basic tool in the analysis of two related im-
ages. The present paper develops further the method of
applying projective geometric, calibration-free meth-
ods to the stereo problem.

The previous papers start from the assumption that
point matches have already been determined between
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pairs of images, concentrating on the reconstruction
of the 3D point set. In the present paper the problem
of obtaining point matches between pairs of images
is considered. In particular in matching images taken
from very different locations, perspective distortion
and different viewpoint make corresponding regions
look very different. The image rectification method
described here overcomes this problem by transform-
ing both images to a common reference frame. It may
be used as a preliminary step to comprehensive im-
age matching, greatly simplifying the image match-
ing problem. The approach taken is consistent with
the projective-geometrical methods used in Faugeras
(1992) and Hartley et al. (1992).

The method developed in this paper is to subject both
the images to a 2-dimensional projective transforma-
tion so that the epipolar lines match up and run hori-
zontally straight across each image. This ideal epipo-
lar geometry is the one that will be produced by a
pair of identical cameras placed side-by side with their
principal axes parallel. Such a camera arrangement
may be called a rectilinear stereo rig. For an arbitrary
placement of cameras, however, the epipolar geometry
will be more complex. In effect, transforming the two
images by the appropriate projective transformations
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reduces the problem to that of a rectilinear stereo rig.
Many stereo algorithms described in previous literature
have assumed a rectilinear or near-rectilinear stereo
rig.

After the 2D projective transformations have been
applied to the two images, matching points in the
two images will have the samey-coordinate, since the
epipolar lines match and are parallel to thex-axis. It is
shown that the two transformations may be chosen in
such a way that matching points have approximately
the samex-coordinate as well. In this way, the two im-
ages, if overlaid on top of each other will correspond
as far as possible, and any disparities will be paral-
lel to thex-axis. Since the application of arbitrary 2D
projective transformations may distort the image sub-
stantially, a method is described for finding a pair of
transformations which subject the images to minimal
distortion.

The advantages of reducing to the case of a recti-
linear stereo rig are two-fold. First, the search for
matching points is vastly simplified by the simple
epipolar structure and by the near-correspondence of
the two images. Second, a correlation-based match-
point search can succeed, because local neighbour-
hoods around matching pixels will appear similar and
hence will have high correlation.

The method of determining the 2D projective trans-
formations to apply to the two images makes use of
the fundamental matrixF . The scene may be recon-
structed up to a 3D projectivity from the resampled
images. Because we are effectively dealing with a recti-
linear stereo rig, the mathematics of this reconstruc-
tion is extremely simple. In fact, once the two images
have been transformed, the original images may be
thrown away and the transformations forgotten, since
unless parametrized camera models are to be computed
(which we wish to avoid), the resampled images are as
good as the original ones. If ground control points, or
other constraints on the scene are known, it is possible
to compute the absolute (Euclidean) configuration of
the scene from the projective reconstruction (Hartley
et al., 1992).

A lengthy discussion of other methods of rectifica-
tion is given in the Manual of Photogrammetry (1980),
including a description of graphical, optical and soft-
ware techniques. Optical techniques have been widely
used in the past, but are being replaced by software
methods that model the geometry of optical projec-
tion. Notable among these latter is the algorithm of
Ayache et al. (1988, 1991) which uses knowledge of

the camera matrices to compute a pair of rectifying
transformations. They also give a manner of rectifying
a triple of images using both horizontal and vertical
epipolar lines on one of the images. In contrast with
their algorithm, the present method does not need the
camera matrices, but relies on point correspondences
alone. An additional feature of the algorithm described
in this paper is that it minimizes the horizontal dispar-
ity of points along the epipolar lines so as to minimize
the range of search for further matched points.

Other notable recent papers include (Robert et al.,
1995) which deals with rectification of sequences used
for rover navigation, and (Papadimitriou and Dennis,
1996) which, however, considers only the special case
of partially aligned cameras. In addition, (Toutin and
Carbonneau, 1992; Courtney et al., 1992; Shevlin,
1994; Rodin and Ayache, 1994) use rectification for
various special purpose imaging situations.

1.1. Preliminaries

Column vectors will be denoted by bold lower-case
letters, such asx. Row vectors are transposed column
vectors, such asxT. Thus, the inner product of two
vectors is represented byaTb. On the other hand,abT

is a matrix of rank 1. Matrices will be denoted by upper
case letters. The notation≈ is used to indicate equality
of vectors or matrices up to multiplication by a non-
zero scale factor.

If A is a square matrix then its matrix of cofactors
is denoted byA∗. The following identities are well
known:A∗A = AA∗ = det(A)I whereI is the identity
matrix. In particular, ifA is an invertible matrix, then
A∗ ≈ (AT)−1.

Given a vector,t= (tx, ty, tz)T it is convenient to in-
troduce the skew-symmetric matrix

[t]× =

 0 −tz ty

tz 0 −tx
−ty tx 0

 (1)

For any non-zero vectort, matrix [t]× has rank 2. Fur-
thermore, the null-space of [t]× is generated by the vec-
tor t. This means thattT[t]× = [t]×t = 0 and that any
other vector annihilated by [t]× is a scalar multiple oft.

The matrix [t]× is closely related to the cross-product
of vectors in that for any vectorss and t, we have
sT[t]× = s× t and [t]×s= t × s. A useful property of
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cross products may be expressed in terms of the matrix
[t]×.

Proposition 1. For any3× 3 matrix M and vectort

M∗[t]× = [M t]×M (2)

Projective Geometry. Real projectiven-space con-
sists of the set of equivalence classes of non-zero real
(n + 1)-vectors, where two vectors are considered
equivalent if they differ by a constant factor. A vec-
tor representing a point inPn in this way is known as
ahomogeneous coordinaterepresentation of the point.

Real projectiven-space contains Euclideann-space
as the set of all homogeneous vectors with final coor-
dinate not equal to zero. For example, a point inP2 is
represented by a vectoru = (u, v, w)T. If w 6= 0, then
this represents the point inR2 expressed in Euclidean
coordinates as(u/w, v/w)T.

Lines in P2 are also represented in homogeneous
coordinates. In particular, the lineλ with coordinates
(λ, µ, ν)T is the line consisting of points satisfying
equationλu+µv+ νw = 0. In other words, a pointu
lies on a lineλ if and only if λTu = 0. The line join-
ing two pointsu1 andu2 is given by the cross product
u1× u2.

A projective mapping (or transformation) fromPn to
Pm is a map represented by a linear transformation of
homogeneous coordinates. Projective mappings may
be represented by matrices of dimension(m + 1)×
(n + 1). The word projectivity will also be used to
denote an invertible projective mapping.

If A is a 3× 3 non-singular matrix representing a
projective transformation ofP2, thenA∗ is the corres-
ponding line map. In other words, ifu1 andu2 line on
a lineλ, then Au1 and Au2 line on the lineA∗λ: in
symbols

A∗(u1× u2) = (Au1)× (Au2).

This formula is easily derived from Proposition 1.
Most of the vectors and matrices used in this paper

will be defined only up to multiplication by a nonzero
factor. Usually, we will ignore multiplicative factors
and use the equality sign (=) to denote equality up to
a constant factor. Exceptions to this rule will be noted
specifically.

Camera Model. The camera model considered in this
paper is that of central projection, otherwise known as
the pinhole or perspective camera model. Such a cam-

era maps a region ofR3 lying in front of the camera
into a region of the image planeR2. For mathemati-
cal convenience we extend this mapping to a mapping
between projective spacesP3 (the object space) and
P2 (image space). The map is defined everywhere in
P3 except at the centre of projection of the camera (or
camera centre).

Points in object space will therefore be denoted by
homogeneous 4-vectorsx = (x, y, z, t)T, or more usu-
ally as(x, y, z, 1)T. Image space points will be repre-
sented byu = (u, v, w)T.

The projection from object to image space is a pro-
jective mapping represented by a 3× 4 matrix P of
rank 3, known as thecamera matrix. The camera ma-
trix transforms points in 3-dimensional object space to
points in 2-dimensional image space according to the
equationu = Px. The camera matrixP is defined up
to a scale factor only, and hence has 11 independent
entries. This model allows for the modeling of several
parameters, in particular: the location and orientation
of the camera; the principal point offsets in the image
space; and unequal scale factors in two orthogonal di-
rections not necessarily parallel to the axes in image
space.

Suppose the camera centre is not at infinity, and let its
Euclidean coordinates bet = (tx, ty, tz)T. The camera
mapping is undefined att in that P(tx, ty, tz, 1)T = 0.
If P is written in block form asP = (M | v), then it
follows thatM t + v = 0, and sov = −M t. Thus, the
camera matrix may be written in the form

P = (M | −M t)

wheret is the camera centre. SinceP has rank 3, it
follows thatM is non-singular.

2. Epipolar Geometry

Suppose that we have two images of a common scene
and letu be a point in the first image. The locus of all
points inP3 that map tou consists of a straight line
through the centre of the first camera. As seen from the
second camera this straight line maps to a straight line
in the image known as aepipolar line. Any point u′

in the second image matching pointu must lie on this
epipolar line. The epipolar lines in the second image
corresponding to pointsu in the first image all meet in
a pointp′, called theepipole.

The epipolep′ is the point where the centre of projec-
tion of the first camera would be visible in the second
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image. Similarly, there is an epipolep in the first image
defined by reversing the roles of the two images in the
above discussion.

Thus, there exists a mapping from points in the first
image to epipolar lines in the second image. It is a basic
fact that this mapping is a projective mapping. In par-
ticular, there exists (Longuet-Higgins, 1981; Faugeras
and Maybank, 1990; Hartley, 1992) a 3× 3 matrix F
called thefundamental matrixwhich maps points in
the first image to the corresponding epipolar line in the
second image according to the mappingu 7→ Fu. If
ui ↔ u′i are a set of matching points, then the fact that
u′i lies on the epipolar lineFui means that

u′Ti Fui = 0. (3)

Given at least 8 point matches, it is possible to deter-
mine the matrixF by solving a set of linear equations
of the form (3).

The following theorem gives some basic well known
properties of the fundamental matrix.

Proposition 2. Suppose that F is the fundamental
matrix corresponding to an ordered pair of images
(J, J ′) andp andp′ are the epipoles.

1. Matrix FT is the fundamental matrix corresponding
to the ordered pair of images(J ′, J).

2. F factors as a product F= [p′]×M = M∗[p]× for
some non-singular matrix M.

3. The epipolep is the unique point such that Fp = 0.
Similarly, p′ is the unique point such thatp′T F = 0.

According to Proposition 2, the matrixF determines
the epipoles in both images. Furthermore,F provides
the map between points in one image and epipolar
lines in the other image. Thus, the complete geometry
and correspondence of epipolar lines is encapsulated in
the fundamental matrix. The fact thatF factorizes into
a product of non-singular and skew-symmetric matri-
ces is a basic property of the fundamental matrix. The
factorization is not unique, however, as is shown by the
following proposition.

Proposition 3. Let the3× 3 matrix F factor in two
different ways as F= S1M1 = S2M2 where each Si is a
non-zero skew-symmetric matrix and each Mi is non-
singular. Then S2 = S1. Furthermore, if Si = [p′]×
then M2 = (I + p′aT)M1 for some vectora.

Conversely, if M2 = (I +p′aT)M1, then[p′]×M1 =
[p′]×M2.

Proof: If p′T F = 0, then it follows thatS1 = S2 =
[p′]×. This proves the first claim. Now suppose that
[p′]×M1 = [p′]×M2. Then [p′]× = [p′]×M2M−1

1 and
so [p′]×(M2M−1

1 − I ) = 0. It follows that each column
of M2M−1

1 − I is a scalar multiple ofp′. Therefore
M2M−1

1 − I = p′aT for some vectora. HenceM2 =
(I + p′aT)M1 as desired.

The converse may be verified very easily, using the
fact that [p′]×p′ = 0. 2

As seen, the fundamental matrix provides a mapping
between points in one image and the corresponding
epipolar lines in the other image. We now ask which
(point-to-point) projective transformations from image
J to image J ′ take epipolar lines to corresponding
epipolar lines. Such a transformation will be said to
“preserve epipolar lines.” The question is completely
answered by the following result which characterizes
such mappings.

Proposition 4. Let F be a fundamental matrix and
p and p′ the two epipoles. If F factors as a product
F = [p′]×M then

1. Mp = p′.
2. If u is a point in the first image, then Mu lies on

the corresponding epipolar line Fu in the second
image.

3. If λ is a line in the first image, passing through the
epipolep (that is, an epipolar line), then M∗λ is the
corresponding epipolar line in the other image.

Conversely, if M is any matrix satisfying condition
2, or 3, then F factors as a product F= [p′]×M.

Proof:

1. F = [p′]×M , so 0= Fp = [p′]×Mp = p′×(Mp).
It follows that Mp = p′.

2. The condition thatMu lies on Fu for all u is the
same as saying that the epipolar linep′×Mu equals
Fu for all u. This is equivalent to the condition
[p′]×M = F , as required.

3. Letλ be an epipolar line in the first image and letu
be a point on it. Then

λ′ = Fu = M∗[p]×u = M∗(p× u) = M∗λ

as required. 2
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Condition 2 in the above theorem simply states that
M preserves epipolar lines. Thus, the projective point
maps fromJ to J ′ that preserve epipolar lines are pre-
cisely those represented by matricesM appearing in
a factorization ofF . Since the factorization ofF is
not unique, however (see Proposition 3), there exists a
3-parameter family of such transformations.

3. Mapping the Epipole to Infinity

In this section we will discuss the question of finding
a projective transformationH of an image mapping an
epipole to a point at infinity. In fact, if epipolar lines
are to be transformed to lines parallel with thex axis,
then the epipole should be mapped to the infinite point
(1, 0, 0)T. This leaves many degrees of freedom (in
fact four) open forH , and if an inappropriateH is
chosen, severe projective distortion of the image can
take place. In order that the resampled image should
look somewhat like the original image, we may put
closer restrictions on the choice ofH .

One condition that leads to good results is to insist
that the transformationH should act as far as possi-
ble as a rigid transformation in the neighbourhood of a
given selected pointu0 of the image. By this is meant
that to first order the neighbourhood ofu0 may undergo
rotation and translation only, and hence will look the
same in the original and resampled image. An appro-
priate choice of pointu0 may be the centre of the image.
For instance, this would be a good choice in the con-
text of aerial photography if the view is known not to
be excessively oblique.

For the present, supposeu0 is the origin and the
epipolep = ( f, 0, 1) lies on thex axis. Now consider
the following transformation.

G =

 1 0 0

0 1 0

−1/ f 0 1

 (4)

This transformation takes the epipole( f, 0, 1)T to the
point at infinity( f, 0, 0)T as required. A point(u, v,1)T

is mapped byG to the point(û, v̂, 1)T = (u, v,1−
u/ f )T. If |u/ f | < 1 then we may write

(û, v̂, 1)T = (u, v,1− u/ f )

= (u(1+ u/ f + · · ·),
v(1+ u/ f + · · ·), 1)T.

The Jacobian is

∂(û, v̂)

∂(u, v)
=
(

1+ 2u/ f 0

v/ f 1+ u/ f

)
plus higher order terms inu andv. Now if u = v =
0 then this is the identity map. In other words,G is
approximated (to first order) at the origin by the identity
mapping.

For an arbitrarily placed point of interestu0 and
epipolep, the required mappingH is a productH =
GRT whereT is a translation taking the pointu0 to
the origin, R is a rotation about the origin taking the
epipolep′ to a point( f, 0, 1)T on thex axis, andG
is the mapping just considered taking( f, 0, 1)T to in-
finity. The composite mapping is to first order a rigid
transformation in the neighbourhood ofu0.

4. Matching Transformations

We consider two imagesJ and J ′. The intention is to
resample these two images according to transforma-
tions H to be applied toJ andH ′ to be applied toJ ′.
The resampling is to be done in such a way that an
epipolar line inJ is matched with its corresponding
epipolar line inJ ′. More specifically, ifλ andλ′ are
any pair of corresponding epipolar lines in the two im-
ages, thenH∗λ = H ′∗λ′. (Recall thatH∗ is the line
map corresponding to the point mapH .) Any pair of
transformations satisfying this condition will be called
amatched pairof transformations.

Our strategy in choosing a matched pair of transfor-
mations is to chooseH ′ first to be some transformation
that sends the epipolep′ to infinity as described in the
previous section. We then seek a matching transforma-
tion H chosen so as to minimize the sum-of-squares
distance ∑

i

d(Hui , H ′u′i )
2. (5)

The first question to be determined is how to find
a transformation matchingH ′. That question is an-
swered in the following theorem.

Theorem 5. Let J and J′ be images with fundamen-
tal matrix F = [p′]×M , and let H′ be a projective
transformation of J′. A projective transformation H of
J matches H′ if and only if H is of the form

H = (I + H ′p′aT)H ′M (6)

for some vectora.
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Proof: If u is a point inJ, thenp× u is the epipo-
lar line in the first image, andFu is the epipolar line
in the second image. TransformationsH and H ′ are
a matching pair if and only ifH∗(p× u)= H ′∗Fu.
Since this must hold for allu we may write equi-
valently H ∗ [p]× = H ′∗F = H ′∗[p′]×M or, applying
Proposition 1,

[Hp]×H = [H ′p′]×H ′M (7)

which is a necessary and sufficient condition forH and
H ′ to match. In view of Proposition 3, this implies (6)
as required.

To prove the converse, if (6) holds, then

Hp = (I + H ′p′aT)H ′Mp

= (I + H ′p′aT)H ′p′

= (I + aT H ′p′)H ′p′

≈ H ′p′.

According to Proposition 3, this, along with (6) are
sufficient for (7) to hold, and soH andH ′ are matching
transforms. 2

We are particularly interested in the case whenH ′ is a
transformation taking the epipolep′ to a point at infinity
(1, 0, 0)T. In this case,I + H ′p′aT= I + (1, 0, 0)TaT

is of the form

A =

a b c

0 1 0

0 0 1

 (8)

which represents an affine transformation. Thus, a spe-
cial case of Theorem 5 is

Corollary 6. Let J and J′ be images with fundamen-
tal matrix F= [p′]×M ,and let H′ be a projective trans-
formation of J′ mapping the epipolep′ to the infinite
point(1, 0, 0)T. A transform H of J matches H′ if and
only if H is of the form H= AH0, where H0= H ′M
and A is an affine transformation of the form(8).

Given H ′ mapping the epipole to infinity, we may
use this corollary to make the choice of a matching
transformationH to minimize the disparity. Writing
û′i = H ′u′i and ûi = H0ui , the minimization problem
(5) is to findA of the form (8) such that∑

i

d(Aûi , û′i )
2 (9)

is minimized.

In particular, let ûi = (ûi , v̂i , 1), and let û′i =
(û′i , v̂i , 1). SinceH ′ and M are known, these vectors
may be computed from the matched pointsu′i ↔ ui .
Then the quantity to be minimized (9) may be written
as ∑

i

(aûi + bv̂i + c− û′i )
2+ (v̂i − v̂′i )2.

Since(v̂i − v̂′i )2 is a constant, this is equivalent to min-
imizing ∑

i

(aûi + bv̂i + c− û′i )
2.

This is a simple linear least-squares parameter mini-
mization problem, and is easily solved using known
linear techniques (Press et al., 1988) to finda, b andc.
Then A is computed from (8) andH from (6). Note
that a linear solution is possible becauseA is an affine
transformation. If it were simply a projective transfor-
mation, this would not be a linear problem.

5. Quasi-Affine Transformations

In resampling an image via a 2D projective transforma-
tion, it is possible to split the image so that connected re-
gions are no longer connected. Such a projective trans-
formation is called a non-quasi-affine projectivity. (A
more precise definition is given below.) An example is
given in Fig. 1 which show an image of a comb and the
image resampled according to a non-quasi-affine pro-
jectivity. Resampling an image via such a projectivity
is obviously undesirable. Therefore we will consider
methods of avoiding such cases.

In real images, the whole of the image plane is not
visible, but usually only some rectangular region of the
image plane. Accordingly, we introduce the concept of
a view window. The view window is the part of the
image plane that contain all available imagery, includ-
ing matched points (but not necessarily the epipole). In
resampling an image, only points in the view window
will be resampled. The view window is assumed to be
a convex subset of the image plane.

The line at infinityL∞ in the projective planeP2 con-
sists of all points with final coordinate equal to 0. Let
W be a convex region of the plane. A projective trans-
formationH is said to bequasi-affinewith respect toW
if H(W)∩ L∞ = ∅. It is clear that if the epipolep lies
outside of the convex view-windowW, then there ex-
ists a projectivity, quasi-affine with respect toW, taking



Theory and Practice of Projective Rectification 121

Figure 1. Picture of a comb and a non-quasi-affine resampling of
the comb.

p to (0, 0, 1)T. In fact, any line throughp not meeting
W may be chosen as the lineH−1(L∞). The perspec-
tivity (4) maps the lineu = f to infinity—that is, the
line through the epipole parallel to the vertical image
axis. If the epipole lies sufficiently far away from the
view window, then this mapping will be quasi-affine.

If the epipole lies inside the view window of an im-
age, the techniques of this paper may still be applied
by considering a smaller view window. It is possible
that the projectivityH ′ constructed in Section 6 is not
quasi-affine, in which case the view window should be
shrunk, or some other projectivity chosen.

We now turn to the question of when it is possible
to find a pair of matched projectivitiesH andH ′ each

one quasi-affine with respect to the view window of the
respective image. It is not to be expected that this will
always be possible even when the epipoles lie outside
of both view windows. However, one can do almost as
well, as the following theorem shows.

Theorem 7. Consider images J and J′ with view
windows W and W′. Suppose the epipolep′ in image J′

does not lie in W′. Let H′ be a projectivity of J′, quasi-
affine with respect to W′,and mappingp′ to infinity,and
let H be any matching projectivity. Then there exists a
convex subwindow W+ ⊆ W such that H is quasi-
affine with respect to W+ and such that W+ contains
all points in W that match a point in W′.

If our purpose in resampling is to facilitate point
matching, thenW+ contains all the interesting part of
the imageJ. The theorem asserts thatH is quasi-affine
with respect toW+, and soW+ may be resampled ac-
cording toH with satisfactory results. Before providing
the proof of Theorem 7 some preliminary material is
necessary.

A set of image correspondences is called adefin-
ing setof image correspondences if equations (3) have
a unique solution. Thus, a defining set of correspon-
dences is one that contains sufficiently many matches
to determine the epipolar structure of the image
pair.

Given a set of image correspondencesu′i ↔ ui . Let
P andP′ be camera matrices and{xi } be a set of points
in P3. The triple (P, P′, {xi }) is called a realization
of the set of correspondencesu′i ↔ ui if ui = Pxi and
u′i = P′xi . Note that it does not follow thatP and P′

are the actual camera matrices, or that the pointsxi

represent the actual point locations in space. Indeed,
without camera calibration, the actual structure of the
point set{xi } may be determined from image matches
onlyup to a 3D projective transformation (Hartley et al.,
1992; Faugeras, 1992).

The following theorems are based on an analysis
of cheirality, that is, determination of which points are
behind and which points are in front of a camera. Proofs
are given in (Hartley, 1993), which contains a thorough
investigation of cheirality.

Notethat when equality of vectors (=) is considered
in the following theorems, we mean exact equality, and
not equality up to a factor.

Theorem 8. Let H be a 2D projectivity and
H(ui , vi , 1)T = αi (ûi , v̂i , 1)T for some set of points
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ui = (ui , vi , 1)T ∈ R2. Then H is quasi-affine with re-
spect to{ui } if and only if allαi have the same sign.

Theorem 9. Let (P, P′, {xi }) be a realization of a
defining set of image correspondencesu′i ↔ ui derived
from a physically realizable3D point set. Letxi ≈
(xi , yi , zi , ti )T, ui ≈ (ui , vi , wi )

T and (ui , vi , wi )
T=

P(xi , yi , zi , ti )T. Let primed quantities be similarly de-
fined. Then the sign ofwiw

′
i is constant for all i .

Now, we can prove Theorem 7.

Proof: Consider matching projectivitiesH and H ′

for a pair of imagesJ andJ ′, and supposeH ′ is quasi-
affine with respect toW′. Let u′i ↔ ui be a defining
set of correspondences withui = (ui , vi , 1)T ∈W and
u′i = (u′i , v′i , 1)T ∈ W′ for all i . Let H(ui , vi , 1)T=
αi (ûi , v̂i , 1)T and H ′(u′i , v

′
i , 1)

T=α′i (ûi + δi , v̂i , 1)T.
SinceH ′ is quasi-affine, allα′i have the same sign. We
wish to prove that allαi have the same sign.

A realization for u′i ↔ ui is given by setting
P= H−1(I | 0), P′ = H ′−1(I | (1, 0, 0)T) andxi =
(ûi , v̂i , 1, δi )

T. Indeed we verify that

Pxi = H−1(I | 0)(ûi , v̂i , 1, δi )
T

= H−1(ûi , v̂i , 1)
T = α−1

i (ui , vi , 1)
T

and

P′xi = H ′−1(I | (1, 0, 0)T)(ûi , v̂i , 1, δi )
T

= H ′−1(ûi + δi , v̂i , 1)
T = α′−1

i (u′i , v
′
i , 1)

T.

It follows from Theorem 9 that(αiα
′
i )
−1 and henceαiα

′
i

has the same sign for alli . However, by hypothesis,H ′

is quasi-affine with respect to allu′i , and so allα′i have
the same sign, and therefore so do allαi . This means
that allui lie to one side ofH−1(L∞). We defineW+
to be the part ofW lying to the same side ofH−1(L∞)
as allui , and the proof is complete. 2

6. Resampling

Once the two resampling transformationsH and H ′

have been determined, the pair of images may be re-
sampled. There are two steps, first determine the extent
of the resampled images, and second, carry out the re-
sampling.

6.1. Determining the Dimensions
of the Output Image

Assume that the range of the resampling projectivi-
ties H andH ′ are the same planêJ. Suppose that the
projectivity H ′ is quasi-affine with respect to the win-
dow, W′. Then H ′(W) will be a convex region inĴ.
In fact, if W is a polygonal region, then so isH ′(W′),
and it may be easily computed. As forH(W), if H is
quasi-affine with respect toW, then H(W) will also
be a bounded convex set. On the other hand, ifH
is not quasi-affine with respect to the whole window
W, then H(W) will split into two parts,H(W+) and
H(W−) stretching to infinity, along with points at in-
finity in Ĵ. According to Theorem 7, only one of the
two regionsW− andW+ (let us supposeW+) contains
points that match points inW′. It is a matter of straight-
forward geometrical programming to determine the in-
tersectionH ′(W′)∩ H(W+). The resampling window
Ŵ in Ĵ may then be chosen. Normally,̂W should be
a rectangular region aligned with the coordinate axes
in Ĵ. It is a matter of choice whether̂W is chosen as
the smallest rectangle containingH ′(W′) ∩ H(W+)
or whether Ŵ should be a rectangle contained in
H ′(W′) ∩ H(W+).

6.2. Resampling

Once the windowŴ is chosen, it is a simple mat-
ter to resample each of the images. Consider resam-
pling the first image. For each pixel location (that
is, point with integer coordinates)̂u in Ŵ, the corre-
sponding locationu= H−1û in J is computed, and
the “colour” or image intensity atu is determined.
Pixel û is then coloured with this colour. Ifu lies
outside the view windowW, or W+, then pixelû is
coloured some chosen background color. Since pointu
will not have integer coordinates, it is necessary in de-
termining the colour ofu to interpolate. In the images
shown in this paper, linear interpolation was used, and
gave adequate results. In other cases, such as if alias-
ing becomes an important issue, some more sophisti-
cated method of interpolation should be used (Wolberg,
1990).

7. Scene Reconstruction

We assume that the images have been resampled, point
matches have been made and it is required that the
3D scene be reconstructed point by point. Without
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Figure 2. Pair of resampled images of Malibu.

knowledge of camera parameters, the scene can be re-
constructed up to a 3D projectivity. Suppose a pointxi is
seen at locationsui = (ui , vi , 1)T in the first resampled
image and atu′i = (ui + δi , vi , 1)T in the second re-
sampled image. Note that disparities are parallel to
the x-axis. It was seen in the proof of Theorem 7
that a possible reconstruction is withP= (I | 0), P′ =
(I | (1, 0, 0)T) andxi = (ui , vi , 1, δi )

T.
Looking closely at the form of the reconstructed

point shows a curious effect of 3D projective transfor-
mation. If the disparityδi is zero, then the pointxi will
be reconstructed as a point at infinity. Asδi changes
from negative to positive, the reconstructed point will
flip from near infinity in one direction to near infin-
ity in the other direction. In other words, the recon-
structed scene will straddle the plane at infinity, and if
interpreted in a Euclidean sense will contain points in
diametrically opposite directions.

A different reconstruction of the 3D scene is possi-
ble which avoids points at infinity and diametrically
splitting the scene. In particular, if one of the im-
ages is translated by a distanceα in the x direction,
then a disparity ofδi becomes a disparity ofδi +α.
It follows that the scene may be reconstructed with
xi = (ui , vi , 1, δi + α)T are positive, that isδi + α >0

for all i . Note that the eye makes this adjustment auto-
matically when viewing a stereo pair of images such as
Fig. 2, resulting in a sensible perception of the scene.

8. Algorithm Outline

The resampling algorithm will now be summarized.
The input is a pair of images containing a common over-
lap region. The output is a pair of images resampled so
that the epipolar lines in the two images are horizontal
(parallel with theu axis), and such that corresponding
points in the two images are as close to each other as
possible. Any remaining disparity between matching
points will be along the the horizontal epipolar lines.
A top-level outline of the image is as follows.

1. Identify a seed set of image-to-image matches
ui ↔ u′i between the two images. Seven points at
least are needed, though more are preferable. It is
possible to find such matches by automatic means.

2. Compute the fundamental matrixF and find the
epipolesp and p′ in the two images. The linear
method of computation ofF as the least-squares
solution to Eq. (3) can be used, requiring eight point
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Figure 3. A pair of images of Malibu from different viewpoints.

matches or more. For best results, the linear solution
can be used as a basis for iteration to a least-squares
solution.

3. Select a projective transformationH ′ that maps the
epipolep′ to the point at infinity,(1, 0, 0)T. The
method of Section 3 gives good results.

4. Find the matching projective transformationH that
minimizes the least-squares distance∑

i

d(Hui , H ′u′i ). (10)

The method used is a linear method described in
Section 4.

5. Resample the first image according to the pro-
jective transformationH and the second image
according to the projective transformationH ′. A
simple method is given in Section 6.

9. Examples

9.1. A Pair of Aerial Images

The method was used to transform a pair of images
of the Malibu area. Two images taken from widely

different relatively oblique viewing angles are shown
in Fig. 3. A set of about 25 matched points were se-
lected by hand and used to compute the fundamental
matrix. The two 2D projective transformations neces-
sary to transform them to matched epipolar projections
were computed and applied to the images. The result-
ing resampled images are shown side-by-side in Fig. 2
As may be discerned, any disparities between the two
images are parallel with thex-axis. By crossing the
eyes it is possible to view the two images in stereo.
The perceived scene looks a little strange, since it has
undergone an apparent 3D projective transformation.
However, the effect is not excessive.

9.2. A Pair of Images of an Airfield

In the next example (see Fig. 4), the the pair of im-
ages taken on different days are rectified to create a
stereo pair. These two images may be merged to create
a 3D impression. This example suggests that rectifica-
tion may be used as an aid in detecting changes in the
two images, which become readily apparent when the
images are viewed stereoscopically.
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Figure 4. Above: A pair of images of an airfield scene taken on different days.Below: Rectified sections of the two images.

9.3. Satellite Images

Although satellite images are not strictly speaking per-
spective images, they are sufficiently close to being
perspective projections that the techniques described
in this paper may be applied. To demonstrate this,
the algorithm was applied to two satellite images, one
Landsat image and one SPOT image. These two im-
ages have different resolutions and different imaging
geometries. In this case, a set of seed matches were

found, this time automatically, and the two images were
resampled. (The method of finding seed matches for
differently oriented images is based on local resam-
pling.) The results are shown in Fig. 5 which shows the
images after resampling.

9.4. Non-Aerial Images

The method may also be applied to images other than
aerial images. Figure 6 shows a pair of images of some
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Figure 5. Resampled Landsat image and SPOT images.

Figure 6. A pair of images of a house.

wooden block houses. Edges and vertices in these two
images were extracted automatically and a small num-
ber of common vertices were matched by hand. The two
images were then resampled according to the methods
desribed here. The results are shown in Fig. 7. In this

case, because of the wide difference in viewpoint, and
the three-dimensional shape of the objects, the two im-
ages even after resampling look quite different. How-
ever, it is the case that any point in the first image will
now match a point in the second image with the same
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Figure 7. Resampled images of the pair of houses.

y coordinate. Therefore, in order to find further point
matches between the images only a one-dimensional
search is required.

10. Conclusion

This paper gives a firm mathematical basis as well as a
rapid practical algorithm for the rectification of stereo
images taken from widely different viewpoints. The
method given avoids the necessity for camera calibra-
tion and provides significant gains in speed and ease
of point matching. In addition, it makes the compu-
tational of the scene geometry extremely simple. The
time taken to resample the image is negligeable com-
pared with other processing time. Because of the great
simplicity of the projective transformation, the resam-
pling of the images may be done extremely quickly.
With carefully programming, it is possible to resample
the images in about 20 s each for 1024× 1024 images
on a Sparc station 1A.
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