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ABSTRACT
We propose a new framework for automatic image annotation 

through multi-topic text categorization. Given a test image, it is 

first converted into a text document using a visual codebook learnt 

from a collection of training images. Latent semantic analysis is 

then performed on the tokenized document to extract a feature 

vector based on a visual lexicon with its vocabulary items defined 

as either a codeword or a co-occurrence of multiple codewords. 

The high-dimension feature vector is finally compared with a set 

of topic models, one for each concept to be annotated, to decide 

on the top concepts related to the test image. These topic 

classifiers are discriminatively trained from images with multiple 

associations, including spatial, syntactic, or semantic relationship, 

between images and concepts. The proposed approach was 

evaluated on a Corel dataset with 374 keywords, and the 

TRECVID 2003 dataset with ten selected concepts. When 

compared with state-of-the-art algorithms for automatic image 

annotation on the Corel test set our system obtained the best 

results, although we only use a simple linear classification model 

based on just texture and color features. 

1. INTRODUCTION 

A large volume of digital image/video documents is becoming 

available on the web and in digital libraries. This gives rise to 

research opportunities related to organizing, indexing and 

searching of multimedia documents. However, the inherent 

complexity in representing and recognizing images make it more 

difficult to deal with than text documents. Unlike spoken and text 

documents, a semantic description of an image or a video segment 

is usually unavailable. One way to circumvent these limitations is 

to associate semantic concept annotations with image contents. 

This can usually be accomplished through manual annotation, a 

non-trivial, if not impossible, task. Recently, some techniques for 

automatic image annotation (AIA) have been developed to 

address some the issues [1-3, 5, 7, 10-14]. 

Most of the recent studies learn the statistical models, which 

characterize the joint statistical distribution between the observed 

visual features and annotated keywords, for annotating images. 

Prominent examples are cross-media relevance model (CMRM) 

[3], translation model (TM) [5, 7], multiple Bernoulli relevance 

model (MBRM) [11], continuous-space relevance model (CRM) 

[12], maximum entropy (ME) [2], Markov random field (MRF) 

[6], and conditional random fields (CRF) [10, 14]. An image is 

divided into a set of sites or elements (i.e. grids or regions) and 

the visual features extracted from the grids are used for 

representing images. For CRM and MBRM models, the Gaussian 

densities are applied to modeling distributions of visual features, 

while others apply k-means clustering to tokenize the image 

elements. The spatial dependency among image elements is often 

not modeled, except for MRF. But MRF only models the nearest 

neighborhood dependency because its parameter size increases 

exponentially while modeling long-span dependencies. CRF is 

able to characterize the long-span dependency as studied in [14] 

for image annotation. But MRF and CRF incur high computation 

cost and in some cases infeasible inferences.  

Learning from the state-of-the-art algorithms in automatic 

speech recognition and text data mining, it is desirable to 

characterize image content with a set of visual symbols and 

represent it as a text document. So many techniques, commonly 

used in information retrieval for statistical modeling and classifier 

learning, are directly applicable to AIA. The obvious benefit is 

that modeling of syntactic and semantic relationship among the 

visual symbols can be explored. However, this symbolic 

representation, naturally existing in text documents, is not readily 

available for images.  A key challenge is the tokenization of 

image features into a set of visual alphabets, so that language 

modeling of these alphabets is utilized without an explicit 

association of any linguistic description of these symbols.  

In this paper, we propose a unified framework for AIA. An 

image is first tokenized using a visual codebook, and its content is 

represented with a high-dimensional feature vector as discussed in 

Section 2. Then AIA is then abstracted in Section 3 as a multi-

category (MC) text categorization (TC) problem. As shown in [9] 

that MC maximal figure-of-merit (MFoM) learning is a powerful 

tool for designing discriminative classifiers, it is adopted here to 

train concept models for image annotation. Evaluation is carried 

out on the Corel dataset with 374 keywords, and the TRECVID 

2003 dataset with a selected set of ten concepts. The AIA results 

are compared with a few state-of-the-art algorithms in Section 4. 

Finally we summarize our findings in Section 5. 

2. TEXT REPRESENTATION OF IMAGES  

Image representation has been a topic of intensive study in the 

image processing and computer vision communities. For semantic 

content description, it is desired to associate and annotate a given 

image with a set of multiple concepts describing the objects and 

their spatial relations in an image. But such detectors are generally 

unavailable. Next we will introduce an approach to describing the 

content of an image as a text document.  

2.1 Tokenization of Image Content 

A text document is described by a sequence of words defined in a 

lexicon. For text categorization, the popular way is to view the 

document as a “bag-of-words”, i.e. the order of words is ignored. 

Then a high-dimensional vector is extracted to represent the 

document. This vector will encapsulate the statistics (e.g. co-

occurrence of semantic and syntactic relations) of occurred terms 

in the document. However, the set of visual symbols needed to 

accomplish this representation is usually unavailable.  
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To make use of such a text representation, the first step is to 

choose a set of image alphabets (or visual terms) and build a 

visual lexicon based on these terms and their co-occurrences. An 

ideal visual term in the lexicon should carry semantic meanings. 

Intuitively, they may be objects in the image describing some 

semantic concepts. Unfortunately, developing generic object or 

semantic concept detectors is still a challenging problem, although 

some special detectors (e.g. face detector) can be accessed in 

some specific scenarios. Here we apply a feasible method that 

uses unsupervised clustering algorithms to automatically learn a 

visual lexicon. In [2-3, 5, 7], k-means clustering is used to get a 

set of tokens, each describing a cluster of sub-blocks. Although 

these tokens represent vague meanings, especially for the grid-

based clustering, its success for AIA has been demonstrated. Here 

we further extend this method to: (1) learning a collection of 

visual terms, each of which may be a single token or a 

combination of tokens (e.g. pair-wise tokens); (2) learning an 

ensemble of visual lexicons (e.g. color lexicon, texture lexicon) 

from the different sets of low-level visual features, each 

describing a partial content of an image; and (3) learning co-

occurrence statistics of visual terms to enhance the representation.  

Different from the conventional object-based features, a 

regular segmentation of an image into I by J blocks is first 

preformed. Then the low-level, raw image features are extracted 

and grouped into a feature vector for each block. For example, an 

image is first divided into a collection of blocks of 16x16 pixels 

each. Low-level image features, such as color histograms, textures 

and DCT coefficients, are obtained from the block. These raw 

features are grouped into a vector, Xij, for the block located at the 

i-th row and j-th column. All vectors from training images are 

quantized to form a codebook of N tokens, with each block 

tokenized as an index in the codebook after quantization.

2.2 Learning Ensemble Visual Lexicons 

The visual terms in a lexicon consist of not only the tokens but 

also any pattern inferred from the token relations (e.g. location, 

spatial, n-gram, etc.). If an object detector is available, it can also 

be used to tokenize the image into more meaningful semantic and 

syntactic relations. For example, if “sky” and “sea” are detected, 

one additional visual term, “sky” is above “sea”, can be extracted 

to describe this relation.  Since each visual lexicon only describes 

a partial content, an ensemble visual lexicon is desirable to 

enhance the power of representation. It is known that simple 

concatenation of them does not work well. The ensemble lexicons 

will address the issue because each lexicon is independently 

learned from the distinctive feature. There are many ways to learn 

the visual lexicon. Here one possible way used in our experiment 

is described as follows. 

We extend the symbolic representation to incorporate the 

contextual or spatial dependency into an image pattern. Here the 

pattern means a symbol sequence such as n-gram or a 

combination of the symbols according to some syntactic rules. A 

visual lexicon is constructed using all detected patterns. Figure 1 

shows a possible way. For block X22, its direction-specific bigram 

patterns, such as X22X21, X22X23, X22X11, X22X33, are obtained from 

its neighboring blocks. Here 8 directions are shown. The extracted 

bigrams are treated as distinctive patterns. Sometimes these 

patterns are further clustered to reduce the size of the visual 

lexicon. The patterns function similarly to the terms or words in 

text documents. If multiple visual features are available, multiple 

visual lexicons can be built. The ensemble lexicons are utilized to 

represent image content. So an image is viewed as a text 

document with the combinational representation by the terms in 

the ensemble lexicons. Besides n-gram statistics, other patterns 

can be explored, e.g. cross visual lexicon patterns as in [13], and 

syntactically related patterns.  

X11 X12 X13

X21 X22   X23

X31 X32   X33

Figure 1 An example to show bigram visual terms 

2.3  Image-Text Representation 

After an image is tokenized and the occurrence statistics of visual 

lexicons are tabulated, a feature vector is extracted for content 

representation using techniques developed in IR [8]. For example, 

given a color lexicon, A={A1,A2, …, AM}, with M visual color 

terms, the color content of an image is represented by a vector, 

MvvvV ,,, 21
, each component being the statistics of the 

visual term occurred in the image. For instance, vi is the statistic 

for the term Ai. The vector dimension is usually high. For a visual 

lexicon, only having unigram and bigram patterns, its dimension 

should be M+M*M. By using a 64-token codebook, its dimension 

reaches 4160. To reduce the dimension, we can remove the 

frequently occurred or very rare patterns, or apply the feature 

selection and reduction techniques. Here we introduce the latent 

semantic indexing (LSI) technique used in all of our experiments.

Given a training set, T, with the size K, the vector, V j, for the 

j-th image, is calculated as in [4], whose i-th component is defined 

as, 
jj

ii

j

i ncv )1(                         (1) 
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j

ic is the number of times of Ai occurred in the j-th image, 

jn  is the total number of visual terms appeared in the j-th image, 

and
i
is a normalized entropy of Ai defined as,
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where
j

j

ii ct denotes the total occurrence count of Ai. Then a 

term-document matrix, DMxK, is constructed, whose j-th column is 

V j. Dimension reduction is done by selecting only the top-N 

eigenvectors after singular value decomposition (SVD) [4].  

3. IMAGE ANNOTATION 

Now we describe building concept models using the MC MFoM 

approach [9]. MC MFoM learns multi-category classifier by 

optimizing a metric-oriented objective function. It is more robust 

and works better than the popular SVM classifiers, especially for 

learning in the case with sparse training [9], which frequently 

occurs in AIA.  

3.1 Automatic Image Annotation 

In AIA, a training image set, CYRXYXT D,, , is given, 

where (X, Y) is a training sample. X is a D-dimensional feature 

extracted as discussed in Sections 2. Y is the manually assigned 

annotation with multiple keywords or concepts. The predefined 
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keyword set is denoted as NjCC j 1, , with N the total 

number of keywords and 
jC  the j-th keyword. Clearly Y is a 

subset of C. We will learn a discriminant function with the 

parameter set
j
,

jj Xg ; , for the j-th keyword from T.

In the evaluation stage, multiple relevant keywords are 

assigned to an image X, according to the following multiple-label 

decision rule, 

Nj
OtherwiseC

XgXgC

j

jjjj
1

,,XReject

0;;ifXAccept , (3) 

where ;Xg j
 is named as class anti-discriminant function for 

the j-th keyword, defined as, 
1

1
; log exp ;

j

j i i

i Cj

g X g X
C

, (4) 

where
jC is a subset containing the most competitive keyword 

models against 
jC , | |jC  is its cardinality, is the parameter set 

for all competitive keyword models, and  is a positive constant. 

Eq. (4) measures the score as a geometric average of scores 

among all competing categories. It functions as a negative model 

for the j-th keyword.  

If the size of C is large, the cost of verifying all possible 

decisions in Eq. (3) is high. Fortunately, the nature of multi-

category learning makes it possible to compare scores from N

concept models. So it is enough to verify only the top-M keyword 

candidates. This is one benefit from jointly designing multi-

category classifiers. It is well known that the scores from 

separately learnt binary classifiers cannot be directly compared. 

3.2 MC MFoM Learning 

In MC MFoM learning [9], the parameter set, Njj 1, , is 

estimated by optimizing a metric-oriented objective function. The 

continuous and differentiable objective function, embedding the 

model parameters, is specially designed for approximating the 

chosen performance metric (e.g. precision, recall or F1).

To complete the definition of the objective function, a one-

dimensional class misclassification function, ;Xd j
, is 

introduced to smooth the discrete decision rule in Eq. (3), 

j
XgXgXd jjjj ;;;   .          (5) 

where 0;Xd j
 when a correct decision is made. Otherwise, 

0;Xd j
. It functions similar to Eq. (3). Since Eq. (5) is 

valued from to , a class loss function, ;Xl j
, for 

the keyword 
jC , is further defined for normalization,

;
1

1
;

Xdj
je

Xl    ,               (6) 

where  is a positive constant that controls the size of the learning 

window and the learning rate, and  is a constant measuring the 

offset of ;Xd j
 from 0. They are empirically determined. 

The value of Eq. (6) simulates the error count made by the j-th 

image model for a given sample X.

With the above definitions, most commonly used metrics, 

e.g. precision, recall and F1, are approximated over training set T:

TX jjj CXXlFN 1;   ,            (10) 

TX jjj CXXlFP 1;1  ,        (11) 

TX jjj CXXlTP 1;1 ,        (12) 

where TPj is the true positive, FPj is the false positive, and FNj is 

the false negative for the j-th keyword. 1(.) is an indicator 

function of any logical expression. In the experiment, the micro-

averaging F1 is our preferred metric. Therefore, the objective 

function is defined as, 
N

i i

N

i i

N

i i

N

i i TPFNFPTPXL
1111

22; ,    (13) 

It is solved using a generalized probabilistic descent algorithm [9].  

4. EVALUATION AND RESULT ANALYSIS 

The proposed framework is evaluated on the Corel CD [7] and 

TRECVID 2003 datasets. The Corel set has 374 concepts with a 

total of 5,000 images, 4,500 images for training and 500 for 

testing. And the TRECVID set has 33,529 key frames from 93 

MPEG files. It is annotated with a set of 114 concepts, out of 

which only 10 concepts (i.e. Aircraft including Airplane, 
Airplane_landing and Airplane_takeoff, Animal, Building, 

Car/Bus/Truck including Car, Bus and Truck, News subject face 
including Male_News_Subject and Female_News_Subject, Non-

studio setting, Outdoors, People, Road and Weather news.) were 

selected in this experiment. We randomly select a half, i.e. 15,804 

key frames, for training, and the remaining 17,725 for testing.  

For the Corel data, each image is uniformly segmented into 96 

grids with a grid size of 16x16, while 77 grids with a size of 

32x32 were obtained for TRECVID images. Then a 12-

dimensional color feature vector (mean and variance of RGB and 

LAB value), and a 12-dimensional texture feature vector (energy 

of log Gabor filter1) are extracted from each grid and normalized 

to zero mean with a unit variance. Then k-means clustering is used 

to get 64 symbols for image tokenization.  

4.1 Multi-Category Classifier 

A linear classifier is trained using MC MFoM by optimizing the 

objective function in Eq. (13), 

jjjj bXWXg ;                  (14) 

where Wj and bj are the parameters for the j-th concept model. 

4.2 Comparison with the State-of-the-art 

The model based transformation (MBT) method for multi-

category classification in [13] was used to fuse the color and 

texture features. First, two types of classifiers were trained 

independently on the color and texture features. Then their outputs, 

a total of 374*2 dimensions for Corel, and 10*2 for TRECVID, 

were used to train the second classifier. A comparison with the 

state-of-the-art results is shown in Table 1 based on the Corel set. 

Table 2 gives the results for only color feature (E1), only texture 

feature (E2), and fusing with the MBT (E3). All shown results 

were measured by the averages of precision (mP), recall (mR), and 

F1 (mF) over all keywords and the number of concepts detected 

(i.e. concepts with recall > 0). The published results with TM 

[12], CMRM [12], ME [2], and MBRM [11] were used for 

comparison. Because only 260 of the 374 keywords occur in the 

test set, the results for the set of 260 concepts are compared in 

Table 1.

                                                                
1http://www.csse.uwa.edu.au/~pk/Research/MatlabFns 
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It is seen that the proposed framework achieves the best. The 

mP and mR reach 0.25 and 0.27, respectively, with 133 concepts 

detected. Compared with the MBRM model, an improvement was 

seen. The reason may be that MBRM is a generative model using 

continuous-valued features, while discrimination may deteriorate 

because of tokenization. When compared with the other three 

tokenization-based models, significant improvements were seen.  

Table 1 Comparison with state-of-the-art on Corel (260 concepts) 

 TM CMRM ME MBRM Proposed 

mP 0.06 0.10 0.09 0.24 0.25

mR 0.04 0.09 0.12 0.25 0.27

# of det 49 66 N.A 122 133

Table 2 Performance on Corel (374 concepts) and TRECVID 

  mP mR mF # of det 

E1 0.166 0.130 0.146 99 

E2 0.105 0.102 0.103 88 
Corel E3 0.171 0.188 0.179 133 

E1 0.249 0.188 0.214 10 

E2 0.194 0.157 0.173 9 TREC

VID E3 0.196 0.288 0.233 10

4.3 Annotation Examples 

Two images each from the Corel and TRECVID sets were 

illustrated in Figure 2 as annotation examples.  For each image, its 

identity number (ID), ground truth (Truth), annotation results 

using color (E1), texture (E2), and fusion (E3) features, are listed 

respectively. Different from other annotation algorithms that use 

fixed-length labels to annotate images, our proposed algorithm 

obtained sets of annotation results of variable sizes according to 

the confidences of keyword models (see Eq.(3-4)). 

5. CONCLUSION AND FUTURE WORK 

We propose a new framework for multi-category automatic image 

annotation. An image is first tokenized using the visual codebook, 

and a visual lexicon is built from the spatial, syntactic, semantic 

associations of tokens. Then the co-occurrence statistics of the 

visual terms are utilized to characterize its content. Due to the 

high dimension and sparse training of image samples, MC MFoM 

is adopted to train concept models. We report experimental results 

on the Corel set and TRECVID 2003 set. The proposed 

framework achieved the best results on the Corel set with an 

average of 0.25 in precision, and 0.27 in recall, and detected 133 

concepts. In the future, we will extract more meaningful tokens 

for quantization, for example, clustering based on salient point 

detectors, and exploring more relations for mining visual patterns. 
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ID: 10075

Truth: Sky, Jet, Plane, Smoke 

E1: Sky, Water, Jet, Plane, Smoke 

E2: Sky, Jet, Plane, Flight 

E5: Sky, Jet, Plane, Smoke 

(a-Corel)

ID: 10021

Truth: Bear, Polar, Snow, 

Tundra

E1: Water, Bear, Polar, Snow, 

Ice, Elk 

E2: Water, Tree, Grass, Snow, 

Herd, Truck 

E3: Bear, Polar, Snow, Tundra, 

Ice

           (b-Corel) 

ID: 19980104_ABC_85

Truth: Non-studio_setting, People 

E1: Non-studio_setting, People 

E2: People 

E3: Non-studio_setting, People 

(c-TRECVID)

ID: 19980104_ABC_151

Truth: Car/Bus/Truck 

E1: Car/Bus/Truck, People 

E2: People

E3:Car/Bus/Truck,Outdoors,  

Road

(d-TRECVID)

Figure 2 Some annotation examples 
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