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Abstract In this paper, we present a new way of constrain-
ing the evolution of an active contour with respect to a set of
fixed reference shapes. This approach is based on a descrip-
tion of shapes by the Legendre moments computed from
their characteristic function. This provides a region-based
representation that can handle arbitrary shape topologies.
Moreover, exploiting the properties of moments, it is pos-
sible to include intrinsic affine invariance in the descriptor,
which solves the issue of shape alignment without increas-
ing the number of d.o.f. of the initial problem and allows
introducing geometric shape variabilities. Our new shape
prior is based on a distance, in terms of descriptors, between
the evolving curve and the reference shapes. Minimizing the
corresponding shape energy leads to a geometric flow that
does not rely on any particular representation of the contour
and can be implemented with any contour evolution algo-
rithm. We introduce our prior into a two-class segmentation
functional, showing its benefits on segmentation results in
presence of severe occlusions and clutter. Examples illus-
trate the ability of the model to deal with large affine defor-
mation and to take into account a set of reference shapes of
different topologies.
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1 Introduction

Exploiting high-level information about expected objects
to ease the interpretation of low-level cues extracted from
images, following the mechanism of visual attention, may
be highly beneficial in applications such as image seg-
mentation. In this spirit, incorporating global shape con-
straints into active contours traces back to pioneering works
such as Terzopoulos and Metaxas (1991), Staib and Dun-
can (1992), Cootes et al. (1995), Székely et al. (1996). It
has recently received an increasing attention in the context
of implicit representations (see e.g. Cremers et al. 2003;
Leventon et al. 2000; Rousson and Paragios 2002; Riklin-
Raviv et al. 2004; Tsai et al. 2003 and references therein).
In the present paper, we present a novel approach for con-
straining the geometry of an evolving active contour toward
a set of reference shapes.

1.1 Relationship to Prior Work

Our approach bears similarities with several previously pub-
lished contributions. There are several ways of enforcing
shape constraints on active contours. While alternatives have
been proposed in Leventon et al. (2000), Tsai et al. (2003),
Mansouri et al. (2004), Unal et al. (2002), in the most usual
approach, an additional prior term is incorporated into the
segmentation energy functional (Staib and Duncan 1992;
Rousson and Paragios 2002; Cremers et al. 2002; Chen
et al. 2002; Bresson et al. 2006; Zhang and Freedman 2003;
Cremers et al. 2006a). This framework includes a trade-off
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parameter which allows tuning the balance between the data
fidelity term and the shape prior according to the level of
noise and the confidence in the model.

Most of the time, the shape prior is based on a sim-
ilarity measure between the evolving shape and a refer-
ence one, which may be either a given silhouette (Riklin-
Raviv et al. 2004; Foulonneau et al. 2003) or the result
of a (pre)segmentation stage (Zhang and Freedman 2003;
Gastaud et al. 2003) or the outcome of some learning pro-
cedure (Staib and Duncan 1992; Cremers et al. 2003; Rous-
son and Paragios 2002; Tsai et al. 2003; Chen et al. 2002;
Bresson et al. 2006).

While several authors employ a parametric representa-
tion of curves (Staib and Duncan 1992; Székely et al. 1996;
Cremers et al. 2003), or geometric differential representa-
tions (Joshi et al. 2005), a vast majority of recent papers
consider non-parametric models. In particular, signed dis-
tance functions have become popular (Leventon et al. 2000;
Rousson and Paragios 2002; Tsai et al. 2003; Chen et al.
2002; Bresson et al. 2006; Cremers et al. 2006a). An inter-
esting feature of such implicit representations is that they do
not constrain shape topology. However, they are most of the
time linked to a particular implementation, namely the level
sets framework while in certain contexts, faster implemen-
tations that also handle changes of topology (e.g. Precioso
and Barlaud 2002) may be preferable.

The first important issue that must be dealt with when
using a reference shape is the question of variability. Varia-
tions of the shape away from a reference template are, in the
majority of existing works, handled using statistical mod-
els, even if a framework that accounts for geometric trans-
formations of the reference shape was proposed in Riklin-
Raviv et al. (2004). Many models are based on standard
Principal Component Analysis (PCA) (Cootes et al. 1995;
Székely et al. 1996; Leventon et al. 2000; Tsai et al. 2003;
Bresson et al. 2006) which involves Gaussian distributions.
To better model real-world shape distributions, which may
be arbitrarily complex, Gaussian kernel space density esti-
mation (Cremers et al. 2003) and, more recently, Parzen ker-
nel density estimation (Cremers et al. 2006a) were proposed.

A second issue is the question of shape alignment. Pose
parameters (rotation, translation and scaling) are generally
taken into account in an explicit fashion (Leventon et al.
2000; Rousson and Paragios 2002; Riklin-Raviv et al. 2004;
Tsai et al. 2003; Chen et al. 2002; Bresson et al. 2006),
which increases the number of d.o.f. of the problem, and
leads to systems of coupled partial differential equations
(PDE’s). To overcome these problems, intrinsic alignment
was proposed: in Székely et al. (1996), Cremers et al.
(2002) for explicit snakes implementations, in Cremers et al.
(2006a), Foulonneau et al. (2003) for implicit representa-
tions in the case of translation and scale invariance, and ex-
tended in Foulonneau et al. (2006a) to the affine case.

1.2 Contributions of Our Work

The approach reported in the present paper combines a com-
pact, parametric representation of shapes (introduced by the
authors in Foulonneau et al. 2003, 2006a for the modeling
of single shapes) with curve evolution theory. More specifi-
cally, this parametric description is based on Legendre mo-
ments computed from the characteristic function of a shape.
Such region-based representation shares with implicit rep-
resentations (Leventon et al. 2000; Rousson and Paragios
2002; Chen et al. 2002; Bresson et al. 2006) the appealing
property of dealing with arbitrary shape topologies. The ad-
vantage of our model over those based on signed distance
function is that it is not bound to any particular implementa-
tion.

Moreover, as we have shown in Foulonneau et al.
(2006a), the geometric information about shape, carried by
moments, can be exploited to make our shape descriptor in-
trinsically affine-invariant. This avoids the problem of pose
estimation and introduces supplementary, geometrical vari-
ability in the model. In contrast with methods that explicitly
take into account pose parameters (Leventon et al. 2000;
Rousson and Paragios 2002; Riklin-Raviv et al. 2004;
Tsai et al. 2003; Chen et al. 2002; Bresson et al. 2006), no
additional estimation is needed. Note that, among the intrin-
sically invariant models previously proposed, the represen-
tations in Székely et al. (1996), Cremers et al. (2002) cannot
handle complex topologies, in contrast with the approaches
in Cremers et al. (2006a), Foulonneau et al. (2003), but the
latter are limited to translation and scale invariance. To our
knowledge, only the method proposed in Riklin-Raviv et al.
(2004) has further degree of invariance: it can handle pro-
jective transformations but using an explicit formulation,
however. Finally, note that the pose parameters are readily
available as a by-product of our method, which can be cru-
cial in certain applications.

The model presented in Foulonneau et al. (2006a) was
limited to the single-reference, affine-invariant case. In the
present paper, we address the multi-reference case, i.e. mul-
tiple reference shapes are simultaneously considered, in the
spirit of Cremers et al. (2006a). More precisely, the pro-
posed shape prior is defined based on a distance, in terms
of descriptors, between the evolving curve and the refer-
ence shapes. This is obviously a way of introducing vari-
ability into the model. As illustrated by experimental re-
sults, further variations may be dealt with by combining the
multi-reference model with affine invariance. To our knowl-
edge, such results are completely novel in the domain. Intro-
ducing strong geometric invariance, especially in the multi-
reference case, obviously yields intricate energy landscapes
with many local minima, making the optimization more dif-
ficult. We also show that some geometric transformations
such as rotations, may be handled using the multi-reference
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model in conjunction with a lower level of geometric in-
variance. In the multi-reference context, the distance be-
tween descriptors constitutes an interesting feature for shape
recognition or pose estimation.

Finally, a unique evolution equation for the active contour
is derived using the formalism of shape derivative and clas-
sical differentiation rules as proposed by Aubert et al. (2003)
Thanks to the ability of the model to change topology dur-
ing evolution, automatic initialization of the active contour
is also possible, whatever the topology of the final target
shape. Moreover, as already stated, neither the model nor
the evolution equation depend on any implementation con-
sideration. Consequently, both level sets (Osher and Sethian
1988) or spline-snakes (Precioso and Barlaud 2002) imple-
mentations may, for instance, be considered.

The remainder of the paper is structured as follows. In
Sect. 2, we present our moment-based shape descriptor and
its three possible levels of intrinsic geometrical invariance,
namely translation and scaling, similarity and affine trans-
formations. In Sect. 3, we give the expression of the pro-
posed multi-reference shape prior and present the evolution
equations associated to each level of invariance. In Sect. 4,
we illustrate the benefits of the new prior on the segmen-
tation of objects with various topologies, undergoing large
affine transformations, in the presence of noise, occlusions
and clutter.

A preliminary version of this work was presented at the
ECCV’06 conference (Foulonneau et al. 2006b).

2 Shape Descriptors and Geometrical Invariance

In our approach, objects are represented by their silhou-
ette. In other words, shapes are defined by their closed
boundaries or, equivalently, by their characteristic function,
which is binary. This description is not very different from
the signed distance function representation (see e.g. Lev-
enton et al. 2000; Tsai et al. 2003) to which it is directly
related. Both representations share an important property:
they do not constrain shape topology. In other words, they
can handle shapes made up of multiple connected compo-
nents or shapes with holes. Our representation is also not
bound to any particular implementation. Level sets (Osher
and Sethian 1988) as well as spline snakes (Precioso and
Barlaud 2002) implementations may thus be used. The orig-
inality of our approach with respect to shape representation
is that we encode the characteristic function using moments.
This provides a compact, parametric representation that can
be made intrinsically invariant to affine transformations and
from which a shape prior can be naturally defined in terms
of distance or probability, as we will see in Sect. 3.

2.1 Encoding Shapes with Moments

Denoting by �in the inside region of a shape, the regular
or geometric moments of its characteristic function f are
defined as:

Mp,q =
∫∫

f (x, y)xpyqdxdy =
∫∫

�in

xpyqdxdy, (1)

where (p, q) ∈ N
2, and (p+q) is called the order of the mo-

ment. Any shape, discretized on a sufficiently fine grid, may
be reconstructed from its infinite set of moments. Hence,
when computed from the characteristic function, moments
naturally provide region-based shape descriptors. However,
as is well-known (Teague 1980), a more tractable represen-
tation for reconstruction purposes is obtained by using an
orthogonal basis, such as Legendre polynomials:

λp,q = Cpq

∫∫
�in

Pp(x)Pq(y)dxdy, (2)

for (x, y) ∈ [−1,1]2, where Cpq = (2p + 1)(2q + 1)/4 is a
normalizing constant, and for x ∈ [−1,1]:

Pp(x) =
p∑

k=0

apkx
k = 1

2pp!
dp

dxp
(x2 − 1)p. (3)

In practice we limit this representation to a finite order N .
We define the shape descriptor as the D-dimensional vec-
tor of Legendre moments, {λp,q,p + q ≤ N}, where D =
(N + 1)(N + 2)/2. Orthogonal moments rather than regu-
lar moments have to be considered since reconstructing a
shape from a finite number of non orthogonal, geometric
moments, involves inverting an ill-conditioned Gram ma-
trix (Talenti 1987): it amounts to recovering a vector from
its components on a set of nearly parallel vectors. On the
contrary, reconstruction from orthogonal moments does not
suffer from ill-conditioning and is given by a direct, closed-
form expression:

f̂N (x, y) =
N∑

p=0

p∑
q=0

λp−q,qPp−q(x)Pq(y). (4)

Let us also notice that, since the number of moments gath-
ered in the descriptor is finite, the reconstruction of the char-
acteristic function is not exact. As a consequence, the repre-
sentation is not strictly reversible, but this is not required in
the proposed method, because optimization is performed by
curve evolution (see Sect. 3). Reconstructions using (4) may
be useful for choosing the order of the model (see Fig. 1) or
for illustrating the accuracy of the representation (Fig. 2).

Beyond their good numerical stability, orthogonal mo-
ments have another appealing property. When approximat-
ing a function using (4) at the order N , the optimal coef-
ficients for the reconstruction, in terms of Minimal Mean
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Square Error, are the Legendre moments given by (2). As a
consequence, Legendre moments define a hierarchical de-
scription of shape (see Fig. 1), whose accuracy increases
with N . This can be exploited to ease the optimization pro-
cedure: a rough representation can be used in a first step and
progressively refined by adding moments to the descriptor
in a coarse-to-fine optimization scheme.

Finally, note that there is a linear relationship between
Legendre moments and regular moments:

λp,q = Cpq

p∑
u=0

q∑
v=0

apuaqvMu,v. (5)

Computing Legendre moments using (5) is preferable to (2)
because replacing the Mu,v’s by properly chosen expres-
sions yields geometrically invariant Legendre descriptors, as
explained in the next subsection.

2.2 Handling Pose and Geometric Variability

A basic problem when using deformable shape models in
image segmentation is shape alignment. The shape pose
with respect to the underlying image has to be determined.
In 2D, this involves transformations such as translation, scal-
ing and rotation. The standard approach for shape alignment
is to introduce explicit pose parameters in the optimization,
which complicates the segmentation procedure. An alterna-
tive is to define intrinsically invariant shape descriptors. For
this purpose, we defined in Foulonneau et al. (2006a) the so-
called canonical representation by a change of variables in
which two shapes, differing by a given transformation, are
represented by the same descriptor. This makes the model
invariant w.r.t. the transformation in question. Since affine
transformations include translation, scaling and rotation,
this solves the alignment problem. Moreover, since trans-
formations such as skewing and reflection are also included,
this introduces geometrical variabilities in the model. The
change of variables is given by closed-form expressions in-
volving only geometric moments, i.e. the data at hand, so
no additional optimization over pose parameters is neces-
sary. Note that the alternate method of intrinsic alignment
proposed in Cremers et al. (2006a) has the same property.

Scale and Translation Invariance In the case of scaling
and translation, the canonical representation of a shape is
obtained by aligning its centroid, (x, y), with the center of
the domain and normalizing its area, |�in|, to a constant,
1/β . This amounts to using the normalized central moments
ηu,v instead of the Mu,v’s in (5), as proposed in Foulonneau
et al. (2003). The shape descriptor invariant to translation
and isotropic scaling, λ = {λp,q,p + q ≤ N}, will be de-
fined by:

λp,q = Cpq

p∑
u=0

q∑
v=0

apuaqvηu,v, (6)

with:

ηu,v =
∫∫

�in

(x − x)u(y − y)v

(β|�in|)(u+v+2)/2
dxdy, (7)

and with

x = M1,0

M0,0
, y = M0,1

M0,0
and |�in| = M0,0. (8)

Figure 1 illustrates the reconstruction of a shape from its
normalized central Legendre moments. On the left, we can
notice that every reconstructed shape is centered in the re-
construction domain and that for a fixed β , all shapes have
the same area. On the right, curves representing the Normal-
ized Mean Square reconstruction Error (9) are presented.

NMSE(N) =
∫∫

(f̂N (x, y) − f (x, y))2dxdy∫∫
f (x, y)2dxdy

. (9)

The sources of errors in the numerical evaluation of image
moments are analyzed in Liao and Pawlak (1996), Mukun-
dan and Ramakrishnan (1998). As illustrated by Fig. 1 right,
two of them are dominant in our case. The first one is the
truncation error: the higher the order N , the better the recon-
struction. The second one is related to numerical accuracy:
for large N , numerical approximation errors prevail. For all
our experiences we have used double-precision Matlab�

implementations, representing numbers with 15 precision
digits. Beyond order 48, some coefficients of Legendre poly-
nomials have more than 15 digits, which causes a sudden
increase in the reconstruction error (see Fig. 1 right). We
can also notice that reconstruction is better when β is small.
Choosing a small value for β increases the area of the canon-
ical representation, thus smaller details can be described
with less moments. However, the canonical representation
has to fit in the definition domain of Legendre moments, i.e.
[−1,1]2. As a consequence, for a given shape, there is a
lower bound for β . To our knowledge, there are no theoreti-
cal results to calculate this bound. The value of β is not criti-
cal, however. We have determined it experimentally for each
shape. More examples are available in Foulonneau (2004).

Affine Invariance In the case of affine invariance, the
canonical representation is given by the image normaliza-
tion procedure (Pei and Lin 1995). The original shape and
its normalized version are related by an affine transforma-
tion, i.e. a translation followed by a linear transformation
which can be decomposed as:
[

cosγ sinγ

− sinγ cosγ

]
·
[
l1 0
0 l2

]
·
[

cos θ sin θ

− sin θ cos θ

]
. (10)

As already mentioned, the parameters of the change of vari-
ables (γ , l1, l2, θ , x and y) are given by closed-form ex-
pressions involving geometric moments (these can be found
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Fig. 1 Reconstructions of a mug shape from its Legendre moments made invariant w.r.t. scale and translation (left) and corresponding reconstruc-
tion error curves (right)

Fig. 2 Reconstruction of
shapes from their
affine-invariant moments. Upper
row: original shapes. Lower
row: shape reconstructions
using affine invariant moments
(these reconstruction correspond
to the canonical representations
of the original shapes)

in Foulonneau et al. 2006a). Image normalization, however,
does not handle reflection. Since reflection only affects the
sign of moments for p odd (reflection w.r.t. y-axis) or for
q odd (reflection w.r.t. x-axis), we choose, without loss of
generality, to fix the sign of the third-order moments. Fi-
nally, the affine-invariant descriptor, that will be denoted by
λA, is defined as (Foulonneau et al. 2006a):

λA
p,q(�in) = Cpq

u≤p,v≤q∑
u,v

apuaqvη
A
u,v, (11)

where the affine-invariant moments are given by:

ηA
u,v =

(
sign

(
η̂A

3,0

))u ·
(

sign
(
η̂A

0,3

))v

.̂ηA
u,v, (12)

and:

η̂A
u,v = (l1 · l2) u+v

4

(β|�in|)(u+v+2)/2

×
∫∫

�in

(
((x − x) cos θ + (y − y) sin θ)√

l1
cosγ

+ ((y − y) cos θ − (x − x) sin θ)√
l2

sinγ

)u

×
(

((y − y) cos θ − (x − x) sin θ)√
l2

cosγ

− ((x − x) cos θ + (y − y) sin θ)√
l1

sinγ

)v

dxdy.

(13)

To illustrate the invariance of the proposed descriptor, we
show on Fig. 2 examples of shape reconstruction with affine
invariant descriptors. The initial shapes (512 × 512 images)
shown on the upper row are affine-transformed versions of
the “stag” and “K” shapes. While large affine deformations
are considered, the reconstructions (N = 47, 128 × 128 im-
ages), are similar for each shape and correspond to their
canonical representation.

Similarity Invariance A simpler model that only handles
similarities may readily be obtained by setting γ = 0 and
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l1 = l2 = 1 in (13):

λS
p,q(�in) = Cpq

u≤p,v≤q∑
u,v

apuaqvη
S
u,v, (14)

with:

ηS
u,v =

(
sign

(
η̂S

3,0

))u ·
(

sign
(
η̂S

0,3

))v · η̂S
u,v, (15)

and

η̂S
u,v =

∫∫
�in

((x − x) cos θ + (y − y) sin θ)u

(β|�in|)(u+v+2)/2

× ((y − y) cos θ − (x − x) sin θ)vdxdy. (16)

3 Multi-Reference Shape Priors

In this section, we define a shape prior based on Legendre
descriptors. This prior takes into account either a single ref-
erence shape or a set of reference shapes. Depending on the
choice of the descriptor λ, λS or λA, the proposed constraint
is able to handle several levels of geometric invariance, as
described in Sect. 2. The derivation of the evolution equa-
tion corresponding to the minimization of the prior is de-
tailed first in the case of the single-reference model and then
in the multi-reference case.

3.1 Definition of the Prior

Let us first consider the case where the active contour, �, is
constrained to evolve toward a single reference shape. It is
natural to define a shape constraint as a distance d in terms
of shape descriptors. Equivalently, in a probabilistic frame-
work, we define a shape prior energy as:

Jprior (�in) = − log (P (λ(�in))) , (17)

where �in is the inside region of �, and:

P (λ) ∝ exp
(
−d(λ,λref )

)
, (18)

where λref is the set of moments of the reference object.
In the simplest case d is a quadratic distance. Of course,
more elaborate expressions can be used to model arbitrarily
complex priors. In particular, when Nref reference shapes
are simultaneously considered, the above model is extended
by defining P (λ) as a mixture of pdf’s. When d is quadratic
and all shapes are equiprobable, this leads to a mixture-of-
Gaussians:

P (λ) = 1

Nref

1

σ
√

2π

Nref∑
k=1

exp

(
−‖λ − λ

ref

(k)
‖2

2σ 2

)
. (19)

In this paper, we will consider multiple-reference models in-
volving different fixed shapes. Let us notice that (19) is close
to the classical Parzen density estimator, thus the model
readily extends to the definition of statistical shape variabil-
ities, in the spirit of Cremers et al. (2006a).

3.2 Active Contour Evolution Equation for the
Single-Reference Model

The evolution equation for the boundary of �in can be de-
rived from the minimization of Jprior using the shape deriv-
ative framework (Aubert et al. 2003). Let us first focus on
the case where the shape constraint is a quadratic distance
to a single reference shape, described by λref , i.e.:

Jprior (�in(t)) =
p+q≤N∑

p,q

(λp,q(�in(t)) − λ
ref
p,q)2. (20)

Scale and Translation Invariance When the descriptor is
invariant w.r.t. location and scale, i.e. when λ and λref are
computed from normalized central moments, applying the
strategy described in (Aubert et al. 2003) to minimize Jprior

leads to the following flow (see Foulonneau et al. 2008 for
details):

∂�

∂t
=

u+v≤N∑
u,v

Auv

(
Huv(x, y,�in) +

2∑
i=0

Buvi · Li(x, y)

)

︸ ︷︷ ︸
Vprior

N ,

(21)

where N is the inward unit normal vector of the evolving
active contour � and:

Auv = 2
p+q≤N∑

p,q

(λp,q − λ
ref
p,q)Cpqapuaqv, (22)

Huv(x, y,�in) = (x − x)u(y − y)v

(β|�in|)(u+v+2)/2
, (23)

Buv0 = u · x · ηu−1,v + v · y · ηu,v−1

β
1
2 |�in| 3

2

− (u + v + 2) · ηu,v

2|�in| ,

(24)

Buv1 = −u · ηu−1,v

β
1
2 |�in| 3

2

, Buv2 = −v · ηu,v−1

β
1
2 |�in| 3

2

, (25)

L0 = 1, L1 = x, L2 = y. (26)

Figure 3 illustrates the ability of the proposed shape prior
to constrain an evolving shape to resemble a reference one,
and to allow free changes of topology while the warping
proceeds.
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Fig. 3 Curve evolutions using the single-reference shape prior invari-
ant with regard to translation and scaling: (a) initial curves, (b) inter-
mediate evolutions, (c) final results and (d) reference shapes

Similarity Invariance When taking into account similarity
transforms in the prior, i.e. using λS , we obtain (see Foulon-
neau 2004 for details):

∂�

∂t
=

u+v≤N∑
u,v

AS
uv ·

(
sign

(
η̂S

3,0

))u ·
(

sign
(
η̂S

0,3

))v ·
(

HS
uv +

9∑
i=0

B̂S
uvi · Li

)

︸ ︷︷ ︸
Vprior

N ,

(27)

where the expressions of all necessary coefficients are given
in Foulonneau et al. (2008).

Affine Invariance When taking into account affine invari-
ance in the prior, i.e. using λA, we obtain (see Foulonneau
2004 for details):

∂�

∂t
=

u+v≤N∑
u,v

AA
uv ·

(
sign

(
η̂A

3,0

))u ·
(

sign
(
η̂A

0,3

))v ·
(

HA
uv +

9∑
i=0

B̂A
uvi · Li

)

︸ ︷︷ ︸
Vprior

N ,

(28)

where the expressions of all necessary coefficients are given
in Foulonneau et al. (2008).

3.3 Evolution Equation for the Multi-Reference Model

Let us now consider the multi-reference case. For the sake of
conciseness, we present the case of translation and scale in-
variance, the cases of similarity and affine invariance being

similar. Taking the log in (19), the functional to be mini-
mized is:

Jmulti
prior (�in(t))

= − log

⎡
⎣

Nref∑
k=1

exp

(
−‖λ(�in) − λ

ref

(k) ‖2

2σ 2

)⎤
⎦ + cst. (29)

Using elementary differentiation rules, we have (omitting
�in for conciseness):

∂Jmulti
prior

∂t
= 1

2σ 2
∑Nref

k=1 exp(−‖λ−λ
ref

(k)
‖2

2σ 2 )

×
Nref∑
k=1

∂J
(k)
prior

∂t
· exp

(
−‖λ − λ

ref

(k) ‖2

2σ 2

)
, (30)

where

J
(k)
prior = ‖λ − λ

ref

(k) ‖2 (31)

corresponds to the quadratic prior in the single-reference
case, for the k-th reference shape. Its derivative is given by:

∂J
(k)
prior

∂t
=

u+v≤N∑
u,v

A(k)uv · δE(ηu,v), (32)

where δE denotes the shape (Eulerian) derivative and

A(k)uv = 2
p+q≤N∑

p,q

(λp,q − λ
ref

(k)p,q)Cpqapuaqv. (33)

Incorporating (32) into (30) and exchanging summations,
we obtain:

∂Jmulti
prior

∂t
=

u+v≤N∑
u,v

Amulti
uv · δE(ηu,v), (34)

with Amulti
uv defined as in (36). The rest of the derivation is

similar to the single-reference case and we obtain an expres-
sion similar to (21), but with a different Au,v factor:

∂�

∂t
=

u+v≤N∑
u,v

Amulti
uv

(
Huv(x, y,�in) +

2∑
i=0

Buvi · Li(x, y)

)

︸ ︷︷ ︸
Vprior

N ,

(35)

where the expressions of Huv , Buvi and Li are given by
equations (23) to (26). The Amulti

u,v factor is a weighted av-
erage of the individual factors, A(k)uv computed for each
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reference shape descriptor λ
ref

(k) from (22):

Amulti
uv = 1

2σ 2
∑Nref

k=1 exp(
−||λ−λ

ref

(k)
||2

2σ 2 )

×
Nref∑
k=1

A(k)uv exp

(−||λ − λ
ref

(k) ||2
2σ 2

)
. (36)

In other words, the force induced by the minimization of
Jprior in the multi-reference case is a weighted average of
the individual forces directed toward each reference shape.
Note that the weights decay exponentially with the distance
in terms of shape descriptors between the evolving curve and
the reference shape.

To summarize, the shape constraint we have proposed
in this section handles complex topologies, simultaneously
takes into account several reference shapes and is intrin-
sically invariant w.r.t. affine transformations: the prior, as
well the equation evolution, has a closed-form expression
depending only on moments. Moreover, both the model
and the derivation of the curve evolution equation are in-
dependent from any implementation consideration. Conse-
quently, (21), (27), (28) or (35) may be implemented using
either a parametric approach, such as spline-snakes (Pre-
cioso and Barlaud 2002), or the non-parametric level sets
formalism (Osher and Sethian 1988). We use here the latter,
which naturally handles changes of topology.

4 Application to Image Segmentation

To illustrate the behavior of the novel prior term in the gen-
eral problem of two-class segmentation, we choose a stan-
dard data functional which was first introduced by Chan and
Vese (2001):

Jdata(�in,�out ) =
∫∫

�in

(I (x, y) − μin)
2dxdy

+
∫∫

�out

(I (x, y) − μout )
2dxdy, (37)

where μin (resp. μout ) is the (unknown) average intensity
in the inside (resp. outside) domain, �in (resp. �out ), and
I (x, y) is the intensity value of the pixel. Its differentiation
may be cast in the general framework presented in Aubert
et al. (2003), which yields the following equation:

∂�(t)

∂t
= (I − μin)

2 − (I − μout )
2︸ ︷︷ ︸

Vdata

, (38)

where μin and μout are updated after each iteration (Chan
and Vese 2001). The global energy functional that we use

for segmentation is then defined by:

J (�in,�out ) =
(

1

1 + α

)
Jdata(�in,�out )

+
(

α

1 + α

)
Jprior (�in), (39)

which leads to (40) for the evolution of the contour.

∂�(t)

∂t
=

[(
1

1 + α

)
Vdata +

(
α

1 + α

)
Vprior

]
N , (40)

where Vprior is defined in (21), (27), (28) or (35), depend-
ing on the required level of invariance for the application and
on the considered number of reference images. The geomet-
ric parameters are also updated after each iteration, using
the appropriate expressions, e.g. (8) for invariance to scal-
ing and translation, or the closed-form expressions given
in Foulonneau et al. (2008) for invariance to similarity or
affine transformations. Hence, pose parameters are obtained
as a by-product of the method.

To illustrate how the model can take into account sev-
eral reference shapes in a segmentation application, we first
consider a reference set consisting of Nref = 26 letters, as
shown in Fig. 4. The parameter σ is computed from the set
{λref

(k) } in order to bound the probability of classification er-
ror, Pe , between the two closest reference shapes in terms of
descriptors, where:

Pe = 1

2
erfc

⎛
⎝min

k �=l

√
||λref

(k) − λ
ref

(l) ||2
2σ

√
2

⎞
⎠ . (41)

In practice, σ is chosen so that Pe < 3%.
We first consider six synthetic images (Fig. 5, first row).

In these experiments, the model is invariant to scaling and
translation i.e. we use Vprior defined by (35). The order N of
the model is chosen such that the Normalized Mean Squared
reconstruction Error (NMSE) given by (9) is less than 10%.
The six segmentation results on the fourth row are obtained
with the same curve evolution equation for the contour, i.e.
the same value of α in (40), with Vprior given by (35). Note
that there is no need for any curvature term in this case: the
multi-reference constraint is robust enough against the noise
present in images. Also we can we can use (31) to identify
each segmented letter. More results are given in Fig. 6, with
the same set of reference shapes, the same level of geometric
invariance and different images of synthetic letters featuring
large occlusions.

In Fig. 8, we present results on real data, using a dif-
ferent set of reference shapes: the twelve mugs shown on
Fig. 7. Several kinds of initialization are used (first column).
In the second column, we show the result of an evolution
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Fig. 4 Set of reference shapes
used with the multi-reference
model (19)

Fig. 5 Segmentation of
synthetic images. First row:
initial image, second row: initial
contours, third row:
segmentation results without
shape prior, fourth row:
segmentation result using the
multi-reference prior invariant
to scaling and translation:
moments up to the 40th-order
(β = 1.5)

without shape prior, but with a standard additional curva-
ture component. Then, starting from these results, we re-
place the curvature term by the shape prior up to the or-
der 20 (third column). Last, we refine the results obtained
at the order 20, using a model with moments up to the or-
der 40 (fourth column). Note that when applying the shape
prior, the same set of parameters (α coefficient in (40) and
evolution step) is used for all experiments. On Fig. 8, we
also give, for each segmentation stage, the computation time
(including intermediary file savings and level sets-specific
computations such as re-initialization of the host function)
and the number of iterations using (40), for this stage. All
images have the same size: 474 × 348. The experiment was
run under Matlab� 7.3 on a laptop PC computer with an
Intel� Core2™ T7400 CPU at 2.16 GHz. Actually, a study
of the complexity of the method, that was confirmed by mea-
surements of computational times with various sets of para-
meters, shows that the computational burden is dominated
by terms involving spatial coordinates such as the compu-

tation of regular moments or the computation of Vprior .
The other computations, e.g. Legendre moments from reg-
ular moments, A and B coefficients, have a negligible im-
pact on the overall complexity, which is O(S2N2), where
S2 denotes the total number of pixels in the image and N

is the order of the model. Let us notice that using multiple
references instead of a single reference shape (Foulonneau
et al. 2006a) has little impact on the overall computation
time since the only modification is the expression of the Au,v

factors. For example, running the same experiment as on the
third row of Fig. 8, but with the single-reference model re-
sults in a global computation time of 285 s instead of 310 s
for the multi-reference model (the number of iterations re-
mains identical).

Figure 9 shows a segmentation example using for the
first time a multi-reference shape prior along with affine-
invariance. The segmented image is the same as on the third
line of Fig. 8 and the initialization is also identical. To show
the ability of the multi-reference model to also handle affine
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Fig. 6 Segmentation of five
images of letters featuring large
occlusions. First row: original
images. Second row:
initialization. Third row: results
without shape constraint (no
standard curvature component).
Fourth row: final results, adding
the multi-reference prior
invariant to scaling and
translation, up to the order 40
(β = 1.5). The same set of
parameters is used for all the
experiments

Fig. 7 Set of reference shapes used for the experience of Fig. 8

invariance, we have modified the first reference shape (cor-
responding to the actual shape of Fig. 9a) by applying an
anisotropic scaling to this reference (compare Fig. 9b to
Fig. 7). As can be observed (Fig. 9f), the final segmenta-
tion result is similar to the one in Fig. 8, though the exact
shape is not present in the reference set in this case.

Figure 10 illustrates the difficulty of the optimization
problem, when combining both multiple references and
affine invariance to constrain the evolution of a contour. For
this most comprehensive model, the optimization problem
naturally becomes intricate, due to the presence of many lo-
cal minima in the objective function. Depending on the com-
plexity of the observed image and of the reference shapes
set, unexpected solutions may then occur, that often corre-
spond to different relevant interpretations of the image to
be segmented. On Fig. 10 the observed image corresponds
to the letter “A” of the 26 letters alphabet, on which a par-

tial occlusion has been superimposed. The first result, col-
umn (a), is obtained with the set of 26 reference shapes: the
whole alphabet of Fig. 4. As can be seen, the model (and
the optimization algorithm) favors in this case an evolution
of the initial curve towards an inverted “V” rather than to
the “desired” solution “A”. Notice that even a human ob-
server might interpret this silhouette as a deformed, bottom-
up version of letter “V”. Next, in column (b), the deformable
model evolves using a representation that only takes into ac-
count scale and translation. This time, the final curve corre-
sponds to a “A” letter, as expected, since the bottom-up “V”
letter does not belong to the solution space in this case. How-
ever, inspecting the final curve superimposed with the shape
to be segmented, we notice that the two letters do not match
perfectly because this simpler model does not handle rota-
tion. In column (c), starting from the same initial curve, we
evolve the contour using the affine-invariant model again,
but this time the letter “V” is simply excluded from the ref-
erence alphabet (containing 25 letters in this case). As ex-
pected, the final curve correspond to the “desired” solution
and matches accurately the original shape. Results presented
columns (d) and (e) are obtained with the same experimen-
tal setting as in column (c), showing the ability of the model
to handle large affine deformations and, in particular, reflec-
tions.
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Fig. 8 Segmentation of real
images. (a) Initial contours,
(b) segmentation results without
shape prior (standard curvature
component used), segmentation
result using the multi-reference
prior invariant to scaling and
translation: (c) moments up to
the 20th-order and (d) to the
40th-order (β = 0.8). The
number of evolution iterations
performed at each stage and the
corresponding computation time
are given underneath each result

Fig. 9 Segmentation of a real
image. (a) Initial curve; (b) set
of reference images;
(c) segmentation without shape
constraint (standard curvature
component used); segmentation
result using the multi-reference,
affine-invariant shape prior:
(d) moments up to the 18th
order, (e) to the 30th order and
(f) to the 40th order

A last example (Fig. 11) shows the segmentation of a
road sign on a color traffic image. The observation (Fig. 11b)
is obtained from the RGB image (Fig. 11a) by computing
the red coefficient r = R

R+G+B
for every pixel. The road

sign appears partially occluded and is rotated by approxi-
mately 27◦ counterclockwise. The set of reference images
includes rotated versions of the “stop” sign silhouette under
6 different angles: −60◦,−30◦,0◦,30◦,60◦,90◦. Note that
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the exact observation angle is not present in the reference
set. In this case, the invariance of the model has been lim-
ited to translation and scaling. As can be seen on Fig. 11g,
the final segmentation is satisfactory and correspond to the
desired solution. A similar experiment (which is not illus-
trated in this paper) was performed on this image with the
same algorithm, using an extended reference set: one im-

Fig. 10 Segmentation of synthetic images with the multi-reference
prior using different levels of invariance and different set of refer-
ence shapes. First line: original images; second line: initial curves;
third line: segmentation results without any prior; fourth line: final
segmentation results (N = 45). (a) The multi-reference shape prior is
affine-invariant and simultaneously takes into account the 26 letters of
the alphabet presented in Fig. 4. (b) The same set of reference shapes is
used but invariance is limited to translation and scale. (c), (d), (e) The
multi-reference shape prior is affine-invariant but the set of reference
shapes does not include the “V” letter

age every 2◦ between −88◦ and 90◦. The distance between
every reference image and the final solution was computed
according to (31). The closest reference image was the 58-th
one, which corresponds to a 26◦ angle. These experiments
show that it is possible to handle rotations through the de-
finition of an appropriate set of reference images, while a
lower level of geometric invariance is used, which naturally
eases the optimization. This strategy is well suited to appli-
cations where the set of admissible geometric deformations
is limited and known in advance.

5 Conclusion

In this paper, we have presented a novel approach for the
integration of multiple prior shape models in active contour-
based image segmentation. Our multi-reference prior shape
model relies on affine-invariant shape descriptors related
to Legendre moments. These descriptors are used to con-
strain the evolution of the contour towards a set of different
possible reference shapes. A unique evolution equation for
the active contour is derived, using the formalism of shape
derivative. The corresponding geometric flow may be imple-
mented with any contour evolution algorithm.

Experimental results obtained with the level sets imple-
mentation have shown that the proposed evolution equation
introduces noticeable robustness to background clutter and
occlusions in two-class image segmentation problems. The
proposed approach naturally handles pose variations, affine
deformations and complex changes of topology. It is also
suited to different kinds of initializations, which may be tai-
lored to the application at hand.

As stated in Sect. 3, the mixture-of-Gaussian model that
we use readily extends to Parzen density estimation. This

Fig. 11 First row: (a) original RGB image; (b) corresponding nor-
malized red component, r = R

R+G+B
, and initial curve; (c) refer-

ence images. Second row: (d) segmentation result without shape
prior (no curvature component); (e)–(g) refinement of the segmen-

tation using the multi-reference shape prior invariant to transla-
tion and scaling (β = 0.5). A progressively increasing order of
representation is used: (e) N = 10, (f) N = 30 and (g) N = 42
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paves the way for modeling statistical shape variabilities,
which is an immediate perspective of this work.

Some issues remain open. A standard problem of active
contour-based image segmentation is the choice of an ad-
equate initialization, converging toward the “desired” solu-
tion. Another question is the determination of the model pa-
rameters. Two parameters had to be tuned manually here:
the usual parameter α weighting the prior model and the
data term, and the step in the gradient descent. We noticed
that the final solution was quite robust with respect to the
choice of these parameters and the same parameters were
used when segmenting different competing shapes in the
same image using the multi-reference model. These parame-
ters had however to be adapted from one image to the other.
Another limitation of the proposed approach is that it only
enables the segmentation of one single shape at the same
time (even if multiple references are taken into account). An
extension toward simultaneous (multiple) shapes segmenta-
tion is an intricate problem, which has been addressed re-
cently by Cremers et al. (2006b) in the level sets framework,
using multiple competing shape priors. Finally a 3D exten-
sion of this approach, in applications such as 3D computer
vision or 3D medical imaging, would certainly stir large in-
terest. Although such an extension seems quite straightfor-
ward from a mathematical point of view, difficulties may be
expected in the optimization process, due to significant ad-
ditional complexity in the energy landscape.
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