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Abstract  We describe a framework for controlling and coordinating a group of
nonholonomic mobile robots equipped with range sensors, with appli-
cations ranging from scouting and reconnaissance, to search and rescue
and manipulation tasks. We derive control algorithms that allow the
robots to control their position and orientation with respect to neigh-
boring robots or obstacles in the environment. We then outline a coor-
dination protocol that automatically switches between the control laws
to maintain a specified formation. Two simple trajectory generators
are derived from potential field theory. The first allows each robot to
plan its reference trajectory based on the information available to it.
The second scheme requires sharing of information and enables a rigid
group formation. Numerical simulations illustrate the application of
these ideas and demonstrate the scalability of the proposed framework
for a large group of robots.

Keywords: Formation control, potential functions, nonholonomic mobile robots,
switching control.

1. Introduction

It is well known that there are several tasks that can be performed
more efficiently and robustly using multiple robots, see for example
(Parker, 2000). Multi-robot applications include cooperative manipu-
lation, navigation and planning, collaborative mapping and exploration,
and formation control. In fact, there is extensive literature on motion
planning and control of mobile robots in structured environments. How-
ever, traditional control theory mostly enables the design of controllers
in a single mode of operation, in which the task and the model of the
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system are fixed. While control and estimation theory allows us to model
each behavior as a dynamical system, it does not give us the tools to
compose behaviors or the hierarchy that might be inherent in the switch-
ing behavior, or to predict the global performance of a highly complex
multi-robotic system.

The key contributions of this paper are (1) a set of control algorithms
and a coordination strategy that allow the robots to maintain a pre-
scribed formation, and (2) a newly developed trajectory generator that
combines potential functions and the dynamics of visco-elastic contacts.
By combining control, coordination, and trajectory generation we are
able to compose single control modes or behaviors and build formations
in a modular fashion. Moreover, we can guarantee that under reasonable
assumptions the basic formation is stable. Thus, the group can main-
tain a desired formation and flow towards its goal configuration. The
ability to maintain a prescribed formation allows the robots to perform
a variety of tasks such as collaborative mapping and exploration, and
cooperative manipulation (Spletzer et al., 2001).

We divide the multi-robot cooperative control problem into two areas:
(a) formation control and (b) trajectory generation. Formation control
approaches can be classified into three main categories as in (Beard et al.,
1999): leader-following, behavioral and virtual structures. In the leader-
following one robot acts as a leader and generates the reference trajectory
for the team of robots. Thus, the behavior of the group is defined by the
behavior of the leader. In the behavioral approach, a number of basic
behaviors is prescribed, e.g., obstacle avoidance, formation keeping, and
goal seeking. The overall control action (emergent behavior) is a weighted
average of the control actions for each basic behavior. In this case,
composing control strategies for competing behaviors and implementing
them can be straightforward. However, formal stability analysis of the
emergent group behavior may be difficult. Finally, virtual structures
consider the entire formation as a rigid body. Once the desired dynamics
of the virtual structure are defined, then the desired motion for each
agent is derived. The framework proposed in this work is flexible enough
to accommodate any of these formation control approaches. It is the
designer’s decision to use decentralized reactive behaviors with no leader
involved, leader-following, or rigid body motion to perform a given task.
We will demonstrate this through numerical simulation experiments.

The problem of multi-robot trajectory generation is to generate colli-
sion free trajectories for mobile robots to reach their desired destinations.
Previous approaches in this area can be broadly divided into two classes
including graph based planners (Barraquand and Latombe, 1993), and
potential field methods (Khatib, 1986; Koditschek, 1987). In this work
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we consider the latter. Artificial potential field approaches are based
on constructing repulsive potential functions around obstacles and at-
tracting potential functions around the goal location. The design of a
potential field with a global minimum at the goal configuration turns
out to be difficult. Various techniques have been developed to overcome
these difficulties, see for instance (Volpe and Khosla, 1990; Bemporad
et al., 1996; Barraquand et al., 1992). In contrast, we propose the use
of simple goal-directed fields that are not specifically designed to avoid
obstacles or neighboring robotsas in (Rimon and Koditschek, 1992). In-
stead, when a robot is close to an obstacle, it adopts a behavior that
simulates the dynamics of a visco-elastic collision guaranteeing that the
actual collision never occurs. This approach can be potentially scaled to
multiple (tens and hundreds) robots and to higher speeds of operation.

The rest of the paper is organized as follows. In section 2 we describe a
framework that allows to hierarchically compose planning and control in
a distributed fashion. Section 3 presents the suite of control algorithms
and the coordination strategy for switching between these controllers.
Then, we formulate the trajectory generator in section 4. Section 5 gives
simulation results and illustrates the benefits and the limitations of this
methodology underlying the implementation of cooperative control of
robot formations. Finally, some concluding remarks and future work
ideas are given in section 6.

2. Framework for Cooperative Control

We describe a framework for decentralized cooperative control of multi-
robotic systems that emphasizes simplicity in planning, coordination,
and control. The framework incorporates a two-level control hierarchy
for each robot consisting of a trajectory generation level and a coordina-
tion level as illustrated in Figure 1.1. The trajectory generator derives
the reference trajectory for the robot while the coordination level selects
the appropriate controller (behavior) for the robot.

The availability and sharing of information between the robots greatly
influences the design of each level. This is particularly true at the tra-
jectory generation level. The trajectory generator can be completely
decentralized so that each robot generates its own reference trajectory
based on the information available to it, through its sensors and through
the communication network. Alternatively, a designated leader plans its
trajectory and the other group members are able to organize themselves
to following the leader. The trajectory generators are derived from po-
tential field theory. At the coordination level we assume range sensors
that allow the estimation of position of neighboring robots and obsta-
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Figure 1.1. A formation control framework.

cles. This model is motivated by our experimental platform consisting
of mobile robots equipped with omni-directional cameras described in
(Das et al., 2001; Alur et al., 2000). Each robot chooses from a finite set
of control laws that describe its interactions with respect its neighbors
(robots and obstacles) and allow it to go to a desired goal position. Thus
the overall goal of this level is to prescribe the rules of mode switching
and thus the dynamics of the switched system (Liberzon and Morse,
1999).

3. Formation Control

In this section, we consider a group of n nonholonomic mobile robots
and describe the controllers that specify the interactions between each
robot and its neighbor. The robots are velocity controlled platforms
and have two independent inputs v; and w;. The control laws are based
on I/0 feedback linearization. This means we are able to regulate two
outputs. Moreover, we assume that the robots are assigned labels from
1 through n which restrict the choice of control laws. Robot 1 is the
leader of the group.

We adopt a simple kinematic model for the nonholonomic robots. The
kinematics of the ith robot are given by

T; = v;co80;, 1; = v;8inb;, 6 = w; (1)
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where z; = (z;,v:,60;) € SE(2).

In Figure 1.2, we show subgroups of two and three robots. Robot j
is designated as a follower of Robot . We first describe two controllers,
adopted from (Desai et al., 1998), and derive a third controller that takes
into account possible interactions with an obstacle.
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Figure 1.2. The Separation Bearing and Separation Separation Controllers.

Separation—-Bearing Control. By using this controller (denoted
SB;;C here), robot R; follows R; with a desired separation lfj and de-

sired relative bearing 1/)%,
the follower are given by

see Figure 1.2(left). The control velocities for

vj = 85 COSY;j — lij Sin’)’ij(bz‘j + wi) + v; COS(@,’ — 9j) (2)
1 ) .
wj = E[SU siny;j + lij cos v;;(bij + wi) + v;sin(6; — 6;)] (3)

where d is the distance from the wheel axis to a reference point on the
robot, and

Yij = 6 +i; — 07, (4)
sij = kil — L), (5)
bij = ka(yfs —ij), ki,ka >0 (6)

The closed-loop linearized system is
lij = k(I — 1), iy = k(s —bi5), 6= w; (7)
Separation—Separation Control. By using this controller (de-

noted S;;S;1C), robot Ry, follows R; and R; with a desired separations
lfk and l;-lk, respectively, see Figure 1.2(right). In this case the control
velocities for the follower robot become

oy = Sik SIN Yk — Sjk SIN Yk + V; COS Pjg SINYjf — V; COS Pk, SIN Vs (8)
sin(vy;k — Vik)




—8ik COS Yjk + Sjk COS Vi, — V; COS i COS Yjk + Vj COS ;i COS Yik
dsin(vk — Vir)
(9)

WE =

The closed-loop linearized system is

lig = k1 (1% — liw), g = k(% — L), O = wi. (10)

Separation Distance—To—Obstacle Control. This controller
(denoted SD,C) allows to avoid obstacles while following a leader. Thus,
the outputs of interest are the separation [/;; between the follower and
the leader, and the distance § from an obstacle to the follower. We define
a virtual robot R, as shown in Figure 1.3, which moves on the obstacle’s
boundary with linear velocity v, and orientation 8,. For this case the
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Figure 1.3. The Separation Distance to Obstacle Control SDoC.

velocity inputs for the follower robot R; are given by

v — 8ij COS Yoj + S0 SINY;j + V; COS 1hjj COS Yo
;=
c08(Yoj — ij)

(11)

o — 845 SIN Yo — Soj COSY;j + V5 COS 1P SN 7Yy
;=
d cos(Yoj — Vij)

Thus, the linearized kinematics become
lij = k(1 —1ij), 6 =ko(6,—0), 0;=uw;. (13)

where so; = ko(do — 9), 0, is the desired distance from the robot R; to
an obstacle, and k;’s are positive controller gains.

It is worth noting that feedback I/0O linearization is possible as long as
dcos(vo; — vij) # 0, i.e., the controller is not defined if y,; —v;; = £k 7.

(12)

This occurs when vectors J and [;; are collinear.
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By using this controller a follower robot will avoid the nearest ob-
stacle within its field-of-view while keeping a desired distance from the
leader. This is a reasonable assumption for many outdoor environments
of practical interest. Complex environments (e.g., star-like obstacles)
are beyond the scope of this paper.

3.1. A Basic Formation Building Block

In this section we develop a general approach to build formations in
a modular fashion. To be more specific, since each robot in the team
is nonholonomic, it is able to control up two output variables (De Luca
et al., 1998), i.e., a robot can follow another robot maintaining a de-
sired separation and bearing, or follow two robots maintaining desired
separations. Thus, a basic formation building block consists of a lead
robot R;, a first follower robot R;, and a follower robot Ry. Figure 1.4
illustrates the basic formation and the actual robots we use in our ex-
perimental testbed. The basic idea is that R; follows a given trajectory
g(t) € SE(2), R; and Ry, use SBC and SSC, respectively.

Figure 1.4. The basic formation configuration.

3.2. Stability Analysis

In the following, we prove that the basic formation is stable, that
is, relative distances and bearings reach their desired values asymptoti-
cally, and the internal dynamics of R; and Ry are stable. Since we are
using I/0 feedback linearization (Isidori, 1995), the linearized systems
are given by (7) and (10) with outputs

z1=[ly ¥, za=la L]"
It is straightforward to show that the output vectors z1 2 will converge to
the desired values arbitrarily fast. However, a complete stability analysis
requires the study of the internal dynamics of the robots i.e., the heading
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angles 6; and 0, which depend on the controlled angular velocities w;
and wy.

Theorem 1 Assume that the lead vehicle’s linear velocity along the path
g(t) € SE(2) is lower bounded i.e., v; > Vimin > 0, its angular velocity
is also bounded i.e., ||w;| < Whax, the relative velocity 6, = v; — vj and
relative orientation 0 = 0;—0; are bounded by small positive numbers €1,
€2, and the initial relative orientations ||0;(to) —0;(to)|| < c1, ||0:i(to) —
Ok (to)|| < com with 0 < ¢12 < 1. If the control velocities (2)-(3) are
applied to Rj, and the control velocities (8)—(9) are applied to Ry, then
the formation is stable, and the system outputs lij, vsj, lig, and Lj
converge exponentially to the desired values.

Proof: Let the system error e = [e1 - - - eg]” be defined as

er = If—lij, ex=vk—iy, e3=0—0 (14)
er = I — Lk, e5:l;'ik_ljka e = 0; — Oy

We need to show that the internal dynamics of R; and Ry are stable
which in formation control, is equivalent to show that the orientation
errors e3, eg are bounded. For the first follower R;, we have

€3 = Wj — Wj
after some algebraic simplification, we obtain

Vg

7 sin ez + 71 (e3, w;, e1, €2) (15)

6'3 =
where

;s 1 .
m(t,es) = (1 — g COS Yij )wi — E(klel sin-y;; + koeal;j cos ;)

The nominal system i.e., n1(¢,e3) = 0 is given by
63 = —%siney, (16)

which is (locally) exponentially stable provided that the velocity of the
lead robot v; > 0. Since w; is bounded, it can be shown that ||n:1 (¢, e3)|| <
01. By using stability theory of perturbed systems (Khalil, 1996), and
the condition of the theorem ||e3(to)|| < cim for some positive constant
c1 < 1, then

les(O)| <01, Vit

for some finite time £;. Now for the follower Ry, the error system be-
comes
é6 = W; — Wg
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as before and after some work, we obtain

. (2

eg = —EzSIHGG—{—772(66,602',64,65,(51,,(59) (17)

where

_ vbgsingy cos(eg — Pjk) + 0y cos(es + i) cos P, B
d[dg cos(jr — piz) + sin(vj — ij)]
kses cosy;j + kaeq cos yjg

B d[bg cos(tpji — 1ij) + sin(hjx — ;)]

Again, the nominal system is given by (16) i.e., n2(t,e6) = 0, and it
is (locally) exponentially stable provided that the velocity of the lead
robot v; > 0. Since |wi|| < Whax, ||0]| < €1, and ||dg|] < €2, it can
be shown that ||n2(t,es)|| < d2. Knowing that ||eg(to)|| < com for some
positive constant co < 1, then

ne(t,es) = wj

les(t)| < o2,  ViE>to
for some finite time .
O

The above theorem shows that, under some reasonable assumptions,
the three-robot formation system is stable i.e., there exists a Lyapunov
function V (¢, €) in [0,00) X D, where D = {e € R°||le|| < ¢}, such that
V(t,e) <0. Let

1 1
V= e{zPlzeu + Eeg + e4T5P45e45 + 56% (18)

be a Lyapunov function for the system error (14) then

: vi .
V = —el,Qp e — e[;Qy5e15 — —easine (19)

v
— eesines + n1(t, e3)es + n2(t, e6) es

where ef, = [e1 o], €fs = [ea e5], and Pig, Pus, Qys, and Qg5 are

2 X 2 positive definite matrices. By looking at (18)-(19), we can study
some particular formations of practical interest.

m  Let us assume two robots in a linear motion leader-following forma-
tion i.e., v; is constant, and w; = 0. Thus the Lyapunov function
and its derivative become

1
Vo =el,Proers + 56% (20)
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3.3.

. v; .
Vo = —efQleelg - Ezeg sin e3 (21)

then the two-robot system is (locally) asymptotically stable i.e.,
es — 0 as t — oo provided that v; > 0 and |leg|| < #. If w; is
constant (circular motion), then es is bounded. It is well-known
that an optimal nonholonomic path can be planned by joining lin-
ear and circular trajectory segments. This result can be extended
to n robots in a convoy-like formation (c.f., (Canudas-de-Wit and
NDoudi-Likoho, 2000). Let us consider a team of n robots where
R; follows R;_1 under SBC. A Lyapunov function and its derivative
can be given by

n
1
Viin =) € 1;Pi_1ei1;+ 5651 (22)

=2

n
. v; )
Vin=—) (e_1,Q; 1:€i1:+ Ezeaz' sineg; — ni(t, ep:)) (23)
i=2
where e;_1; = [lf_l,i —lic1; m— ¢i—1,i]T is the output error, and
eg; = 0;_1 — 0; is the orientation error between R; 1 and R;.

A similar analysis can be carried out for the case of three robots
in a parallel linear motion where v; = v; = constant, w; = w; = 0,
and 6;(to) = 0(to). The Lyapunov function and its derivative are
given by

1
Vs = el Pysess + 56% (24)
. v; .
V3 = —GZ5Q45645 — EZEG S111 €¢ (25)

then the three-robot system is (locally) asymptotically stable i.e.,
es — 0 as t — oo provided that v; > 0, |les|| < 7 and l;; < li, + 1.
Again, this result can be extended to n robots in parallel linear
formation.

Coordination Strategy

So far, we have shown that under certain assumptions a group of
robots can navigate maintaining a stable formation. However, in real
situations mobile robotic systems are subject to sensor, actuator and
communication constraints, and have to operate within unstructured
environments. These problems have motivated the development of a
switching paradigm that allows robots change the shape of the formation
on-the-fly. The basic strategy is as follows. Suppose a two-robot (Rj,
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Ry) formation is following a predefined trajectory using SBC. If there
is an obstacle in the field-of-view of the follower, it switches to SDoC.
When the obstacle has been successfully negotiated, Ro switches back
to SBC. Assume now a third robot R3 joins the formation. Since Rj
has some sensor constraints, it may see or follow Ri, Ry or both. For
avoiding inter-robot collisions, the preferred configuration is that Rj
follows Ry and Ry using SSC. Thus, if R3 sees only Ro, it will follow Ro
with desired values (i.e. 45, 1%;) selected in a way that Rj3 is driven to
the domain of controller SSC. Similarly, if R3 sees only Ry, the desired
output values (143, %) are chosen such that R3 is driven to the domain
of controller SSC. Furthermore, assume R4 joints the group. It has six
control possibilities to choose from as follows. R4 may follow R;, Ro,
Rj3, or any pair R1 Ry, R1R3, RoR3. The preferred configuration and
desired values will depend on the prescribed formation shape and size.
This algorithm can be recursively extended to n robots. Let us con-
sider a 4-robot case shown in Figure 1.5. To define a formation, we need

()
/N
i

Figure 1.5. Control graph for 4 robots.

one separation—bearing control (Ry following R;) and two separation—
separation controllers (R following Ry and Rz, and Ry following Ry and
R3). We call such a directed graph H, a control graph. In a control graph,
nodes and edges represent robots and control policies, respectively. Any
control graph can be described by its adjacency matriz ((Nemhauser and
Wolsely, 1988)). For this example, the adjacency matrix becomes

0110
0011

A=100 01 (26)
000 0

Note that this is a directed graph with the control flow from leader ¢ to
follower j. If a column k£ has a non zero entry in row %, then robot k
is following i. A robot can have up to 2 leaders. The column with all
zeros corresponds to the lead robot. A row with all zeros corresponds to
a terminal follower.
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It is clear that the number of possible control graphs increases dramat-
ically with the number of robots. For labeled robots with the constraint
of leaders having lower labels than followers, n = 3 allows 3 control
graphs, n = 4 results in 18 graphs, and n = 5 results in 180 graphs.

The coordination strategy allows decentralized decision making for
each individual robot. This is especially useful in simulations of large
formations in complex scenarios to keep track of individual choice of con-
trollers and switching between them. A formal study of control graphs
in the context of formation control is a topic of current and future work
(Fierro et al., 2001).

4. Trajectory Generation Using Contact
Dynamics Models

In this section, we propose a scheme for sensor-based trajectory gener-
ation. The key idea that distinguishes our approach from previous work
is the use of rigid body contact dynamics models to allow collisions be-
tween the robot and its surroundings instead of avoiding them.

Consider a group of mobile robots moving in an environment with
the presence of obstacles, we first characterize the surrounding spatial
division of each mobile robot with three zones as depicted in Figure
1.6. Use robot R; as an example, the sensing zone denotes the region
within which a robot can detect obstacles and other robots. The contact
zone is a collision warning zone. The robot starts estimating the relative
positions and velocities of any objects that may appear inside its contact
zone. The innermost circle is the protected zone which is modeled as a
rigid core during a possible contact. The ellipse within the protected
zone represents the reachable region of the robot. It is pre-computed
based on the robot’s maximum kinetic energy. Thus, the actual robot
is protected from collisions. In the planning process, we will use the
protected zone as an abstraction of the robot itself.

The dynamics equations of motion for the ith nonholonomic robot in
the group are given by

k
M;(@i)di + hilgi, &) = Bilg)ui — Ai(a)™ X + D> Wi Fyy  (27)
j=1

Aila)di = 0 (28)

where ¢; € R? is the vector of generalized coordinates, M; is an 3 x 3
positive-definite symmetric inertia matrix, h;(g;,q;) is a 3x 1 vector of
nonlinear inertial forces, B is a 3 X2 input transformation matrix, A;
is a 3 x 1 matrix associated with the nonholonomic constraints, A is
the corresponding constraint force, and wu; is the 3 x 1 vector of applied
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Figure 1.6. Zones for the computation of contact response.

(external) forces and torques. k is the number of the contacts between
the ith-robot and all other objects which could be either obstacles or
other robots. F;; = (Fnj FT’ij)T is a 2 x 1 vector of contact forces
corresponding to the jth contact, and W;; € R3*? is the Jacobian matrix
that relates the velocity at the jth contact point to the time derivatives
of the generalized coordinates of the robot.

We adopt a state-variable based compliant contact model described
in (Song et al., 2001) to compute the contact forces. At the jth contact
of the agent 4, the normal and tangential contact forces Fiy ;; and Fr;;
are given by

Fni; = fN(5N,z'j)+9N(5N,z'j,5N,z'j)a J=1,... .k, (29)
Fri; = fr(éri5) + 96145, 0145), Jj=1,... .k, (30)

where the functions fy and fr are the elastic stiffness terms and gy
and gr are the damping terms in the normal and tangential directions
respectively. Similar to handling rigid body contact, these functions can
be designed to adjust the response of the robot. dn,;;(¢) and d7;;(q)
are the local normal and tangential deformations which can be uniquely
determined by the generalized coordinates of the system. The details
and variations on the compliant contact model are discussed in (Kraus
and Kumar, 1997; Song et al., 2001). A key feature of this model is
that it allows to resolve the ambiguous situations when more than three
objects came into contact with one robot.

Figure 1.7 shows an example of an army-ant scenario in which 25
holonomic robots try to arrange themselves around a goal. The grouping
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is done dynamically using a decentralized decision making process. The
team is initialized with two groups. A quadratic well type of potential
function (Khatib, 1986; Koditschek, 1987) is constructed to drive the
robots toward the goal. The expression of the potential function is given
by

P(q) = k—;(q —q9)" (a4 — qq) (31)

where g, is the coordinates of the goal. The input u; for the ith agent
can be obtained by the gradient of the potential function

u; = —Vo(g;) = _kp(q - Qg) (32)

which is a proportional control law. Asymptotic stabilization can be
achieved by adding dissipative forces (Khatib, 1986).

X (m)

Figure 1.7. 25 holonomic robots arrange themselves around a target.

For the nonholonomic case substantial care in developing the local
level controllers (Barraquand and Latombe, 1993; Bemporad et al., 1996)
is required. We project the contact forces Z§:1 Wi Fij in (27) onto the
reduced space while eliminating the constraint forces A4;(g;)7 \; in (28).
As in (Fierro and Lewis, 1999), we use I/O linearization techniques to
generate a control law u that stabilizes the robot’s configuration about a
reference trajectory, i.e., ||¢ — qq4|| — 0 as ¢ — oco. The projected contact
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forces are treated as external disturbances during this process. We refer
the reader to (Fierro et al., 2001) for details.

This approach can be potentially scaled to tens and hundreds of
robots. Each vehicle is driven by a set of local controllers that uses
the information obtained within its local sensing zone. Thus, explicit
inter-robot communication is avoided. We will illustrate the application
of this method in the next section.

5. Simulation Results

We illustrate our approach by an example in which 4 nonholonomic
mobile robots R; 234 are commanded to a goal position within an un-
known environment. In the first experiment, the robots are autonomous,
and the formation constraint is not explicitly enforced. Each robot runs
its own trajectory generator and controller. As it can be seen in Figure
1.8, the robots are able to navigate and reach the goal position.

Trajectories of Rl, Rz' Rz’ and RA

12

Y (m)

16

Figure 1.8. Decentralized trajectory generation and control.

In a second experiment, the trajectory generator produces a trajec-
tory only for the lead robot R;. Then, the basic controllers and the
coordination strategy outlined in section 3 are implemented on Ry 33 4.
The desired shape of the formation is a diamond with inter-robot sepa-
ration of 1.2 m. In order to reach the desired formation, Ry follows R
with SB12C. Rj3 has to maintain a specified distance from R; and R,
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i.€., S13593C. Similarly, Ry is to maintain a specified distance from Rs
and Rg, i.e., 524534C. However, Ry 3 4 may switch controllers depending
on their relative positions and orientations with respect to neighboring
robots or obstacles. Thus, for a initial formation, the group is able to
reconfigure itself until the desired formation shape is achieved. Figure
1.9 shows that robots are able to negotiate the obstacle, avoid collisions
and keep the formation shape.

Trajectories of Rl. Rz' R3, and RA

101

0 2 4 6 8 10 12 14 16
X (m)

Figure 1.9. Leader—following formation control.

Finally, we repeat the last simulation experiment, but this time the
lead robot’s trajectory is generated considering the mass/inertia of the
entire group (i.e., the group is seen as a rigid body). The behavior of
the group of robots is depicted in Figure 1.10. The resulting trajectory
is different than the previous case, but computationally more intensive.

These simulation exercises illustrate the flexibility of the proposed
framework. We have implemented behavior-based navigation, leader-
following and virtual structure formation in a straightforward manner.
This flexibility will be useful in actual multi-robotic missions where au-
tonomous vehicles may need to navigate in a decentralized fashion until
a target has been detected. Then the group can switch to a leader-
following behavior and keep a desired formation shape around the tar-
get. Finally, a rigid formation (desired shape and size) behavior can be
switched in to manipulate and transport the target.
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Trajectories of R, R, R3| and R,

12

10

Y (m)

0 2 4 6 8 10 12 14 16
X (m)

Figure 1.10. Centralized trajectory generation with decentralized control.

6. Conclusions

In this paper, we presented a framework for controlling and coor-
dinating a group of nonholonomic mobile robots. The framework inte-
grates three key components for cooperative control of robot formations:
(1) reference trajectory generation, (2) a coordination strategy that al-
lows the robots to switch between control policies, and (3) a suite of
controllers that under reasonable assumptions guarantees stable forma-
tions. Our approach can easily scale to any number (tens and hundreds)
of vehicles and is flexible enough to support many formation shapes.
The framework described here can also be applied to other types of
unmanned vehicles (e.g., aircraft, spacecraft, and underwater vehicles).
Currently, we are formalizing and extending the coordination strategy
for a large number of robots, and conducting experiments on a group
of car-like mobile platforms equipped with on-board omni-directional
vision system. Also, we are applying these ideas to formation flight of
multiple unmanned aerial vehicles UAVs on SE(3).
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