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Abstract The recognition of facial gestures and expres-
sions in image sequences is an important and challenging
problem. Most of the existing methods adopt the follow-
ing paradigm. First, facial actions/features are retrieved from
the images, then the facial expression is recognized based
on the retrieved temporal parameters. In contrast to this
mainstream approach, this paper introduces a new approach
allowing the simultaneous retrieval of facial actions and ex-
pression using a particle filter adopting multi-class dynamics
that are conditioned on the expression. For each frame in the
video sequence, our approach is split into two consecutive
stages. In the first stage, the 3D head pose is retrieved using
a deterministic registration technique based on Online Ap-
pearance Models. In the second stage, the facial actions as
well as the facial expression are simultaneously retrieved us-
ing a stochastic framework based on second-order Markov
chains. The proposed fast scheme is either as robust as, or
more robust than existing ones in a number of respects. We
describe extensive experiments and provide evaluations of
performance to show the feasibility and robustness of the
proposed approach.
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1 Introduction

The human face has attracted attention in a number of areas
including psychology, computer vision, human-computer
interaction and computer graphics (Chandrasiri et al. 2004).
Human-machine interfaces will require an increasingly
good understanding of a subject’s behavior so that machines
can react accordingly. Facial expression analysis can bring
user and computer closer. One challenge is to construct ro-
bust, real-time, fully automatic systems to track the facial
features and expressions. Many computer vision researchers
have been working on tracking and recognition of the whole
face or parts of the face. Within the past decade, much work
has been done on automatic recognition of facial expression.
Computational facial expression analysis is a challenging
research topic. The initial 2D methods had limited success
mainly because their dependency on the camera viewing
angle. One of the main motivations behind 3D methods
for face or expression recognition is to enable a broader
range of camera viewing angles (Blanz and Vetter 2003;
Gokturk et al. 2002; Lu et al. 2006; Moreno et al. 2002;
Wang et al. 2004; Wen and Huang 2003; Yilmaz et al. 2002).

To classify expressions in static images many techniques
have been proposed, such as those based on neural net-
works (Tian et al. 2001), Gabor wavelets (Bartlett et al.
2004), and Adaboost (Wang et al. 2004). Recently, more at-
tention has been given to modeling facial deformation in dy-
namic scenarios, since it is argued that information based on
dynamics is richer than that provided by static images. Static
image classifiers use feature vectors related to a single frame
to perform classification (Lyons et al. 1999). Temporal clas-
sifiers try to capture the temporal pattern in the sequence
of feature vectors related to each frame. These include the
Hidden Markov Model (HMM) based methods (Cohen et
al. 2003) and Dynamic Bayesian Networks (DBNs) (Zhang
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and Ji 2005). In (Cohen et al. 2003), the authors introduce
a facial expression recognition from live video input using
temporal cues. They propose a new HMM architecture for
automatically segmenting and recognizing human facial ex-
pression from video sequences. The architecture performs
both segmentation and recognition of the facial expressions
automatically using a multi-level architecture composed of
an HMM layer and a Markov model layer. In (Zhang and Ji
2005), the authors present a new approach to spontaneous
facial expression understanding in image sequences. The fa-
cial feature detection and tracking is based on active Infra
Red illumination. Modeling dynamic behavior of facial ex-
pression in image sequences falls within the framework of
information fusion with DBNs.

Surveys of facial expression recognition methods can be
found in (Fasel and Luettin 2003; Pantic and Rothkrantz
2000). A number of earlier systems were based on facial
motion encoded as a dense flow between successive image
frames. However, flow estimates are easily disturbed by il-
lumination changes and non-rigid motion. In (Yacoob and
Davis 1996), the authors compute optical flow of regions
on the face, then they use a rule-based classifier to recog-
nize the six basic facial expressions. Extracting and track-
ing facial actions in a video can be done in several ways.
In (Bascle and Black 1998), the authors use active contours
for tracking the performer’s facial deformations. In (Ahlberg
2002), the author retrieves facial actions using a variant
of Active Appearance models. The dominant paradigm in-
volves computing a time-varying description of facial ac-
tions/features from which the expression can be recog-
nized; that is to say, the tracking process is performed prior
to the recognition process (Dornaika and Davoine 2005b;
Zhang and Ji 2005). In (Liao and Cohen 2005), authors used
a graphical model for modeling the interdependencies of de-
fined facial regions for characterizing facial gestures under
varying pose.

However, the results of both processes affect each other
in various ways. Since these two problems are interdepen-
dent, solving them simultaneously increases reliability and
robustness of the results. Such robustness is required when
perturbing factors such as partial occlusions, ultra-rapid
movements and video streaming discontinuity may affect
the input data. Although the idea of merging tracking and
recognition is not new, our work addresses two complicated
tasks, namely tracking the facial actions and recognizing ex-
pression over time in a monocular video sequence.

In the literature, simultaneous tracking and recognition
has been used in simple cases. For example, (North et al.
2000) employs a particle-filter-based algorithm for tracking
and recognizing the motion class of a juggled ball in 2D.
Another example is given in (Zhou et al. 2003); this work
proposes a framework allowing the simultaneous tracking
and recognizing of human faces using a particle filtering

method. The recognition consists in determining a person’s
identity, which is fixed for the whole probe video. The au-
thors use a mixed state vector formed by the 2D global face
motion (affine transform) and an identity variable. However,
this work does not address either facial deformation or facial
expression recognition.

In this paper, we propose a framework for simultaneous
facial action tracking and expression recognition given nat-
ural head motion. First, our proposed method estimates the
3D head pose using a deterministic approach based on the
principles of Online Appearance Models (OAMs). Second,
facial actions and expression are simultaneously estimated
using a stochastic approach based on a particle filter adopt-
ing mixed states (Isard and Blake 1998). The paper is an ex-
tended version of our work (Dornaika and Davoine 2005a).
The proposed framework is simple, efficient and robust with
respect to head motion given that (1) the dynamic mod-
els directly relate the facial actions to the universal expres-
sions, (2) the learning stage does not deal with facial images
but only concerns the estimation of auto-regressive models
from sequences of facial actions, which is carried out using
closed-from solutions, and (3) facial actions are related to
a deformable 3D model and not to entities measured in the
image plane.

The rest of the paper is organized as follows. Section 2
describes the deformable 3D face model that we use to cre-
ate shape-free facial patches from input images. Section 3
describes the problem we are focusing on. It presents the
adaptive observation model as well as the learning of facial
action dynamic models associated with the six universal fa-
cial expressions. Section 4 describes the proposed approach,
that is, (i) the retrieval of the 3D head pose by a determinis-
tic registration technique, and (ii) the simultaneous retrieval
of facial actions and expression using a stochastic frame-
work. Section 5 gives some experimental results and pro-
vides a performance evaluation of the developed approach.
Section 6 reports results including subject-dependent dy-
namics. Section 7 concludes the paper.

2 Modeling Faces

2.1 A Deformable 3D Model

In our study, we use the Candide 3D face model (Ahlberg
2002). This 3D deformable wireframe model was first de-
veloped for the purposes of model-based image coding and
computer animation. The 3D shape of this wireframe model
(triangular mesh) is directly recorded in coordinate form.
It is given by the coordinates of the 3D vertices Pi , i =
1, . . . , n where n is the number of vertices. Thus, the shape
up to a global scale can be fully described by the 3n-vector
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Fig. 1 First row: Facial Shape
units (neutral shape, mouth
width, eyes width, eyes vertical
position, eye separation
distance, head height). Second
and third rows: Positive and
negative perturbations of Facial
Action Units (Brow lowerer,
Outer brow raiser, Jaw drop,
Upper lip raiser, Lip corner
depressor, Lip stretcher)

g; the concatenation of the 3D coordinates of all vertices Pi .
The vector g is written as:

g = g + Sτ s + Aτ a (1)

where g is the standard shape of the model, τ s and τ a are
shape and animation control vectors, respectively, and the
columns of S and A are the Shape and Animation Units.
A Shape Unit provides a means of deforming the 3D wire-
frame so as to be able to adapt eye width, head width, eye
separation distance, etc. Thus, the term Sτ s accounts for
shape variability (inter-person variability) while the term
Aτ a accounts for the facial animation (intra-person vari-
ability). The shape and animation variabilities can be ap-
proximated well enough for practical purposes by this linear
relation. Also, we assume that the two kinds of variability
are independent. With this model, the ideal neutral face con-
figuration is represented by τ a = 0. The shape modes were
created manually to accommodate the subjectively most im-
portant changes in facial shape (face height/width ratio, hor-
izontal and vertical positions of facial features, eye separa-
tion distance). Even though a PCA was initially performed
on manually adapted models in order to compute the shape
modes, we preferred to consider the Candide model with
manually created shape modes with semantic signification
that are easy to use by human operators who need to adapt
the 3D mesh to facial images. The animation modes were
measured from pictorial examples in the Facial Action Cod-
ing System (FACS) (Ekman and Friesen 1977).

In this study, we use twelve modes for the facial Shape
Units matrix S and six modes for the facial Animation Units
(AUs) matrix A. Without loss of generality, we have chosen
the six following AUs: lower lip depressor, lip stretcher, lip
corner depressor, upper lip raiser, eyebrow lowerer and outer
eyebrow raiser. These AUs are enough to cover most com-
mon facial animations (mouth and eyebrow movements).
Moreover, they are essential for conveying emotions. The
effects of the Shape Units and the six Animation Units on
the 3D wireframe model are illustrated in Fig. 1.

In (1), the 3D shape is expressed in a local coordinate
system. However, one should relate the 3D coordinates to
the image coordinate system. To this end, we adopt the weak
perspective projection model. We neglect the perspective ef-
fects since the depth variation of the face can be considered
as small compared to its absolute depth. Therefore, the map-
ping between the 3D face model and the image is given by
a 2×4 matrix, M, encapsulating both the 3D head pose and
the camera parameters.

Thus, a 3D vertex Pi = (Xi, Yi,Zi)
T ⊂ g will be pro-

jected onto the image point pi = (ui, vi)
T given by:

(ui, vi)
T = M(Xi, Yi,Zi,1)T . (2)

For a given subject, τs is constant. Estimating τs can be car-
ried out using either feature-based (Lu et al. 2001) or fea-
tureless approaches (Ahlberg 2002). In our work, we assume
that the control vector τs is already known for every subject,
and it is set manually using for instance the face in the first
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Fig. 2 a An input image with correct adaptation of the 3D model.
b The corresponding shape-free facial image

frame of the video sequence (the Candide model and target
face shapes are aligned manually). Therefore, (1) becomes:

g = gs + Aτa (3)

where gs represents the static shape of the face—the neu-
tral face configuration. Thus, the state of the 3D wireframe
model is given by the 3D head pose parameters (three rota-
tions and three translations) and the animation control vector
τ a. This is given by the 12-dimensional vector b:

b = [θx, θy, θz, tx, ty, tz, τT
a ]T (4)

= [hT , τT
a ]T (5)

where the vector h represents the six degrees of freedom
associated with the 3D head pose.

2.2 Shape-Free Facial Patches

A facial patch is represented as a shape-free image (geomet-
rically normalized rawbrightness image). The geometry of
this image is obtained by projecting the standard shape g
with a centered frontal 3D pose onto an image with a given
resolution. The geometrically normalized image is obtained
by texture mapping from the triangular 2D mesh in the input
image (see Fig. 2) using a piece-wise affine transform, W .
The warping process applied to an input image y is denoted
by:

x(b) = W(y,b) (6)

where x denotes the shape-free patch and b denotes the geo-
metrical parameters. Several resolution levels can be chosen
for the shape-free patches. The reported results are obtained
with a shape-free patch of 5392 pixels. Regarding photo-
metric transformations, a zero-mean unit-variance normal-
ization is used to partially compensate for contrast varia-
tions. The complete image transformation is implemented

as follows: (i) transfer the rawbrightness facial patch y using
the piece-wise affine transform associated with the vector b,
and (ii) perform the gray-level normalization of the obtained
patch.

3 Background and Problem Formulation

Given a video sequence depicting a moving head/face, we
would like to recover, for each frame, the 3D head pose,
the facial actions encoded by the control vector τ a as well
as the facial expression. In other words, we would like to
estimate the vector bt (see (5)) at time t in addition to the
facial expression given all the observed data up to time t ,
denoted y1:t ≡ {y1, . . . ,yt }. In a tracking context, the model
parameters associated with the current frame will be carried
over to the next frame. Since the facial expression can be
considered as a random discrete variable, we need to append
to the continuous state vector bt a discrete state component
γt in order to create a mixed state:

(
bt

γt

)
(7)

where γt ∈ E = {1,2, . . . ,Nγ } is the discrete component of
the state, drawn from a finite set of integer labels. Each in-
teger label represents one of the six universal expressions:
surprise, disgust, fear, joy, sadness and anger. In our study,
we adopt these facial expressions together with the neutral
expression, that is, Nγ is set to 7. There is another useful
representation of the mixed state which is given by:

(
ht

at

)
(8)

where ht denotes the 3D head pose parameters, and at the
facial actions appended with the expression label γt , i.e.
at = [τT

a(t)
, γt ]T .

This separation is consistent with the fact that the facial
expression is highly correlated with the facial actions, while
the 3D head pose is independent of the facial actions and
expressions.

3.1 Adaptive Observation Model

For each input frame yt , the observation is simply the
warped (shape-free) facial patch associated with the geomet-
ric parameters bt . We use the HAT symbol for the tracked
parameters and images. For a given frame t , b̂t represents
the computed geometric parameters and x̂t the correspond-
ing shape-free patch, that is,

x̂t = x(b̂t ) = W(yt , b̂t ). (9)
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The estimation of b̂t from the sequence of images will be
presented in Sect. 4. b̂0 is initialized manually, according to
the face in the first video frame.

The appearance model associated with the shape-free fa-
cial patch at time t , At , is time-varying in that it models the
appearances present in all observations x̂ up to time t − 1.
This may be required as a result, for instance, of illumination
changes or out-of-plane rotated faces.

By assuming that the pixels within the shape-free patch
are independent, we can model the appearance using a mul-
tivariate Gaussian with a diagonal covariance matrix �. Al-
though the independence assumption may be violated, at
least locally, we adopt it in our work in order to keep the
problem tractable. The choice of a Gaussian distribution is
motivated by the fact that this kind of distribution provides
a simple and general model for additive noises. In other
words, this multivariate Gaussian is the distribution of the
facial patches x̂t . Let μ be the Gaussian center and σ the
vector containing the square root of the diagonal elements
of the covariance matrix �. μ and σ are d-vectors (d is the
size of x).

In summary, the observation likelihood is written as:

p(yt |bt ) = p(xt |bt ) =
d∏

i=1

N(xi;μi,σi)t (10)

where N(xi;μi,σi) is the normal density:

N(xi;μi,σi) = (2πσ 2
i )−1/2 exp

[
−1

2

(
xi − μi

σi

)2]
. (11)

We assume that the appearance model At summarizes the
past observations under an exponential envelope with a for-

getting factor α = 1 − exp(− log 2
nh

), where nh represents the
half-life of the envelope in frames (Jepson et al. 2003).

When the patch x̂t is available at time t , the appearance
is updated and used to track in the next frame. It can be
shown that the appearance model parameters, i.e., the μi ’s
and σi ’s can be updated from time t to time (t +1) using the
following equations (see Jepson et al. 2003 for more details
on OAMs):

μi(t+1)
= (1 − α)μi(t) + αx̂i(t) , (12)

σ 2
i(t+1)

= (1 − α)σ 2
i(t)

+ α(x̂i(t) − μi(t) )
2. (13)

This technique is simple, time-efficient and therefore
suitable for real-time applications. The appearance parame-
ters reflect the most recent observations within a roughly
L = 1/α window with exponential decay. Figure 3 shows
an envelope having α equal to 0.01 where the current frame
is 500.

Note that μ is initialized with the first patch x̂0. However,
(13) is not used with α being a constant until the number of

Fig. 3 A sliding exponential envelope with α = 0.01. The current
frame time is 500

frames reaches a given value (e.g., the first 40 frames). For
these frames, the classical variance is used, that is, (13) is
used with α being set to 1

t
.

Here we used a single Gaussian to model the appearance
of each pixel in the shape-free template. However, model-
ing the appearance with Gaussian mixtures can also be used
at the expense of an additional computational load (e.g.,
see Lee 2005; Zhou et al. 2004).

3.2 Facial Action Dynamic Models

Corresponding to each basic expression class, γ , there is
a stochastic dynamic model describing the temporal evolu-
tion of the facial actions τ a(t), given the expression. It is
assumed to be a Markov model of order K . For each ba-
sic expression γ , we associate a Gaussian Auto-Regressive
Process defined by:

τ a(t) =
K∑

k=1

Aγ

k τ a(t−k) + dγ + Bγ wt (14)

in which wt is a vector of 6 independent random N (0,1)

variables. The parameters of the dynamic model are: (i) de-
terministic parameters Aγ

1 ,Aγ

2 , . . . ,Aγ

K and dγ , and sto-
chastic parameters Bγ which are multipliers for the stochas-
tic process wt . It is worth noting that the above model can be
used in predicting the process from the previous K values.
The predicted value at time t obeys a multivariate Gaussian
centered at the deterministic value of (14), with Bγ Bγ T be-
ing its covariance matrix. In our study, we are interested
in second-order models, i.e. K = 2. The reason is twofold.
First, these models are easy to estimate. Second, they are
able to model complex dynamics. For example, these mod-
els have been used in (Blake and Isard 2000) for learning the
2D motion of talking lips (profile contours), beating heart,
and writing fingers.
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3.2.1 Learning the Second-Order Auto-Regressive Models

Given a training sequence τ a(1), . . . ,τ a(T ), with T > 2, be-
longing to the same expression, it is well known that a Max-
imum Likelihood Estimator provides a closed-form solu-
tion for the model parameters (Blake and Isard 2000). For
a second-order model, these parameters reduce to two 6 × 6
matrices Aγ

1 ,Aγ

2 , a 6-vector dγ , and a 6 × 6 covariance ma-

trix Cγ = Bγ Bγ T . Therefore, (14) reduces to:

τ a(t) = Aγ

2 τ a(t−2) + Aγ

1 τ a(t−1) + dγ + Bγ wt . (15)

The parameters of each auto-regressive model can be
computed from temporal facial action sequences (see Ap-
pendix). Ideally, the temporal sequence should contain sev-
eral instances of the corresponding expression.

More details about auto-regressive models and their com-
putation can be found in (Blake and Isard 2000; Ljung 1987;
North et al. 2000). It is worth noting that each universal
expression has its own second-order auto-regressive model
given by (15). However, the dynamics of facial actions as-
sociated with the neutral expression can be simpler and are
given by:

τ a(t) = τ a(t−1) + Dwt

where D is a diagonal matrix whose elements represent the
variances around the ideal neutral configuration τ a = 0. The
right-hand side of the above equation is constrained to be-
long to a predefined interval, since a neutral configuration
and expression is characterized by both the lack of motion
and the closeness to the ideal static configuration.

3.2.2 Computed Auto-Regressive Models

In our study, the auto-regressive models are learned using
a supervised learning scheme. First, we asked a volunteer
student to perform each basic expression several times in
approximately 30-second sequences. Each video sequence
contains several cycles depicting a particular facial expres-
sion: Surprise, Sadness, Joy, Disgust, Anger, and Fear. Sec-
ond, for each training video, the 3D head pose and the facial
actions τ a(t) are tracked using our deterministic appearance-
based tracker (Dornaika and Davoine 2006).

Figure 4 illustrates the value of the facial actions, τ a(t),
associated with six training video sequences. For clarity pur-
poses, only two components are shown for a given plot. For
a given training video, the neutral frames are skipped from
the original training sequence used in the computation of the
auto-regressive models. Recall that for an ideal neutral con-
figuration for the 3D wireframe, the vector τ a(t) is zero.

In order to assess the quality of the auto-regressive mod-
els, we have used them for synthesizing facial actions that
simulate the basic expressions. To this end, the recursive

equation (15) has been used with non-zero initial conditions.
Figure 5 shows the synthesized facial actions, τ a(t), using
the six auto-regressive models constructed using the data of
Fig. 4. Each synthesized sequence contains ten cycles as-
sociated with one basic expression. Each cycle consists of
30 generated samples/frames followed by 30 zero samples
(neutral frames). For a given plot, only two components are
displayed. As can be seen, the dynamics of the synthesized
facial actions are highly consistent with the original training
data.

3.3 The Transition Matrix

In our study, the facial actions as well as the expression
are simultaneously retrieved using a stochastic framework,
namely the particle filtering method. This framework re-
quires a transition matrix T whose entries Tγ ′,γ describe
the probability of transition between two expression labels
γ ′ and γ . The transition probabilities need to be learned
from training video sequences. In the literature, the transi-
tion probabilities associated with states (not necessarily fa-
cial expressions) are inferred using supervised and unsuper-
vised learning techniques. However, since we are dealing
with high level states (the universal facial expressions), we
have found that a realistic a priori setting works very well.
We adopt a 7 × 7 symmetric matrix whose diagonal ele-
ments are close to one (e.g. Tγ,γ = 0.8, that is, 80% of the
transitions occur within the same expression class). The rest
of the percentage is distributed equally among the expres-
sions. In this model, transitions from one expression to an-
other expression without going through the neutral one are
allowed. Furthermore, this model adopts the most general
case where all universal expressions have the same proba-
bility. However, according to the context of the application,
one can adopt other transition matrices in which some ex-
pressions are more likely to happen than others.

4 Approach

Since at any given time, the 3D head pose parameters can
be considered as independent of the facial actions and ex-
pression, our basic idea is to split the estimation of the
unknown parameters into two main stages. For each input
video frame yt , these two stages are invoked in sequence in
order to recover the mixed state [hT

t , aT
t ]T . Our proposed

approach is illustrated in Fig. 6. In the first stage, the six
degrees of freedom associated with the 3D head pose (en-
coded by the vector ht ) are obtained using a determinis-
tic registration technique similar to that proposed in (Dor-
naika and Davoine 2006). In the second stage, the facial
actions and the facial expression (encoded by the vector
at = [τT

a(t), γt ]T ) are simultaneously estimated using a sto-
chastic framework based on a particle filter. Such models
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Fig. 4 The automatically
tracked facial actions, τ a(t),
using the training videos. Each
video sequence corresponds to
one expression. For a given plot,
only two components are
displayed
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Fig. 5 The synthesized facial
actions, τ a(t), using the
auto-regressive models built
with the data of Fig. 4. Each
synthesized sequence contains
ten cycles associated with one
basic facial expression. For
a given plot, only two
components are displayed

have been used to track objects when different types of dy-
namics can occur (Isard and Blake 1998). Other examples of
auxiliary discrete variables beside the main hidden state of
interest are given in (Perez and Vermaak 2005). Since τ a(t)

and γt are highly correlated their simultaneous estimation

will give results that are more robust and accurate than re-
sults obtained with methods estimating them in sequence. In
the following, we present the parameter estimation process
associated with the current frame yt . Recall that the head
pose is computed using a deterministic approach, while the
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Fig. 6 The proposed two-stage
approach. In the first stage
(Sect. 4.1), the 3D head pose is
computed using a deterministic
registration technique. In the
second stage (Sect. 4.2), the
facial actions and expression are
simultaneously estimated using
a stochastic technique involving
multi-class dynamics

facial actions and expressions are estimated using a proba-
bilistic framework.

4.1 3D Head Pose

The purpose of this stage is to estimate the six degrees of
freedom associated with the 3D head pose at frame t , that
is, the vector ht . Our basic idea is to recover the current 3D
head pose parameters from the previous 12-vector b̂t−1 =
[θ̂x(t−1), θ̂y(t−1), θ̂z(t−1), t̂x(t−1), t̂y(t−1), t̂z(t−1), τ̂ a(t−1)]T =
[ ĥt−1, τ̂ a(t−1) ]T using a region-based registration tech-
nique. In other words, the current input image yt is regis-
tered with the current appearance model At . For this pur-
pose, we minimize the Mahalanobis distance between the
warped image patch and the current appearance mean—the
current Gaussian center

min
h

e(ht ) = mind[x(bt ),μt ] = min
d∑

i=1

(
xi − μi

σi

)2

(t)

. (16)

The above criterion can be minimized using an itera-
tive gradient descent method where the starting solution is
set to the previous solution ĥt−1. The appearance parame-
ters, i.e. the vectors μt and σ t , are known using the recur-
sive equations (12) and (13). During the above optimiza-
tion process the facial actions are set to the constant values
τ̂ a(t−1). Handling outlier pixels (caused for instance by oc-
clusions) is performed by replacing the quadratic function
by the Huber’s cost function (Dornaika and Davoine 2006;
Huber 1981).

Computation of the Gradient Matrix The gradient ma-
trix associated with the 3D head pose parameters is G =
∂W(yt ,bt )

∂h = ∂xt

∂h . It is approximated by numerical differ-
ences.

Once the solution given by the 12-vector b̂t = [ĥT
t ,

τ̂T
a(t)]T becomes available for a given frame, it is possible

to compute the current gradient matrix from the associated
input image. We use the following:

The j th column of G (j = 1, . . . ,dim(h) = 6) where

Gj = ∂W(yt ,bt )
∂hj

can be estimated using differences

Gj � W(yt , b̂t ) −W(yt , b̂t + δj qj )

δj

where δj is a suitable step size and qj is a 12-vector
with all elements zero except the j th element, which is
equal to one. To gain more accuracy, the j th column of G
is estimated using several steps around the current value
bj . Averaging over all these, we then obtain the final Gj

as

Gj = 1

K

K/2∑
k=−K/2,k �=0

W(yt , b̂t ) −W(yt , b̂t + k δj qj )

kδj

where δj is the smallest perturbation associated with the
parameter hj and K is the number of steps (in our exper-
iments, K is set to 8). One can also use a weighted av-
erage that downweights the contribution of perturbations
which are far from the current values, i.e., the averaging
weights can be taken from triangular or Gaussian win-
dows.
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4.2 Simultaneous Facial Actions and Expression

In this stage, our goal is to simultaneously infer the facial
actions as well as the expression label associated with the
current frame t given (i) the observation model (see (10)),
(ii) the dynamics associated with each expression (see (15)),
and (iii) the 3D head pose for the current frame computed by
the deterministic approach (see Sect. 4.1). This will be per-
formed using a particle filter paradigm. Thus, the statistical
inference of such paradigm will provide a posterior distribu-
tion for the facial actions τ a(t) as well as a Probability Mass
function for the facial expression γt .

Since the 3D head pose ht is already computed, we are
left with the mixed state at = [τT

a(t), γt ]T . The dimension
of the vector at is 7. Here we will employ a particle filter
algorithm allowing the recursive estimation of the posterior
distribution p(at |x1:(t)) using a particle set. This is approxi-

mated by a set of J particles {(a(0)
t ,w

(0)
t ), . . . , (a(J )

t ,w
(J )
t )}.

Once this distribution is known the facial actions as well
as the expression can be inferred using some loss function
such as the MAP or the mean. Figure 7 illustrates the pro-
posed two-stage approach. It shows how the current poste-
rior p(at |x1:(t)) can be inferred from the previous posterior
p(at−1|x1:(t−1)) using a particle filter algorithm.

On a 3.2 GHz PC, a C code of the approach computes
the 3D head pose parameters in 25 ms and the facial ac-
tions/expression in 31 ms where the patch resolution is 1310
pixels and the number of particles is 100.

5 Experimental results

In this section, we first report results on simultaneous fa-
cial action tracking and expression recognition. Then we
present performance studies, considering different perturb-
ing factors such as robustness to rapid facial movements or
to imprecise 3D head pose estimation.

5.1 Simultaneous tracking and recognition

Figure 8 shows the application of the proposed approach to
a 748-frame test video sequence. The upper part of this fig-
ure shows 9 frames of this sequence: 50, 130, 221, 300, 371,
450, 500, 620, and 740. The two plots illustrate the proba-
bility of each expression as a function of time (frames). The
lower part of this figure shows the tracking results associ-
ated with frames 130, 371, and 450. The upper left corner
of these frames depicts the appearance mean and the current
shape-free facial patch.

Figure 9(a) illustrates the weighted average of the tracked
facial actions, τ̂ a(t). For the sake of clarity, only three out
of six components are shown. For this sequence, the maxi-
mum probability was correctly indicating the displayed ex-
pression. We noticed that some displayed expressions can,

during a short initial phase (very few frames), be considered
as a mixture of two expressions (the displayed one and an-
other one). This is due to the fact that face postures and dy-
namics at some transition phases can be shared by more than
one expression. This is not a problem since the frame-wise
expression probabilities can be merged and averaged over
a temporal patch including contiguous non-neutral frames.
Figure 9(b) illustrates this scheme and shows the resulting
segmentation of the used test video. One remarks that this
holds true for a human observer, who may fail to recognize
a gesture from only one single frame.

In the above experiment, the total number of particles is
set to 200. Figure 10 illustrates the same facial actions when
the number of particles is set to 100. We have found that
there is no significant difference in the estimated facial ac-
tions and expressions when the tracking is performed with
100 particles (see Figs. 9(a) and 10), which is due to the use
of learned multi-class dynamics.

Figure 11 shows the tracking results associated with an-
other 600-frame test video sequence depicting significant
out-of-plane head movements. The recognition results were
correct. Recall that the facial actions are related to the de-
formable 3D model and thus the recognition based on them
is independent from the viewing angle.

A Challenging Example We have dealt with a challeng-
ing test video. For this 1600-frame test video, we asked
our subject to adopt arbitrarily different facial gestures and
expressions for an arbitrary duration and in an arbitrary
order. Figure 12 (top) illustrates the probability mass dis-
tribution as a function of time. As can be seen, surprise,
joy, anger, disgust, and fear are clearly and correctly de-
tected. Also, we find that the facial actions associated with
the subject’s conversation are correctly tracked using the
dynamics of the universal expressions. The tracked fa-
cial actions associated with the subject’s conversation are
depicted in nine frames (see the lower part of Fig. 12).
The whole video can be found at http://www.hds.utc.fr/
~fdavoine/MovieTrackingRecognition.wmv.

5.2 Performance study

One-Class Dynamics Versus Multi-Class Dynamics In or-
der to show the advantage of using multi-class dynamics
and mixed states, we conducted the following experiment.
We used a particle filter for tracking facial actions. How-
ever, this time the state consists only of facial actions and
the dynamics are replaced with a simple noise model, i.e.
motion is modeled by a random noise. Figures 13(a) and
13(b) show the tracking results associated with the same in-
put frame. (a) Displays the tracking results obtained with
a particle filter adopting a single-class dynamics. (b) Dis-
plays the tracking results with our proposed approach adopt-
ing the six auto-regressive models. As can be seen, by using
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Fig. 7 Inferring the 3D head pose, the facial actions and expression. A particle-filter-based algorithm is used for the simultaneous recovery of the
facial actions and expression

mixed states with learned multi-class dynamics, the facial

action tracking becomes considerably more accurate (see the

adaptation of the mouth region—the lower lip).

Effect of Rapid and/or Discontinuous Facial Movements It

is well known that facial expressions introduce rapid fa-

cial feature movements, and hence many developed track-
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Fig. 8 Simultaneous tracking
and recognition associated with
a 748-frame video sequence.
The top illustrates some frames
of the test video. The middle
plots shows the probability of
each expression as a function of
time (frames). The bottom
images show the tracked facial
actions where the corner shows
the appearance mean and the
current shape-free patch

ers may fail to keep track of them. In order to assess the

behavior of our developed tracker whenever very rapid fa-

cial movements occur, we conducted the following exper-

iment to simulate an ultra rapid mouth motion.1 We cut
about 40 frames from a test video. These frames (video seg-

1This experiment also simulates a discontinuity in video streaming.
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Fig. 9 a The tracked facial actions, τ̂ a(t), computed by the recursive particle filter. b Segmenting the input video using the non-neutral frames

Fig. 10 The tracked facial
actions, τ̂ a(t) (weighted
average), computed by the
recursive particle filter with only
100 particles

Fig. 11 Simultaneous tracking
and recognition associated with
a 600-frame video sequence
depicting non-frontal head poses

ment) overlap with a surprise transition. The altered video
is then tracked using two different methods: (i) a determin-
istic approach based on a registration technique estimat-
ing both the head and facial action parameters (Dornaika
and Davoine 2006), and (ii) our stochastic approach. Fig-
ures 14(a) and 14(b) show the tracking results associated
with the same input frame immediately after the cut. Note
the difference in accuracy between the deterministic ap-
proach (a) and the stochastic one (b) (see the eyebrow and

mouth region). Thus, despite the motion discontinuity of the
mouth and the eyebrows, the particles are still able to pro-
vide the correct state (both the discrete and the continuous
components) almost instantaneously (see the correct align-
ment between the 3D model and the region of the lips and
mouth in Fig. 14(b)).

Low Resolution Video Sequences In order to assess the
behavior of our developed approach when the resolution
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Fig. 12 Top: The probability of each expression as a function of time associated with a 1600-frame video sequence. Bottom: The tracked facial
actions associated with the subject’s speech which starts at frame 900 and ends at frame 930. Only frames 900, 903, 905, 907, 909, 911, 913, 917,
and 925 are shown

and/or the quality of the videos is low, we downloaded sev-
eral low-quality videos used in (Huang et al. 2002). In each
42-frame video, one universal expression is displayed. Fig-
ure 15 shows our recognition results (the discrete probabil-
ity distribution) associated with three such videos. The left
images display the 25th frame of each video. Note that the

neutral curve is not shown for reasons of clarity. As can be
seen, the recognition obtained with our stochastic approach
was very good despite the low quality of the videos used.
The resolution of these videos is 320×240 pixels.

Moreover, we acquired several video sequences using the
right camera of a low-cost stereo head—Point Grey Re-
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Fig. 13 Method comparison:
One class dynamics (a) versus
multi-class dynamics (b) (see
Sect. 5.2)

Fig. 14 Method comparison:
Deterministic approach (a)
versus our stochastic approach
(b) immediately after
a simulated mouth motion
discontinuity (see Sect. 5.2)

search’s Bumblebee sensor2. The captured 640×480 images
are directly used by our tracker without any radial distortion
correction. Figure 16 shows the tracking and recognition re-
sults associated with four frames. The actual expressions for
these examples are indicated in bold type and the recog-
nized ones (having the highest probability) are indicated in
brackets. It will be remarked that these video sequences have
combined three difficulties (1) the low quality of the images,
(2) the non-frontal view of the face, and (3) the subject’s fa-
cial dynamics were not learned beforehand. The first three
images show three examples for which the facial expression
recognition was correct (highest probability).

Although the subject’s expression in the fourth image
was one of disgust, the expression recognized was joy.
This misrecognition is not related to the image quality nor
to the non-frontal view but rather to the learned subject-
specific dynamics. Indeed, whenever the tracker finds com-
pletely new dynamics it may fail to correctly recognize the
source expression. Tackling this problem will be presented
in Sect. 6.

Impact of Noisy Estimated 3D Head Pose The estimated
appearance-based 3D head pose may suffer from some inac-

2http://www.ptgrey.com.

curacies associated with the out-of-plane movements, which
is the case for all monocular systems. It would seem reason-
able to fear that these inaccuracies might lead to a failure
in facial action tracking. In order to assess the effect of 3D
head pose inaccuracies on the facial action tracking, we con-
ducted the following experiment. We acquired a 750-frame
sequence and performed our approach twice. The first was
a straightforward run. In the second run, the estimated out-
of-plane parameters of the 3D head pose were perturbed by
a uniform noise, then the perturbed 3D pose was used by the
facial action tracking and facial expression recognition. Fig-
ure 17 shows the value of the tracked actions in both cases:
the noise-free 3D head pose (solid curve) and the noisy 3D
head pose (dotted curves). In this experiment, the two out-
of-plane angles were perturbed with additive uniform noise
belonging to [−7degrees,+7degrees] and the scale was per-
turbed by an additive noise belonging to [−2%,+2%]. As
can be seen, the facial actions are almost not affected by
the introduced noise. This can be explained by the fact that
the 2D projection of out-of-plane errors produce very small
errors in the image plane such that the 2D alignment be-
tween the model and the regions of lips and eyebrows is still
good enough to capture their independent movements cor-
rectly.
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Fig. 15 The probability of each expression as a function of time associated with three low resolution videos. The right images display the 25th

frame of each video

Robustness to Lighting Conditions The appearance model

used was given by one single multivariate Gaussian with pa-

rameters slowly updated over time. The robustness of this

model is improved through the use of robust statistics that

prevent outliers from deteriorating the global appearance

model. This relatively simple model was adopted to allow

real-time performance. We found that the tracking based

on this model was successful even in the presence of tem-

porary occlusions caused by a rotated face and occluding

hands. Figure 18 illustrates the tracking results associated
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Fig. 16 Simultaneous tracking
and recognition associated with
low quality video sequences.
The actual and recognized
expressions are shown in bold
and italics, respectively

with a video sequence provided by the Polytechnic Univer-
sity of Madrid,3 depicting head movements and facial ex-
pressions under significant illumination changes. As can be
seen, even though with our simple appearance model the
possible brief perturbations caused temporary tracking in-
accuracies, there is no track lost. Moreover, whenever the
perturbation disappears the tracker begins once more to pro-
vide accurate parameters.

6 Subject-Dependent Dynamics

So far, the learned dynamic models were built using the fa-
cial actions associated with one human subject. However,
it is known that the facial dynamics related to facial emo-
tions and expressions are subject-dependent. For instance,
expressions of anger and disgust may vary from one person
to another. Therefore, the developed approach based on one
person’s data may fail to recognize the same expression in
others.

In order to make the developed stochastic approach more
general, we assume that the training data were produced by
more than one person, each subject contributing a set of
video sequences, where each video sequence depicts a given

3http://www.dia.fi.upm.es/~pcr/downloads.html.

universal expression. Let Nmodels be the number of persons
featured in the training data. The simplest way to merge data
from several subjects is to concatenate the facial actions and
to build one auto-regressive model per expression.

In our work, we will use another strategy. For each uni-
versal expression, we build Nmodels auto-regressive models
(one for each subject). Thus each auto-regressive model will
be given by Aγ (n)

1 ,Aγ (n)

2 , dγ (n), and Cγ (n) = Bγ (n)Bγ (n)T

where γ denotes the expression and n denotes the person or
model. Therefore, the total number of auto-regressive mod-
els is (Nγ − 1)Nmodels + 1, assuming that we adopt one AR
model for the neutral expression.

The main steps of the simultaneous tracking and recog-
nition method described in Sect. 4.2 remain the same. How-
ever, the prediction step will be totally different since each
universal expression has several auto-regressive models. At
run time, each particle label (expression) will be gener-
ated according to transition matrix probabilities, but the
geometrical parameters (facial actions) will be generated by
diffusion using all available Nmodels auto-regressive mod-
els associated with that expression label. However, only one
predicted value for the facial actions will be retained: that
which is most consistent with the observation likelihood.
The developed approach will be broadly similar to the one
presented in Fig. 7. However, for clarity of presentation we
present it in Fig. 19.
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Fig. 17 Impact of noisy 3D
head pose on the stochastic
estimation of the facial actions.
In each graph, the solid curve
depicts the facial actions
computed by the developed
framework. The dashed curve
depicts the same facial actions
using a perturbed 3D pose

At first glance, one would expect CPU time to increase,
since each predicted particle requires the computation of the
observation likelihood (one computation per model). This
time is considerably reduced by taking into account the fact
that the generated particles differ only by the facial actions
(they have the same 3D head pose parameters). So the obser-
vation likelihood (10) will be computed only for the pixels
belonging to the triangles deformed by the facial actions and
not for the whole facial patch.

We emphasize that reducing the computational load of
the proposed algorithm (Fig. 19) when the number of per-
sons is high can be done either by building one autoregres-
sive model for all the subjects or by building a few autore-
gressive models that capture the main dynamics modes us-
ing unsupervised clustering techniques.

6.1 Experimental Results

We conducted several experiments to test the performance
of the stochastic approach adopting several AR models per
expression.

Figure 20 shows the tracking and recognition results as-
sociated with a 300-frame video sequence depicting some
facial expressions displayed by an unseen person. Fig-
ure 20(a) shows the expression probability as a function of
time using the stochastic approach with one AR model per
expression (the training data correspond to one person).

Figure 20(b) displays the computed expression probabil-
ity as a function of time when using Nmodels = 2 AR mod-
els per expression (the training data correspond to two per-
sons). As can be seen (see frames 100 and 250), the anger
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Fig. 18 Tracking the head and the facial actions under significant illumination changes and head and facial feature movements

expression is classified as a neutral one in (a) while the
same expression is correctly recognized in (b). Figure 21
displays the computed facial actions associated with frame
250. (a) Displays the computed facial actions obtained with
one AR model per expression. (b) Displays the computed
facial actions obtained with two AR models per expression.
As can be seen, the mouth is better tracked when two AR
models per expression are used. Note that both recogni-
tion and tracking are improved by using several dynamics
models.

Figure 22 shows the tracking and recognition results as-
sociated with a 300-frame video sequence depicting another
unseen person. (a) Displays the probability of expression as
a function of time using the stochastic approach with one
AR model per expression. (b) Displays the probability of
expression as a function of time when using two AR mod-
els per expression. As can be seen (for frames 75 through
125), disgust has been classified as joy in (a) while the same
expression has been correctly recognized in (b).

In order to get quantitative evaluation of the proposed
method, we proceeded as follows. We captured 25 video
sequences depicting five universal expressions where each
expression is displayed in five video sequences. All these

Table 1 Confusion matrix obtained with the developed method. The
learned AR models correspond to two subjects and the test data corre-
spond to an unseen one

Surprise Joy Disgust Anger Fear

Surprise 5 0 0 0 0

Joy 0 5 0 0 0

Disgust 0 0 4 0 0

Anger 0 0 0 5 0

Fear 0 0 1 0 5

expressions are performed by an unseen person. Table 1
displays the corresponding confusion matrix. Here an ex-
pression is correctly recognized if at least one of the
two conditions is satisfied: (1) the transition neutral to
that expression is correctly recognized, (2) the major-
ity of the frames within duration of the expression have
been correctly recognized. Recall that each frame is la-
beled with the expression having the maximum discrete
probability.
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Fig. 19 Inferring the 3D head pose, the facial actions and expression. A particle-filter-based algorithm is used for the simultaneous recovery of
the facial actions and expression. The differences from the algorithm of Fig. 7 are shown in black and in a large font

7 Discussions

In this paper, we have proposed a stochastic framework that
carries out simultaneously the tracking of facial actions and

the recognition of expressions: a hard problem. Experiments
show the robustness of the proposed method. The method
is view-independent and does not require any learned fa-
cial image patch since the facial patch is learned online. The
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Fig. 20 A 300-frame video
sequence depicting an unseen
person’s facial expressions.
a The probability of expression
as a function of time using the
stochastic approach with one
AR model per expression. b The
probability of expression as
a function of time when using
two AR models per expression.
As can be seen (see frames 100
and 250), the anger expression
has been classified as a neutral
one in (a) while the same
expression has been correctly
recognized in (b)

latter property makes it more flexible than many developed
approaches. The proposed method can easily include other
facial gestures in addition to the universal expressions. For
each frame in the video sequence, our approach is split into
two consecutive stages. In the first stage, the 3D head pose is
recovered using a deterministic registration technique based
on Online Appearance Models. In the second stage, the fa-
cial actions as well as the facial expression are simultane-

ously obtained using a stochastic framework based on multi-
class dynamics.

We have shown that possible inaccuracies affecting the
out-of-plane parameters associated with the 3D head pose
have no impact on the stochastic tracking and recognition.
The developed scheme lends itself nicely to real-time sys-
tems. Recall that the reported CPU time is associated with
the deterministic method estimating the 3D head pose para-
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Fig. 21 The tracked facial
actions associated with the
frame 250 of the above
sequence. a Depicts the tracking
results obtained with one AR
model per expression. b Depicts
the tracking results obtained
with two AR models per
expression

meters and with the stochastic method estimating the facial
actions and the expression.

Moreover, we have proposed a scheme that is able to take
into account the subject-dependent dynamics. This scheme
makes the proposed framework more general. However, the
strength of the stochastic approach is better exploited when
the same person or dynamics are used. This fact is consistent
with many researchers’ findings that stipulate that temporal
expression classifiers are very accurate when they deal with
the same person.

We expect the approach to perform well in the pres-
ence of perturbing factors, such as video discontinuities
and moderate illumination changes. Another advantage of
our method is that it can track facial actions accurately
even in the case where these actions do not belong to any
learned facial gesture or expression. Certainly, in this case
the corresponding non-learned gesture is classified as be-
ing the most similar learned one. Our tracker was success-
fully tested with moderate rapid head movements. Should
ultra-rapid head movements break tracking, it is possible
to use a re-initialization process or a stochastic tracker that
propagates a probability distribution over time, such as the
particle-filter-based tracking method presented in our previ-
ous work (Dornaika and Davoine 2006). The out-of-plane
face motion range is limited within the interval [−45 deg,
45 deg] for the pitch and the yaw angles. Within this
range, the obtained distortions associated with the facial
patch are still acceptable to estimate the correct pose of the
head.

The current work uses an appearance model given by one
single multivariate Gaussian whose parameters are slowly
updated over time. The robustness of this model is im-
proved through the use of robust statistics that prevent

outliers from deteriorating the global appearance model.
This relatively simple model was adopted to allow real-
time performance. We found that the tracking based on
this model was successful even in the presence of occlu-
sions caused by a rotated face and occluding hands. The
current appearance model can be made more sophisticated
through the use of Gaussian mixtures (Zhou et al. 2004;
Lee 2005) and/or illumination templates to take into account
sudden and significant local appearance changes due for in-
stance to the presence of shadows.

In the current work, the head pose as well as the fa-
cial actions are manually initialized. In other words, the
model parameters associated with the first frame in the
video are manually set by an operator. Note that the pro-
posed algorithm does not require that the first frame should
be a neutral face since all universal expressions have the
same probability. Future work will investigate building a full
automatic tracker allowing the automatic initialization of
the 3D head pose parameters and the facial actions. This
can be done by using the principles of Active Appear-
ance Models together with a global optimizer. Other au-
tomatic face and feature point detection algorithms may
be used for initialization, using for example Haar feature-
based AdaBoost classifiers combined with statistical shape
models.

In our study, we tracked facial actions associated with
the mouth and the eyebrows only. Many studies have
shown that image regions associated with the mouth and
the eyebrows are the most informative regions about the
facial expressions. Certainly, the configuration of the eye-
lids is affected by the surprise and joy expressions. How-
ever, the movements of the mouth and the eyebrows are
more informative than those associated with the eyelids.
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Fig. 22 A 300-frame video
sequence depicting an unseen
person’s facial expressions.
a The probability of expression
as a function of time using the
stochastic approach with one
AR model per expression. b The
probability of expression as
a function of time when using
two AR models per expression.
As can be seen (for frames 75
through 125), the disgust
expression has been classified as
a joy one in (a) while the same
expression has been correctly
recognized in (b)

Moreover, we believe that iris movements will not pro-
vide significant information on the subject’s facial expres-
sion.

It would be more elegant if one was able to incorporate
the estimation of the 3D head pose parameters into the pro-
posed particle filter. From a theoretical point of view this
is indeed possible. However, in practice there are two major

reasons that make this extremely challenging. First, head dy-
namics are quasi-totally independent from facial expression.
For example, the head of someone showing anger expression
can be still or undergoing arbitrary movements which might
be very slow, very fast, or somewhere in between. Second,
it is extremely challenging to compute a universal model for
head motion dynamics.
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Appendix

Given the time series τ a(t) associated with a given expres-
sion γ , the AR model parameters Aγ

1 ,Aγ

2 ,dγ ,Bγ are given
by (T ′ = T − 2)

(Aγ

1 Aγ

2 ) = R0(R)−1,

dγ = 1

T ′ (R0 − AR), (17)

Cγ = 1

T ′ (R0,0 − AR
T

0 )

where Cγ = Bγ Bγ T and

R =
(

R1,1 R1,2

R2,1 R2,2

)
; R0 = (R0,1 R0,2 ) ;

R =
(

R0

R1

)

and the first-order moments Ri and autocorrelations Ri,j are
given by (for clarity, we have omitted the superscript γ as-
sociated with these matrices)

Ri =
T∑

t=3

τ a(t−i),

Ri,j =
T∑

t=3

τ a(t−i)τ
T
a(t−j),

Ri,j = Ri,j − 1

T ′ RiRT
j .

Note that the matrix Bγ can be obtained by a Cholesky
factorization of the matrix Cγ .
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