
Int J Comput Vis (2009) 83: 164–177
DOI 10.1007/s11263-008-0180-2

A Regularized Framework for Feature Selection in Face Detection
and Authentication

Augusto Destrero · Christine De Mol · Francesca
Odone · Alessandro Verri

Received: 13 February 2008 / Accepted: 23 September 2008 / Published online: 15 November 2008
© Springer Science+Business Media, LLC 2008

Abstract This paper proposes a general framework for se-
lecting features in the computer vision domain—i.e., learn-
ing descriptions from data—where the prior knowledge re-
lated to the application is confined in the early stages. The
main building block is a regularization algorithm based on
a penalty term enforcing sparsity. The overall strategy we
propose is also effective for training sets of limited size and
reaches competitive performances with respect to the state-
of-the-art. To show the versatility of the proposed strategy
we apply it to both face detection and authentication, im-
plementing two modules of a monitoring system working
in real time in our lab. Aside from the choices of the fea-
ture dictionary and the training data, which require prior
knowledge on the problem, the proposed method is fully
automatic. The very good results obtained in different ap-
plications speak for the generality and the robustness of the
framework.
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1 Introduction

Many computer vision problems can be cast into a fea-
ture selection and classification pipeline for which learn-
ing from examples provides an ideal framework. Unfortu-
nately, learning from data is not an automatic procedure
and requires, not only the collection of a dataset, but also
the design or the choice of data representation methods,
dimensionality reduction techniques, appropriate similarity
measures or kernel functions, and model selection proto-
cols. Satisfactory learning-based solutions to specific prob-
lems have appeared (Viola and Jones 2004; Papageorgiou
and Poggio 2000), but a major disadvantage is that they of-
ten sacrifice generality to the purpose of increasing the per-
formance. Here we explore the possibility of developing a
general framework while confining the domain-dependent
knowledge in a well-defined early stage.

Aside from a number of specific contributions related to
the proposed optimization algorithm, the most interesting
trait of this work is the design, implementation, and assess-
ment of a single data driven system for providing success-
ful solutions to different computer vision problems. While
the classification step is quite standard, the feature selec-
tion step is the core of the proposed framework. The prior
knowledge is limited to the choice of a feature dictionary of
large cardinality and the feature selection, fully automatic,
is learned from examples. The face domain in computer vi-
sion is presumably an ideal testbed for this framework since
a relatively large amount of data for a given problem is avail-
able and the state-of-the-art is well established. The fact that
we obtain very good results for both face detection and au-
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thentication with different feature dictionaries speaks for the
generality and the effectiveness of the proposed framework.

Before discussing the related state-of-the-art, we briefly
describe the application motivating our work: a face authen-
tication system installed in our department. All the data we
use to train and validate the modules we developed have
been gathered by the system through semi-automatic proce-
dures. The first system requirement is a face detection mod-
ule able to process the video in real-time and return a good
localization of the frontal faces appearing in the video. The
set-up assumes that the person walks roughly in the direction
of the camera optical axis, towards the camera. We assume a
face authentication setting, thus the individual is carrying in-
formation on his/her identity I . Then, once the face has been
localized, it is used as input of the authentication module I .
Face authentication is performed on a video portion starting
from when the person is close enough to the camera (i.e.,
his/her face is at least 40 × 40 pixels). Both face detection,
and all the face authentication modules make use of high di-
mensional dictionaries of local features in order to be toler-
ant to relative view-point changes and noise. Since our focus
is not on the initial representation, we adopt sets of features
well established in the literature—rectangle features (Viola
and Jones 2004) for face detection and LBP features (Aho-
nen et al. 2006) for face authentication. Feature selection is
a crucial step allowing us to select automatically the local
features which are most descriptive for a given problem. All
the problems we consider can be cast in a binary classifi-
cation setting. This is easily explained in the case of face
detection, where positives are examples of the class of inter-
est while the negative examples may be images containing
other common regions (areas of motions except faces, for in-
stance). In the case of face authentication we train a module
for each individual I to discriminate between I and oth-
ers. This time, instead of computing features directly from
positive and negative images, we adopt the approach based
on modeling intra-personal vs extra-personal features (de-
scribed, for instance, in Moghaddam and Pentland 1997).

We now address related work on feature selection in
machine learning. Sparsity-enforcing algorithms have been
studied in depth by the machine learning community as they
raise interesting theoretical issues and carry useful proper-
ties. Sparse solutions with respect to the training set allow
to identify the most representative (or most difficult) proto-
types for a given problem. On this respect we mention the
well known Support Vector Machines (SVM) (Vapnik 1998)
from statistical learning theory and the Relevance Vector
Machines (RVM) (Tipping 2001) in the Bayesian frame-
work. Notice that, when adopting kernelized versions of
such algorithms, sparsification is applied to a “dictionary”
of basis functions induced by the kernel.

Alternative to this approach are methods which spar-
sify with respect to a dictionary of features describing in-

put data—we refer in this case to feature selection, and ob-
serve that this sparsification produces a reduction on the
data dimensionality. Such a sparsification is usually adopted
in conjunction with over-complete or redundant data repre-
sentations. We mention the Basis Pursuit approach (Chen
et al. 1998) also referred to as the Lasso approach (Tibshi-
rani 1996)—the latter derived applying the concept of spar-
sity for a linear regression model. A sparse code related to
receptive field properties is proposed in Olshauser and Field
(1997) and gives a biological motivation to feature selec-
tion from over-complete feature sets. On the feature selec-
tion topic see also the review paper (Guyon and Elisseeff
2003) and the more recent references (Weston et al. 2003;
Viola and Jones 2004; Zhu et al. 2004).

More recently, kernelized versions of these sparsity-
enforcing methods have been proposed. These approaches,
though, do not keep the ability of selecting subsets of fea-
tures from the original representation since they sparsify
with respect to dictionaries of the form

D = {K(x1, x), . . . ,K(xn, x)}.
We mention for instance the Kernelized Lasso (Roth 2004).
A similar dictionary was adopted in Girosi (1998) to dis-
cuss the equivalence between the Basis Pursuit and SVM,
showing that with a dictionary D as the one above the two
approaches have very strong connections: the Basis Pursuit
sparsity is enforced on the basis functions, therefore a spar-
sity on data is obtained.

In this paper we consider a purely linear setting since we
are primarily interested in obtaining automatically a com-
pact data description (i.e., a small feature subset) from an
initially over-complete representation. To this purpose we
explore the Lagrangian formulation of the so called Lasso
scheme (Tibshirani 1996) for selecting features, and we find
a solution to the Lasso by means of a simple iterative al-
gorithm recently proposed (Daubechies et al. 2004). The
algorithm was previously applied with success to compu-
tational biology (De Mol et al. 2007) and to the face de-
tection problem (Destrero et al. 2007b). The main merits
of such a regularized approach are its effectiveness even
in the presence of a very small number of data (De Mol
et al. 2007) coupled with the fact that it is supported by
well-grounded theory. These are the two main reasons that
make this approach a possible alternative to other feature
selection mechanisms popular in the computer vision com-
munity (Freund and Schapire 1995; Friedman et al. 1998;
Schapire and Singer 1999; Li and Zhang 2004). In this pa-
per we propose a strategy that allows us to apply the above-
mentioned method to computer vision problems, where
large datasets are common and features are often strongly
correlated because of the spatial correlation of images. Also,
we provide a speeding up method leading to a substantial
saving of computational time on the training phase. Our
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work is somewhat related to Brown et al. (2004). Similarly
to our approach, the authors discuss the use of Lasso regres-
sion as a feature selection strategy in the context of computer
vision applications. However, they are mostly interested in
analysing the stability of the feature selection process and to
this purpose they devise an iterative algorithm leading to the
optimal parameter locus, i.e., a complete set of sparse clas-
sifiers depending on the regularization parameter. On this
respect they report results showing the stability of the ob-
tained solutions for synthetic data as well as a small set of
face images.

We now cover the state-of-the-art in face detection and
authentication relevant to our approach. Face-related prob-
lems are a mature field in computer vision, and many so-
lutions based on examples have been shown to be effec-
tive. Learning from examples dominated the face detec-
tion scene since the early 90s and contributed to obtaining
promising solutions that deal with view-point changes, ro-
tations, scale and illumination variations (Yang et al. 2002;
Osuna et al. 1997; Schneiderman and Kanade 2000). Among
such a vast literature, component-based approaches high-
lighted the fact that local areas are often more descrip-
tive and more appropriate for dealing with occlusions and
deformations (Mohan et al. 2001; Ullman et al. 2002).
Very popular approaches are the ones derived from Ad-
aboost (see, for instance, Verschae and Ruiz del Solar 2003;
Viola and Jones 2004; Li and Zhang 2004; Zhang et al. 2004;
Wang and Zhang 2008), that appear to be one of the few at-
tempts of treating feature selection not as an application-
oriented problem. As for face recognition, the survey by
Zhao et al. (2003) provides a comprehensive reference to
the state-of-the-art.

Eigenfaces (Turk and Pentland 1991) are with no doubt
one of the most popular holistic approaches to face de-
tection and recognition, and they have been adopted and
extended by many authors (Etemad and Chellappa 1997;
Belhumeur et al. 1997; Zhao et al. 2003). In Moghaddam
and Pentland (1997) the eigenface method is extended to use
a probabilistic similarity that models the intra-personal vari-
ations versus the extra-personal variations. The former are
related to variations due to illumination, view-point, expres-
sion changes within the same individual; the latter refer to
the difference between an individual and another. Feature-
based approaches include methods for precise localization
of specific points (Pentland et al. 1998; Wiskott et al. 1997;
Lanzarotti et al. 2006) and methods based on templates,
where each area of interest is described by approximately lo-
cated patches. Possibly the first local approach to face recog-
nition is again due to Pentland and his co-workers (Pentland
et al. 1994). Among local approaches, Local Binary Patterns
(LBP) (Ahonen et al. 2006) are becoming very popular for
their ability to capture descriptive features of a given tex-
ture. They have been applied with success in face recogni-

tion by many authors (see, for instance, Ahonen et al. 2006;
Hadid et al. 2007; Tan and Triggs 2007).

The structure of the paper is as follows. In Sect. 2 we re-
view the iterative algorithm that we adopt and describe the
strategies proposed to deal with large problems and to speed
up training. Section 3 is devoted to face detection and de-
scribes the final 3-stages architecture allowing us to obtain
automatically a very small set of features from a large dictio-
nary. Section 4 deals with the face authentication problem.
Section 5 is left to a final discussion and a brief account of
future developments.

2 Feature Selection for Large Computer Vision
Problems

In this section we present and discuss our approach to fea-
ture selection. First we describe the adopted optimization
algorithm, then the sampled version we developed for deal-
ing with large data sets, and finally we motivate the need of
a further classification stage.

2.1 Thresholded Landweber

We start off describing the basic algorithm on which our fea-
ture selection method is built upon.1 We consider the case of
a linear dependence between input and output data, which
means that the problem can be reformulated as the solution
of the following linear system of equations:

g = Af (1)

where A = {Aij }, i = 1, . . . , n; j = 1, . . . , p is the n × p

feature matrix obtained representing the training set of n el-
ements with a dictionary of p features. The element Aij is
thus the j -th feature of the i-th example. The n × 1 vector
g = (g1, . . . , gn)

�, instead, contains the output labels. Since
we focus on a binary classification setting, we associate to
each row of A a label gi ∈ {−1,1}. f = (f1, . . . , fp)� is the
vector of the unknown weights, where each entry is associ-
ated to one feature and intuitively describes the importance
of the feature in determining the membership of a given data
vector to one of the two classes. Since we are looking for a
compact representation of the image for the problem of in-
terest, we perform feature selection looking for a sparse so-
lution where features corresponding to non-zero weights fi

are relevant to model the diversity of the two classes.
In the problems that we consider, typically, the number of

features p is much larger than the dimension n of the train-
ing set, so that the system is hugely under-determined. Also,

1The source code of the algorithm is available for download at
http://slipguru.disi.unige.it/.

http://slipguru.disi.unige.it/
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because of the redundancy of the feature set, we may have
to deal with the collinearities between feature vectors that
are responsible for severe ill-conditioning. Both difficulties
call for some form of regularization and can be obviated by
turning problem (1) into a penalized least-squares problem.

Since we are dealing with a feature selection problem we
choose the L1 penalty that automatically enforce the pres-
ence of (many) zero weights in the vector f . Thus we con-
sider the following problem, usually referred to as Lasso re-
gression (Tibshirani 1996):

fL = arg min
f

{|g − Af |22 + 2τ |f |1} (2)

where |f |1 = ∑
j |fj | is the L1-norm of f and τ is a regu-

larization parameter regulating the balance between the data
misfit and the penalty. In feature selection problems, this pa-
rameter also allows to vary the degree of sparsity (number
of true zero weights) of the vector f . Notice that the L1-
norm penalty makes the dependence of lasso solutions on
g nonlinear. Hence the computation of L1-norm penalized
solutions is more difficult than with L2-norm penalties. To
solve (2) in this paper we adopt a simple iterative strategy:

f
(t+1)
L = Sτ [f (t)

L + A�(g − Af
(t)
L )] t = 0,1, . . . (3)

with arbitrary initial vector f
(0)
L , where Sτ is the following

“soft-thresholder”

(Sτh)j =
{

hj − τ sign(hj ) if |hj | ≥ τ,

0 otherwise.

In the absence of soft-thresholding (τ = 0) this scheme
is known as the Landweber iteration, which converges to
the generalized solution (minimum-norm least-squares so-
lution) of (1). The soft-thresholded Landweber scheme (3)
has been proved in Daubechies et al. (2004) to converge to
a minimizer of (2), provided the norm of the matrix A is
renormalized to a value strictly smaller than 1.

Experimental evidence showed that the choice of the ini-
tialization vector is not crucial, therefore we always initial-
ize the weight vector f with zeros: f (0) = 0�. The stopping
rule of the iterative process is related to the stability of the
solution reached and it is based on comparing the solution
obtained at the t th iteration f (t) with the previous one.

2.2 Sampled Version of the Thresholded Landweber
Algorithm

The linear problems that we are about to build will be rather
large. Assuming that each row of A is associated to a train-
ing image and that our training set is made of 1000 posi-
tive and 1000 negative examples, then a matrix A of 1 Gb
size will be easily obtained—for instance by storing in sin-
gle precision the rectangle features of 40×40 pixels images.

As we will see in Sects. 3 and 4 such size may be quite likely
in real-world applications, considering that a 2000 elements
training set is common in the computer vision domain.

For this reason applying the iterative algorithm described
in (3) directly to the whole matrix may not be feasible on
all PCs: the matrix multiplication needs to be implemented
carefully so that we do not keep in primary memory the en-
tire matrix A. One possibility is to compute intermediate so-
lutions with multiple accesses to secondary memory.

We implemented a different approach, based on re-
sampling the features set and obtaining many smaller prob-
lems, which can be described as follows: we build S feature
subsets each time extracting with replacement m features
from the original set of size p (m � p); we then obtain
S smaller linear sub-problems of the type: Asfs = g for
s = 1, . . . , S, where As is a sub-matrix of A containing the
columns relative to the features in s; fs is computed accord-
ingly. As for the choice of the number S of sub-problems
and their size we observe that the subset size should be big
enough to be descriptive, small enough to handle the ma-
trix easily; thus, we consider subsets with about 10% of
the original feature set size. To choose the number of sub-
problems S, we rely on the binomial distribution and esti-
mate how many extractions are needed so that each feature
is extracted at least 10 times with high probability.

After we build the S sub-problems we look for the S so-
lutions running S iterative methods as in (3). At the end of
the process we are left with S overlapping sets of features.
The final set is obtained choosing the features that have been
selected each time they appear in the subsets.

The computational complexity of the iterative algorithm
(3) is caused by the two matrix-vector multiplications and
thus is O(np) for each iteration and a fixed τ . Since the
number of iterations I is not negligible we consider O(npI).
In the model selection phase this should be repeated as many
times as the number of τ that we evaluate.

It is worth mentioning the fact that the re-sampled ver-
sion of the method is suitable for parallel computation and
would allow for a saving of computation time in inverse re-
lation to the number of processors used. In the case only a
single processor is available one should design carefully the
model selection phase in order to limit the computational
cost of the training phase. In our experiments we consider
two methods: (i) to choose τ that includes a fixed number
of 0s in the solution (or, equivalently, that selects a given
number features) in about I iterations. (ii) to choose τ on
the basis of the generalization performance, using cross-
validation: we select τ ’s leading to classification rates be-
low a certain threshold and then choose among them the
value providing the smallest number of features. Here, an
example x = (x1, . . . , xp) is classified according to the sign
of

∑p

i=1 fixi where f = (f1, . . . , fp) is the obtained Lasso
solution.
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2.3 Speeding up Feature Selection

In this section we describe a technique allowing us to obtain
an approximate solution of the feature selection process with
a considerable saving of computational time.

We start by observing that the computational cost of the
iterative algorithm is related to the size of the feature ma-
trix A, and that when dealing with small matrices the com-
putational cost of the method is limited. The speeding up
heuristics that we discuss here is suggested by two empiri-
cal considerations: (a) for a given τ , a high percentage of the
features is discarded in the first iterations; (b) when a feature
weight goes to zero it will not change in the next iterations.

At a given step t , after we have computed f
(t)
L , we may

rewrite a smaller linear system to be used in the next itera-
tion. We consider a smaller feature vector f ′ where we dis-
card the zero entries and, consequently, obtain a smaller data
matrix A′. We apply this “shrinking” procedure only when
there is a computational advantage in manipulating a smaller
matrix, i.e., when the number of zero entries in f is more
than 10%. The stopping rule of the iterative procedure is the
same as for the original system.

We experimentally observed that, as the matrix become
significantly smaller, the solution to the problem is reached
from 2 to 6 times faster, depending on the original size of
the matrix. To date the use of this procedure is justified by
convincing experimental results but no proof of equivalence
of the solutions is yet available.

2.4 The Choice of a Classifier

So far we have discussed issues related to feature selection
allowing us to obtain an appropriate description from the
available data. As for the choice of the most appropriate
classification algorithm applied to the selected features, it is
well known that the Lasso solution may be used directly as
a classifier. In the previous section, for example, we used it
for finding the optimal value of the regularization parameter.
However, it has been experimentally observed that the Lasso
leads to solutions which select effectively the meaningful
features but underestimate the corresponding weights due to
the soft thresholding step. In the literature a typical approach
to correct this bias (and to increase classification perfor-
mance) is to adopt an alternative classification or regression
algorithm on the restricted features set. In Candes and Tao
(2007) the bias is corrected by recomputing the weights f

of the non-zero features by means of least squares. Here we
adopt an SVM classifier, well known for its good generaliza-
tion ability, on the selected features. In this way the final so-
lution is sparse with respect to both features and data. Since
the obtained data representation is not redundant (the fea-
tures we obtain at the end of the selection process are at most
weakly correlated) the choice of a linear kernel is appropri-
ate (for more details on this respect, and a comparison with

other kernels, see Destrero et al. 2007a) and may be compu-
tationally advantageous (for instance if applying Sequential
Minimal Optimization (SMO) to solve the quadratic opti-
mization problem, as in SVMLight, Joachims 1999). Apart
from algorithmic considerations this method allows us to
achieve considerable space-time efficiency at run time, and
this suits our requirement of real-time processing.

As pointed out in Guyon and Elisseeff (2003) when an
appropriate feature selection strategy is applied and model
selection is performed, the quality of the obtained subset of
features should be evaluated on an independent test set. If
the purpose of feature selection is to obtain a description
of the data for a subsequent classification step, it may be the
case to evaluate the features quality by estimating the perfor-
mance of a classifier trained and tuned on data represented
with the selected features. This is the strategy we will adopt
in Sects. 3 and 4, using the same classifier adopted in the fi-
nal system, an SVM classifier, starting from which we com-
pute Receiver Operating Characteristic (ROC) curves vary-
ing the SVM offset value b.

3 Face Detection

In this section we describe how we specialize the feature
selection of Sect. 2 to the case of face detection. We start
from an image representation based on the rectangle features
(Viola and Jones 2004) as they are widely retained a good
starting point for many object detection problems. Rectan-
gle features are meant to be computed over different loca-
tions, sizes, and aspect ratios for each image or image patch
under consideration. The reference image size that we con-
sider corresponds to the size of our training images: 19 × 19
pixels. We will therefore compute about 64 000 features per
image/patch.

Such a redundant description calls for some feature selec-
tion. Notice that, in principle, the redundancy of image fea-
tures does not compromise generalization performance, but
certainly affects the computational efficiency of the classi-
fier. Dealing with redundancy of information means select-
ing one or few delegates for each group of correlated fea-
tures to represent the other elements of the group. As for the
choice of the delegate, unlike in other application domains
(such as micro-array data analysis) in most computer vision
problems one could choose a random delegate for the cor-
related feature sets. Image features are not important per se
but for the appearance information that they carry, which is
resemblant to all other members of their group.

On this respect a remark is in order. The overcomplete
features we compute are correlated, not only because of the
intrinsic spatial short range correlation of all natural images,
but also because of the dependencies related to the class of
face images (which contain multiple occurrences of simi-
lar patterns at different locations—like eyes and mouth, for
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Fig. 1 Generalization performance of a linear SVM with different fea-
ture sets: a direct solution of the linear problem and the re-sampling
strategy (with the two different parameter choices). The intersection of
the ROC with the vertical line gives the hit rate for 0.5% false positives,
the intersection with f (x) = 1 − x gives the e.e.r.

example). Correlation due to the representation chosen pro-
duces redundant descriptions, while correlation due to the
class of interest may carry important information on its pe-
culiarities.

Let us now describe how we apply the iterative algorithm
described in Sect. 2 to the selection of face features.

3.1 Feature Selection for Faces

We consider a dataset of 4000 training data, evenly dis-
tributed between positive and negative, 2000 validation and
3400 test data. The dataset has been gathered by means
of our monitoring system, and manually labeled in posi-
tive and negative examples. The linear system that we build
for feature selection is rather big, the data matrix A is
4000 × 64 000. As a first experiment, we apply the thresh-
olded Landweber to select a set of meaningful features and
test the effectiveness of the obtained solution on the test
set. The results obtained are encouraging (equal error rate
(e.e.r.) < 2%, see Fig. 1) but the problem (1) has to be solved
on a PC equipped with at least 1 Gb RAM, otherwise we
run out of memory. This is an appropriate setting to test
the re-sampling strategy discussed previously. We consider
S = 200 sub-problems built each time extracting 10% of the
original set of features—with this choice of the number and
the size of subproblems, in practice, only 256 features over
64 000 are extracted less than 10 times.

Figure 1 compares the results obtained with and without
the re-sampling strategy, and it shows that, not only there is
no loss when applying the re-sampling strategy, but there is
actually a small gain. As for the choice of parameter τ , con-
sidering the number of problems we need to solve, a sim-
ple model selection is advisable, as far as it leads to sat-
isfactory results (for more details, the interested reader is

referred to Destrero et al. 2007a). We thus tune the para-
meter τ by setting the number of 0s to be reached within
I iterations. The final set of selected features, S1, contains
4636 elements—less than 10% of the original set size. The
selected features are a good synthesis of the original de-
scription as confirmed by the classification results on our
test set (see Fig. 1 that also shows the results obtained tun-
ing the parameter τ with cross validation) and they maintain
all the descriptiveness, representing all meaningful areas of
a face. Nonetheless, the number of selected features is still
high, higher than the size of the feature set obtained with
Adaboost on our same dataset (about 70 features), than the
number of principal components (about 400), and also than
the intrinsic size of original input data (19 × 19 pixels). To
reduce the number of features we first chose a different τ , so
to force a higher number of zeros. Doing so, we noticed that
the features descriptiveness decreases. We tested our feature
selection setting 99% of zeros to be obtained in about 1000
iterations: we got 345 features that showed to a visual in-
spection a higher degree of short range correlation than the
previous output sets, while many interesting patterns were
missing. This loss of information corresponds, as expected,
to a drop in performance of about 3%. The solutions to this
problem of redundancy that we investigate later in this sec-
tion consider a possible subsequent stage, aiming at decreas-
ing the size of S1.

3.2 A Refinement of the Solution

In order to obtain a smaller set of meaningful features we
further apply the feature selection procedure to set S1 look-
ing for a new, sparser, solution. The new data matrix is
obtained selecting from A the columns corresponding to
S1, and f

(0)
S1

is initialized again to a vector of zeros. As
for the parameter tuning strategy we choose cross valida-
tion to be used in this second stage, since it takes explicitly
into account generalization and therefore is more appropri-
ate whenever it is computationally feasible. The selection
procedure leaves us with a set S2 of 247 features. The per-
formance reached is shown in Fig. 2.

To compare our approach with other dimensionality re-
duction methods we first consider PCA. Figure 3 (left) com-
pares the classification results obtained with PCA on the
set S1 and the ones obtained with a second step of regu-
larized feature selection. Our set of features allows us to
obtain higher classification rates and, also, only 247 rec-
tangle features per each test need to be computed, instead
than combinations of about 2400 features. Then we consider
the Adaboost feature selection proposed in Viola and Jones
(2004).2 Our comparison focuses on the quality of the se-
lected features more than on the classifier: again, we eval-

2We used the Intel OpenCV implementation http://www.intel.com/.

http://www.intel.com/
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uate the goodness of features with respect to their gener-
alization ability, so in both cases we check how good they
are on a classification task, for a fixed classifier (SVM).
Figure 3 (right) shows a comparison between classification
performances obtained with our features and Adaboost fea-
tures selected on our same set of data. Since in Viola and
Jones (2004) feature selection and training are performed
on a unique Adaboost loop we verified the fairness of our
comparison by including in our plot the false positive / hit
ratio obtained with a cascade of Adaboost classifiers: they
are marked as a black dot. Notice that these results are in
line with the curve obtained with Adaboost features and the
SVM classifier. The impressive performance obtained by the
face detection in Viola and Jones (2004) seems to rely on the
use of a very big set of negative examples. At each stage of
the cascade the current classifier is trained with new nega-
tive examples, while the ones that were correctly classified
in the previous stages are discarded.

Fig. 2 Evaluation of the features obtained from the second selection
stage, with and without a 3rd stage of correlation analysis

In order to obtain a minimal set of features carrying all
the information without redundancy, we apply a further se-
lection on the features that survived the previous two stages,
based on choosing only one delegate for groups of short
range correlated features. Our evaluation is based on the
principle of discarding features of the same type, correlated,
and spatially close to a feature already included in the final
set. We evaluate the correlation between two features using
the well known Spearman’s correlation test. Using this fur-
ther analysis as a third stage of our selection procedure we
obtain very compact descriptions with little degradation of
the results. Figure 4 shows the final set S3 of 42 features.
The classification results on the test set are reported in Fig. 2.
Summarizing, Fig. 5 shows the structure of the final 3 stages
feature selection protocol. This very same protocol will be
applied to the various face authentication modules.

3.3 The Final System

We conclude with an account on the final face detector and
the performance obtained.

The features in S3 are used to build a cascade of small
SVMs that is able to process video frames in real time. The
cascade of classifiers analyzes an image according to the
usual coarse-to-fine approach. Each image patch at a cer-
tain location and scale is the input of the classifiers cascade:
if the patch fails one test it is immediately discarded; if it
passes all tests a face is detected. Each classifier of the cas-
cade is built starting by 3 mutually distant features, training
a linear SVM on such features, and adding further features
until a target performance is obtained on a validation set.
Target performance is chosen so that each classifier will not
be likely to miss faces: we set the minimum hit rate to 99.5%
and the maximum false positive rate to 50%. Assuming a

Fig. 3 Comparison of our second selection stage against other dimensionality reduction methods applied to set S1. Left: PCA; Right: Adaboost
features obtained from our same pool of data (see text)



Int J Comput Vis (2009) 83: 164–177 171

Fig. 4 The 42 features that are left after a third stage of correlation analysis (S3)

Fig. 5 The structure of the 3
stages feature selection that we
adopt

cascade of 10 classifiers, we would get as overall perfor-
mance: HR = 0.99510 ∼ 0.9 and FPR = 0.510 ∼ 3 × 10−5

(Viola and Jones 2004).
Table 1 shows its detection performance as a face detec-

tor of our real-time system in two different situations. The
first row of the table refers to the results obtained on im-
ages acquired in controlled situations (people were asked
to walk towards the camera one at a time), while the sec-
ond row refers to uncontrolled detection: we manually la-
beled the events occurring in a 5 hours recording of a busy
week day; the recording was entirely out of our control and
it included changes of the scene, people stopping for unpre-
dictable time, lateral faces. Notice that at run time, the clas-
sifiers have been tuned so to minimize the number of false
positives. We observe that the amount of data analyzed is
huge since, on average, the detector analyzes 20 000 patches
per image or frame. Our system running in various environ-
mental conditions can be appreciated on the video available
on our website.3

3The video is available at the url http://slipguru.disi.unige.it/
Downloads/multimedia/faces_eyes.mpg.

Table 1 The performance of the face detection system on a controlled
set of images (top row) and on a 5 hours unconstrained live video (bot-
tom row)

Test data False pos rate Hit rate

test images 0.1% 94%

5 hours live 4 × 10−7% 76%

The face detector module is associated to an eye detector
obtained from the same protocol and trained with eye-pairs
from the FERET dataset, and again based on the choice of
the most representative set of features from the pool of rec-
tangle features. At run time the eye detector is applied to
the face detector hits to the purpose of discarding false pos-
itives and non frontal faces. A second important use of the
eye detector is to automatically register faces to the purpose
of authentication (see Fig. 6). As we mentioned previously,
the face authentication module will process faces that are
“big enough” for recognition, thus we keep only face images
whose eye size is 20 × 40 pixels and automatically discard
small faces. The final set of faces is resized to 40×40 pixels.

http://slipguru.disi.unige.it/Downloads/multimedia/faces_eyes.mpg
http://slipguru.disi.unige.it/Downloads/multimedia/faces_eyes.mpg
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Fig. 6 Preparing the face
region, output of face detection,
for face authentication: eyes are
detected and a smaller face
region, whose upper half is the
eye region, is cropped

We also considered benchmark datasets. We tested our
face detection method on set A and C of the MIT-CMU
dataset and on the BioID dataset obtaining consistent results
to the ones obtained with our dataset: our method perfor-
mance is consistently above an Adaboost detector trained
with our same dataset. Keeping the false positive rate fixed,
the hit rate gain with our approach is on average 8% on the
various test sets (Destrero et al. 2007a). If the number of
negative examples increases by three order of magnitudes
(as in the standard Adaboost setting), the overall perfor-
mance of Adaboost is superior. This result is consistent with
the reported ability of Adaboost of taking advantage of large
data sets.

4 Face Authentication

In this section we focus on the face authentication (or
validation or verification) problem, closely related to face
recognition. The main difference between the two problems
is that, in the case of face authentication, the probe (test)
is composed by a test image (or test sequence) and an as-
sociated identity. Therefore the individual to be recognized
declares to the system his/her identity and the system has to
verify whether he/she is a genuine or an impostor. Similarly
to Moghaddam and Pentland (1997), Hadid et al. (2007)
we analyze intra-personal and extra-personal variations. We
adopt a procedure based on modeling variations of the in-
dividual, as opposed to variations of the people “universe”.
This approach, adopted for instance in Liu et al. (2003), is
appropriate for face authentication, and has the advantage of
simplifying the enrollment phase (i.e., the procedure where a
new individual is added to the system database) of a new in-
dividual. Again we start off with a high dimensional descrip-
tion, exploiting LBPs in the original formulation described
in Ahonen et al. (2006), and then apply feature selection to
reduce the number of features.

4.1 Feature Selection for Authentication

The dataset we consider for face authentication is gathered
and registered automatically by the face detection module
(Sect. 3). In particular, the experiments reported in this pa-
per are obtained from a dataset built from several weeks

of acquisition: at the end of two weeks we manually la-
beled the stored videos (a video is stored if faces are de-
tected in it) and built models for all the individuals that had
a rich dataset. From the third week on data were gathered
and labeled for testing: individuals that did not previously
appear were stored to be used as negative examples (impos-
tors) for all models. In total, 15 individuals were included
in the training phase, while a total of 64 individuals were
gathered for testing.

Let us briefly describe how we represent each individ-
ual I :

• We start off from a set of 40×40 positive images Ip , p =
1, . . . ,P of individual I and a set of negative images In

n = 1, . . . ,N randomly sampled from other individuals.
• For each image Ii , each neighborhood is represented

as a LBP. The neighborhood size we consider is ob-
tained choosing 8 sampling points on a circle of radius 2
(Ahonen et al. 2006). Then, for each image, we com-
pute L LBP histograms on rectangular regions of at least
3×3 pixels, on all locations and aspect ratios; thus the de-
scription of image Ii is a list of histograms H 1

i , . . . ,HL
i .

Notice that a feature selection procedure is important,
since we obtained L = 23 409 LBP histograms.

• We resort once again to the regularized feature selection
of Sect. 2. The linear system is built so to express the
intra-personal and extra-personal variation of each his-
togram. With a similar approach to Hadid et al. (2007)
we compute each row of the matrix A as follows: for
each pair of images IA and IB we compare correspond-
ing LBP histograms (after normalization) using the χ2

distance. That is, for each pair of input images we ob-
tain a feature vector xi whose elements are χ2 distances:
xi = (χ2(I 1

A, I 1
B), . . . , χ2(IL

A , IL
B )). We associate a label

gi ∈ {+1,−1}, where gi = 1 if both IA and IB are posi-
tive images, gi = −1 if either IA or IB is negative.

For a given set of examples, the number of feature vectors
we compute is very high—for a set of positive images of
size P we have

(
P
2

)
positive feature vectors and many more

negative feature vectors. In order to obtain balanced systems
of reasonable size we randomly sample at most 2000 posi-
tive and 2000 negative feature vectors and build matrix A.
The vector g is composed of the corresponding labels gi

and the vector f of unknowns will weight the importance of
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each LBP histogram for intra-person and extra-person com-
parison. Once we have built a system for a given individual,
according to the procedure previously described, we select
features following the same 3-stages protocol illustrated in
Sect. 3. Notice that for each individual we obtain a different
set of distinctive features, the ones that best represent his/her
peculiarity.

Again, we evaluate the goodness of a feature set in terms
of its generalization ability. First, we briefly comment on
the appropriateness of the 3-stages strategy for the prob-
lem of face authentication. We report similar experiments
to the ones shown in Sect. 3 for a randomly chosen individ-
ual IA. After feature selection we train and tune a classifier
that should discriminate between images of IA and images
of impostors. Figure 7 shows a comparison of the results ob-
tained for the 3 stages. Similarly to face detection we notice

Fig. 7 Evaluation of the features obtained from the three stages, for
an individual arbitrarily chosen

that the three results are comparable, with a slight perfor-
mance loss when adding the third stage, which is although
responsible of a consistent decrease in the number of fea-
tures and therefore allows for a very compact representation
of each person (see Table 2).

In the case of face authentication, having to deal with a
high number of models, that will grow at each new indi-
vidual inserted in the training phase, we also adopted the
speeding up strategy of the feature selection process. In or-
der to assess the reliability of the approach we compared the
results obtained with and without speedup for all the 201
(200 for the first stage, 1 for the second) feature selection
phases of the model that we used so far. We observed that
all the features selected in the various stages except 1 were
the same with the two methods. We attribute to numerical
approximations the reason for this small difference.

Figure 8 shows the top 5 features extracted for some in-
dividuals of our training set. Although the detected features

Fig. 8 Top 5 features for some individuals: they often capture distinc-
tive face regions

Table 2 Results by individual:
we compare the performance of
our method with PCA to the
purpose of showing that with
the proposed framework we can
successfully deal with a
complex real world scenario

LBP PCA

Individual # of features Precision Recall Precision Recall

1 17 0.92 1.00 0.91 0.98

2 12 1.00 0.86 0.65 0.82

3 19 1.00 0.96 0.78 0.95

4 19 0.99 0.86 0.54 0.88

5 16 0.96 0.90 0.81 0.64

6 13 1.00 1.00 0.78 1.00

7 14 0.95 0.94 0.84 0.92

8 13 0.98 1.00 0.65 0.91

9 25 0.94 0.87 0.67 0.91

10 14 0.97 0.78 0.65 0.61

11 19 0.99 0.98 0.65 0.98

12 20 0.96 0.96 0.52 0.79

13 7 0.91 0.88 0.50 0.28

14 16 1.00 0.99 0.63 0.99

15 23 0.98 0.99 0.73 0.99
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do not necessarily reflect elements that a human observer
would find meaningful, they are localized in the most dis-
tinctive areas of the face for each individual. For person 6,
for instance, the beard is spotted. The most distinctive area
of person 8 seems to be the top part, the eyes region. Person
14 is mainly characterized by vertical features. The top 2
features of person 13 are localized where she wears a fringe.

4.2 The Final System

Let us now describe briefly the actual testing procedure.
After we have selected the appropriate set of features for
each individual, we are ready to train and tune a classi-
fier to discriminate between pairs of images of the individ-
ual I under consideration, and pairs of I with impostors.
The rationale of this classifier is that when a probe claims
to be I it will be coupled with all the elements of gallery
I , and as many test pairs as the size of the gallery will
be built. These test pairs will be classified to see whether
they represent the same person, I , or not. Thanks to fea-
ture selection the classification will be entirely based on the
features that are important to I . As a classifier, we con-
sider again linear SVMs, this time without the need for a
coarse-to-fine strategy, as we perform only one evaluation
per frame.

To test the effectiveness of our authentication we run each
classifier on the test set that we gathered, containing about
1700 probes, assuming an equal a priori probability of gen-
uine people and impostors (similarly to the evaluation pro-
cedure proposed in Messer et al. 2004): we use all positive
data available for each classifier, and an equal number of
negatives randomly selected. Each test image T fed on a
given classifier Ii produces Gi test pairs. In order to asso-
ciate a unique output to each probe we compute the percent-
age of the test pairs generated by it that were classified as
positives.

Figure 9 shows the trend of average precision-recall by
varying the percentage of positive scores q in the range 10–
90%. Table 2 shows the number of selected features per each
individual, at the end of the 3-stages procedure, and the au-
thentication results in terms of precision-recall obtained for
each individual. We associate to the image a label “genuine”
if at least q = 50% of the intermediate outputs were pos-
itives. We compare the results obtained with our local ap-
proach based on automatic selection of LBP features, and
the one obtained using PCA as a reference method. Here
again we compute the “individual” eigenspace. PCA suffers
from the registration quality, which being automatic, occa-
sionally fails. Also, as a holistic approach, it fails in case
of occlusions or view-point changes, quite common in real
environments. Finally, the individual eigenspace may not be
enough descriptive if the number of training images is small
(as it happens for individual 14).

Fig. 9 The trend of precision-recall obtained by varying from 20 to 90
the percentage of positive test data obtained from a single probe image.
The darker spot indicates the precision-recall at 50% currently used by
our system

Table 3 Comparison between average authentication results obtained
with automatic feature selection of the LBP features most appropriate
for each individual (averages of the results reported in Table 2) and
manually set LBP features according to Ahonen et al. (2006)

Automatic LBP selection Manual selection

Precision Recall Precision Recall

0.97 0.93 0.93 0.86

A more challenging comparison can be obtained by re-
placing in the presented pipeline our automatic feature se-
lection with the manual selection of LBP features proposed
in Ahonen et al. (2006). The average results on all the classes
of Table 2 are reported in Table 3. The considerable gain
obtained by adopting our automatic procedure is possibly
due to the fact that our approach selects the most meaning-
ful features per each individual, while the manual selection
is based on extracting meaningful areas for an average face
(eyes, nose, and mouth regions).

We conclude this section by observing that the obtained
results are quite promising, especially considering that the
entire procedure is fully automatic. When gathering data for
face authentication, the labeling was done on a sample frame
for each video shot. As a consequence of this, our system
actually found “real impostors” (people that were wrongly
labeled) in our dataset: they were spotted because they pro-
duced unusually bad results compared to other data tempo-
rally close to them—Fig. 10 left shows an example frame
where the person leaving the scene (in the foreground) en-
ters by mistake in the test set of the person on the back.
Figure 10 (right) shows that not all the views extracted by
the face detector are ideal for recognition.
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Fig. 10 The test data obtained automatically contains errors (i.e., “real” impostors) and difficult data (see text)

5 Discussion

This paper presented a framework for feature selection
based on examples, formulated on the idea of obtaining a
general procedure to be used for many applications. The
core of the framework is to move all the domain-dependent
information in a very early stage, during the preparation of
an appropriate under-constrained linear system.

Our work is built around an iterative algorithm, the
thresholded Landweber algorithm, implementing the so-
called Lasso scheme that produces a sparse solution to
a linear problem and can be used as a feature selection
procedure. We explored the effectiveness of thresholded
Landweber on the computer vision domain taking into ac-
count the peculiarity of image features and the availability
of possibly large training sets. The final method that we
devised includes two main stages: in the first stage, for
computational reasons, we proposed to find a solution of a
big problem by solving a number of smaller optimization
problems and returns a smaller but still highly redundant
set of features. The second stage is based on applying
again the selection algorithm to the features resulting from
the first stage; the obtained set is, on average, 0.5% the
size of the initial representation. A further third stage,
added for optimizing the classification step coming next,
is based on finding a very small set of uncorrelated fea-
tures that is suitable for real-time processing to the price
of a very limited decrease in performance. From the algo-
rithmic view-point we propose two effective solutions to
two crucial problems: the need for solving large systems
(thanks to the re-sampling strategy we deal with large ma-
trices through intermediate solutions of smaller problems),
the request for limiting the computational cost of the train-
ing phase coming from real world applications (we pro-
pose a speeding up heuristics that allows us perform training
faster).

The computational time at training of our approach with-
out speeding up is comparable to other general-purpose
feature selection methods (e.g., the Adaboost, Viola and
Jones 2004).4 On top of this, thanks to the speed up heuris-
tics, training may be up to 6 times faster.5 For what con-
cerns memory requirements, the biggest matrix we con-
sider in the face detection module is in the first stage:
a 4000 × 6400 matrix of real numbers. In all the differ-
ent variants proposed the memory requirements are of about
100 Mb.

We applied our approach to various stages of a face au-
thentication system under development. We fully exploited
the versatility of our feature selection adopting it for two
different detection modules (faces and eyes) and for a set
of authentication modules (one per each individual enrolled
in the system). A full version of the system has been run-
ning since the beginning of 2008 and the number of people
enrolled is growing as we write.

The processing speed at run time is of about 8 frames per
second with a PAL frame format. Notice that this is guar-
anteed thanks to (i) the cascade procedure (ii) a feature se-
lection approach that allows us to compute only few fea-
tures (as opposed to other dimensionality reduction meth-
ods). The obtained representations are very compact (42 real
numbers, i.e. 168 bytes, for face detection and even less for
face authentication). This is due to the choice of adopting a
purely linear feature selection.

4For the case of face detection, with a dataset of 4000 positive and neg-
ative examples, on a PC Intel(R) Pentium(R) 4 CPU 3.00 GHz, training
our method requires about 14 h, the time is approximately reduced to
5 h if the computation of the first stage is split on 4 similarly perform-
ing machines. Feature selection via Adaboost (OpenCV implementa-
tion) requires about 12 h.
5face detection training in about 3 h on a PC Intel(R) Pentium(R) 4
CPU 3.00 GHz.
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Fig. 11 The 51 features most representative of the pedestrian class
automatically extracted by our 3-stages feature selection method

It should be noted that since the face authentication is
a module of a more complex video-surveillance system the
quality of the signal is low and it also suffers from the pres-
ence of artifacts due to video compression. We are working
on saving face data at a higher resolution, and this should re-
flect positively on the obtained results. The current version
of our approach does not exploit the fact that our data have
a temporal continuity. A future work will be an extension
of the face authentication that uses EVLBP features (Hadid
et al. 2007). This modification will just reflect in the con-
struction a new feature matrix, while the rest of the process
will be unchanged.

As a final remark to this work, we would like to stress
the versatility and effectiveness of the proposed framework.
We first remark that face authentication relies on the outputs
provided by the face and eye detector modules (the eyes de-
tector is essential for automatic face registration). The very
good authentication rates speak in favor of the overall accu-
racy of the various detection stages.

Secondly, we are applying the very same data-driven sys-
tem to other image classification tasks. Figure 12, for ex-
ample, shows the results obtained on a pedestrian detection
problem. The used dataset combines three different datasets:
MIT, USC, and (front and back views from the) Daimler
Chrysler dataset.6 The dataset size is of 1404 images which

6Available for download respectively at http://cbcl.mit.edu/
software-datasets/PedestrianData.html, http://iris.usc.edu/~bowu/

Fig. 12 Performance achieved with a pedestrian detection system au-
tomatically built with our data-driven procedure

have been resized to 15 × 37 pixels. The dataset is sampled
to build a training set of 804 positive and 804 negative exam-
ples, a validation set of 300 + 300 examples, and a test set
of 300 + 300 images. We are currently representing images
by means of rectangle features, building a dictionary of size
125,605. The final classifier implements a component-based
approach to pedestrian detection, vaguely reminiscent of the
one proposed in Mohan et al. (2001). Indeed, the results ob-
tained by our system are in line with the ones reported in
that paper and approximately equal to the ones obtained us-
ing Adaboost. Figure 11 shows the 51 features automatically
selected by our system as the best representation for the class
“pedestrians”.
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