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Abstract. A general scheme to represent the relation between dynamic images and camera and/or object motions is
proposed for applications to visual control of robots. We consider the case where a moving camera observes moving
objects in a static scene. The camera obtains images of the objects moving within the scene. Then, the possible
combinations of the camera and the objects’ poses and the obtained images are not arbitrary but constrained to
each other. Here we represent this constraint as a lower dimensional hypersurface in the product space of the whole
combination of their motion control parameters and image data. The visual control is interpreted as to find a path
on this surface leading to their poses where a given goal image will be obtained. In this paper, we propose a visual
control method to utilize tangential properties of this surface. First, we represent images with a composition of a
small number of “eigen images” by usingK-L (Karhunen-Lòeve)expansion. Then, we consider to reconstruct the
eigen space (the eigen image space) to achieve efficient and straightforward controls. Such reconstruction of the
space results in the constraint surface being mostly flat within the eigen space. By this method, visual control of
robots in a complex configuration is achieved without image processing to extract and correspond image features
in dynamic images. The method also does not need camera or hand-eye calibrations. Experimental results of visual
servoing with the proposed method show the feasibility and applicability of our newly proposed approach to a
simultaneous control of camera self-motion and object motions.
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1. Introduction

There are many works on dynamic image sequence
analysis with respect to camera motion. Visual servo-
ing is a main application of the works, where the robot
arm mounting a camera is controlled to track a mov-
ing object or to move to a goal pose with visual feed-
back. Most approaches assume that (Hashimoto, 1993;
Espiau et al., 1992; Weiss et al., 1987; Hutchinson et al.,
1996) (1) the object images are expressed with simple
primitive features such as points, lines and conics, and
(2) the correspondences of those features are always
maintained in the image sequence. Apparently these
assumptions do not hold when applied to a long se-
quence of real images. Furthermore, although points
or lines are too simple to express the real objects, ac-
curate extractions and their correspondences in images

are not easy to establish. Even when we obtain accurate
image features, we need camera and hand-eye calibra-
tions to utilize them.

In this paper, we propose a new approach of image
based visual servoing. This belongs to the so-called
appearance based one where we do not need any image
processing for feature extraction and correspondence
search. We applied the visual servoing to more complex
situations. Figure 1 shows one typical example, where
a target object is picked up by a robot-arm and moved
to a certain position, and its motion control is carried
out based on the image taken by the camera mounted
on another mobile robot-arm. For this purpose also,
the camera position should be controlled to get a good
observation. Then, for a given goal image, our task in
this case is to move a robot-arm mounting a camera to
the position where a given goal image was taken and,
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Figure 1. (a) The configuration for the typical example of our visual servoing task. Robot arm mounting a camera is controlled to move to
the goal pose where it obtains the goal image (b). At the same time, a target object is moved to a certain position by another robot to the goal
position where it has just the same pose as in the goal image. This simultaneous control is carried out by referring to the difference between the
current image (c) and the goal image.

at the same time, to move some target objects to the
same positions as they were in the goal image.

Furthermore, we consider the case where two cam-
eras observe the target object motion from different
viewing angles and the respective camera positions
themselves are also controlled.

For these purposes, it is not enough to extract and
observe some fixed object features in an image by the
camera. Moreover, what kind of image features must
be utilized for efficient control in these situations is not
clear.

To overcome these difficulties and to achieve flexible
control of the motions, we proposed a basic idea of a
direct interpretation of the relation between the image

in sequence and the camera motion (Deguchi, 1997;
Deguchi and Noguchi, 1996). In this paper, we extend
the use of the idea for simultaneous controls of motions
of the cameras and the target objects to deal with the
above, as well as more complex tasks.

The summary of the main idea is as followings: Let
us consider that the information contained within an
image taken by a camera can be expressed with anN
dimensional vector. Usually,N equals the number of
pixels in an image. The camera pose and position are
determined withF parameters. For the case where the
object motion is simultaneously controlled, theF mo-
tion parameters also include those of the object motion.
The imaging system, including the camera intrinsic
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parameters, illumination condition, and so on, is spec-
ified with P parameters.

For example, a frame of raw gray scale image with
n × n pixels can be represented as anN = n × n di-
mensional vector. If a camera and an object pose has 6
degrees of freedom each, and we are intending to con-
trol them,F becomes 12. If we employ two cameras,
as shown in one of the experiments later,F increases
up to 18, that is 3× 6. In this case, the obtained im-
age can be considered to have twice the pixel size of
N = 2× n× n.

In addition, an event where the camera gets an image
of the object in a scene at certain positions under some
imaging condition can be represented by a point in
the N + F + P dimensional space. In this paper, we
fix the imaging condition to be constant (P = 0) and
considerN + F dimensional space to make the basic
principle clear.1

For a specific object, the camera cannot obtain any
arbitrary image, so that the possible combination of
the camera and the object poses and the obtained im-
age should be constrained within a surface in theN+F
dimensional space. It must have much smaller dimen-
sionality.

Our approach is based on the analysis of the prop-
erties of this constraint surface. More specifically, we
utilize its differential or tangential property for visual
servoing.

At this point of view, first, the dimension of the im-
age information becomes a key problem2 because a
raw image contains more than a hundred thousand pix-
els and its numberN becomes much larger thanF .
For the first step, we propose to use the principal com-
ponent analysis and to represent images with a com-
position of a small number of “eigen images” by using
K-L (Karhunen-Lòeve)expansion (Deguchi, 1997). We
represent images by using the eigen system obtained
by the conventional eigen space method.

Next, we describe how a normal vector of the above
mentioned surface is related to the so-called Interaction
Matrix, which is used to relate camera motion and im-
age motion in conventional visual servoing techniques.

The second key problem is the efficiency for the
control when we utilize the property of this constraint
surface. For this problem, we point out that, if the con-
straint surface is flat with respect to the motion parame-
ters, the image change linearly depends on the motions
and the controls will be efficiently realized by simple
visual feedback.

According to this idea, we consider the reconstruc-
tion of the representation space in which the constraint

surface becomes flatest which enables us to represent
images more efficiently and to speed up the conver-
gence in the control. This representation can be ob-
tained by constructing a new set of base vectors with
weighted summations of the original eigen vectors. We
also present an algorithm for this reconstruction.

Finally, we present some experimental results of the
proposed method. The first experiment is the simul-
taneous controls of the camera and the target object
motions to return back to their respective goals from
arbitrary initial positions. In the second experiment, we
show the simultaneous controls of the poses of multi-
ple cameras and the target object. Experimental results
of the visual servoing show that complex controls can
be achieved with a very simple implementation of our
method. The experiments also show the feasibility and
applicability of our newly proposed approach.

2. Direct Interpretation of Dynamic Images and
Camera Motion

2.1. Image and Camera Motion Representation for
Visual Control

As was described, an image taken by a moving camera
is expressed with anN = n × n dimensional vector
x, whose components are gray levels of each pixels.
The camera and the target object poses and positions
are determined with anF dimensional vectorw. If we
intend to control only camera motion in a static scene,
F = 6, andw= (x, y, z, ωx, ωy, ωz)

>, where(x, y, z)
is the camera position and(ωx, ωy, ωz) is its pose angle.

For the case where we intend to simultaneously con-
trol of the camera and a target object motions in a static
scene, we will need up to 12 dimensional vectors, that
is, 6 for the camera and 6 for the target object. If we have
more cameras and/or more target objects, the numberF
of the motion parameters to be controlled will become
larger.

For a specific scene, an event that the camera takes
an image at a position can be represented as a point
(x>,w>)> in theN+ F dimensional space. This point
is the combination of the obtained image and the cam-
era and the target object positions. It must be empha-
sized that the possible combination of their poses and
the obtained image should be restricted within a sub-
space having much smaller dimensionality. That is, it
forms a lower dimensional hyper surface in theN+ F
dimensional space. The motion images are constrained
within this surface (Fig. 2).
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Figure 2. A hypersurface in theN + F dimensional space which
constrains the camera and the target object poses and the image
combination.

This surface is defined with respect tow. That is, for
every value ofw, the surface has one value ofx. We
denote this surface withπ.

Then, as shown in Fig. 3, our visual servoing is to
control the camera and the target object from initial
poseswS, where we have the initial imagexS, to their
goal poseswG, where its image is supposed to bexG,
through a path on this constraint surfaceπ. Of course,
we do not know the absolute value ofw. We can only
estimate its relative differencedw and the change of
the imagedx with respect todw.

At almost everyw, π can be considered to be con-
tinuous and smooth. It implies that a small motion of
dw produces a small image change ofdx as

dx = L> dw (1)

Figure 3. Visual servoing inw-x space. The camera and the target
object are led to their goal along a path on the constraint surfaceπ.

Figure 4. The constraint surfaceπ in w-x space is characterized
with its tangent planeρ.

L> is called theInteraction Matrixor Image Jaco-
bian.

This means that the camera can be led to the goal
position by forming the visual feedback loopdw =
−κL>+(x − xG), whereL>+ is a generalized inverse
of L> and 0< κ < 1. This L> can be interpreted
as the coefficient matrix of the tangent plane of the
surfaceπ at the current camera position (Fig. 4). It
should be noted thatL> is given as a function ofw. If
the surfaceπ is flat, which means the positional dif-
ferencew linearly depends on the image differencex,
the camera can reach the goal at once withκ = 1.
However, in general,π is not flat, and we must em-
ploy iterative feed-back to reach the goal by setting
κ < 1.

We should also emphasize that we cannot obtain the
analytical form ofπ andL>. However, empirically we
can obtain an approximation of its derivatives by mov-
ing the camera around in small increments and taking
images. Conventionally, for the interaction matrixL>,
the L̂> obtained around the goal is commonly used.
In Deguchi (1997), we also used this approximation
for L>. It worked to bring the camera to its goal, but
the trajectories to the goal were not straightforward.
In Deguchi and Noguchi (1996), we proposed a dy-
namic estimation of theL> to improve the efficiency.
It worked well, though it required rather complex on-
line processing, and it may not efficiently apply to the
multiple motion controls discussed here.

Therefore, to achieve more efficient control based on
our above mentioned approach, in the next subsection
we propose a means of reconstructing the constraint
surface.
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2.2. Linear Mapping of Images for Optimal Control

If the constraint surfaceπ is flat, the image differ-
ence and camera position difference correspond lin-
early. This means that the Interaction Matrix is con-
stant within an extent around the goal, which results in
a linear trajectory of the camera movement to the goal
position bydw= −κL>+(x− xG).

To realize such an effective control, first, we must re-
duce the dimensionality of the image. This is because
the original image dimensionality is too large to eval-
uate the optimality and difficult to reconstruct the con-
straint surface directly. Next, we reconstruct the rep-
resentation space which makes the constraint surface
mostly flat around the goal. We achieve both steps by
a linear mapping of the image

x −→ d

as shown in Fig. 5.
The three step strategy to find such a linear mapping

of the image is as follows:

1. For a given goal pose, we take several sample images
around the goal. The set of sample images are taken
by moving the camera (and the object, for the case to
control also the object motion) in small increments.

2. From the image set, by using the eigen space
method, we reduce the image dimensionality.

3. From the eigen vectors, we construct the linear map-
ping which makes the distribution of the sample mo-
tion images to be optimally flat with respect to the
motion parameters.

When we obtain the optimal image transformation
d and good estimate of the Interaction MatrixL̂> for
thed, we control the camera and the object movements

Figure 5. Realization of an effective control by reducing the di-
mensionality of images and reconstructing the representation space
which make the constraint surface mostly flat around the goal.

to their respective goals by iterating the nextlook and
movesteps:

1. From the imagex at current camera and object
poses, obtain its eigenspace representationd. (look)

2. Estimate the difference1w of the current camera
pose to the goal pose by

1w= L̂>+(d− dG) (2)

3. Move camera and object by−κ1w (whereκ is a
constant and 0< κ < 1). (move)

4. If d− dG is not sufficiently small, return back to 1.
If it becomes small, the camera and the object are
just at their respective goals.

It is known that, ifL̂>+ is a good estimate ofL>+ in
the sense thatL> L̂>+ is always positive definite, the
above iteration leads the camera and the object to their
goal poses (Espiau et al., 1992).

3. Construction of The Effective Image
Transformation for Visual Controls

3.1. Reduction of the Image Dimensionality by the
Eigen Space Method

First, we briefly describe the eigen space method em-
ployed here. We reduce the image dimensionality by
the eigen space method. For visual servoing, the dimen-
sion reduced representations of the image must main-
tain properties that are sensitive to small changes in
the original image, easy to compute for real-time use,
and enable direct and straightforward interpretation to
the camera and the object motions. The eigen space
method is one feasible technique in this sense (Murase
and Nayar, 1993). The imagex obtained by the cam-
era is approximated with a linear combination (K-L
expansion) of M major principal component images
in N dimensional data space, whereM ¿ N. These
components are given as firstM ortho-normal eigen
vectors which correspond toM largest eigen values of
theN × N covariance matrix of the sample image set.

We assume a given set ofm images{x1, x2, . . . , xm}
which are taken around the goal. From this image set,
we compute the mean imagec as

c= 1

m

m∑
i=1

xi (3)
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Then, we define the matrixX as

X = [x1− c, x2− c, . . . , xm − c], (4)

and the covariance matrixQ of the image set of{xi } as

Q= 1

m
XX> (5)

We denote the firstM eigen vectors ofQ with
e1, e2, . . . ,eM . An effective algorithm to obtain eigen
vectors from a set of large dimensional vectors was
proposed in Murakami and Vijaya Kumar (1982). An
imagex within this image set will be well approximated
by

x̂ =
M∑

i=1

ai ei + c (6)

wherec is the mean vector of the set ofx.
We call eachei aneigen image, and the set of weight

coefficientsa= (a1,a2, . . . ,aM)
> a reduced imageof

x, whose components are given as

ai = (x− c)>ei (7)

Using this formula, the image data dimensionM
becomes much smaller thanN.

3.2. Reconstruction of the Eigen System for
Effective Visual Controls

We proposed previously to use the eigen space method
itself for visual servoing (Deguchi, 1997; Deguchi and
Noguchi, 1996). In those papers, we used the reduced
imageaof (7) for the original imagex. It was shown that
this introduction of the eigen space method enabled the
visual servoing technique without image feature extrac-
tions and correspondences. The experimental results
showed the proposed method achieved simple and ef-
fective robot control which does not need complex im-
age processing procedures. However, the experiments
also showed that, in many cases, the pose errors did not
decrease monotonically to reach the goal position.

The dominant reason is that the constraint surface
π for the w-a combination is not sufficiently flat
around the goal. This is because the eigen system
{e1, e2, . . . ,eM} has not been related to any positional
information. They were constructed only from a set of
sample images.

If the constraint surface is flat, the image differ-
ence and position difference are linearly correspond-
ing, which results in a linear trajectory of the camera
movement to the goal position. To realize such an ef-
fective control, we must rearrange the eigen system by
relating each image to its position where it was obtained
around the goal.

Now we introduce a new orthogonal system
{φ1,φ2, . . . ,φK } instead of{e1, e2, . . . ,eM} (K <

M), where every vectorφ j is a linear combination of
{e1, e2, . . . ,eM}, to obtain a more effective reduced im-
aged for the control. That is, we construct the system
{φ1,φ2, . . . ,φK } as

φ j = gj 1e1+ gj 2e2+ · · · + gj M eM

= Eg j (8)

whereE = [e1, . . . ,eM ] andg j = (gj 1, . . . , gj M )
> so

that the new reduced imaged = (d1, . . . ,dK ) given by

dj = (x− c,φ j ), ( j = 1, . . . , K ). (9)

forms a mostly flat surface in thew-d space.
Once, the new eigen system is established, the re-

duced imaged of a newly obtained imagex will be
obtained easily by (9) in real-time and on-line process-
ing.

However, it should also be noted that, to reconstruct
the new eigen system, employing a criterion to evaluate
the flatness of the new constraint surface is not enough.
This is because we may have a nonsense system that
makes allgi j = 0. We must also consider the sensitivity
to the small change of images. In the next section, we
present an algorithm to rearrange the eigen system in
order to satisfy these requirements.

4. Optimal Interaction Matrix

4.1. Minimization of Position and Pose
Estimation Errors

Now, the problem is to find{g1, g2, . . . ,gK } to con-
struct{φ1,φ2, . . . ,φK } by (8), which makes the most
effective image feature vectors for the control. Before
obtaining the orthogonal system, we discuss the opti-
mality of the Interaction Matrix again.

We have a set of sample images{x1, . . . , xn} taken at
the corresponding camera positions{w1,w2, . . . ,wn}.
We are using the image feature vectordi =
(di 1, . . . ,di K )

> instead of thexi for the control. For
this case, the optimal Interaction Matrix for this set
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of sample images is defined as the matrix which esti-
mates the difference between obtained image and the
goal image most accurately from the difference of the
camera and the object poses. Here, we discuss how to
establish the minimization of the estimation error. We
will also discuss the sensitivity of the small difference
of the motions and images in the next subsection.

Denoting the Interaction Matrix which minimizes
the estimation error bŷL>, and estimating the reduced
image by

d̂i = L̂>(wi − wG)+ dG (10)

the L̂> is defined as the matrix which minimizes the
estimation error

Err ave(L̂
>) = 1

n

n∑
i=1

‖di − d̂i ‖2 (11)

Let us denote the( jk)-th component of theL̂>

with l jk , and define thej -th row vector of L̂> as
l̂ j = (l j 1, l j 2, . . . , l j F )

>. Then, the estimation error
is rewritten as

Err ave(L̂
>) = 1

n
Err total(L̂

>)

= 1

n

M∑
j=1

Err j (l̂ j ) (12)

whereErr j (l̂ j ) is the error which depends onl̂ j .
This Err j (l̂ j ) is given as followings:
First we define

Y ≡ [x1− xG, x2− xG, . . . , xn − xG] (13)

and

β j ≡ Y>φ j (14)

On the other hand, we also define the estimation of this
β j by usingl̂ j as

β̂ j ≡ Wl̂ j (15)

where

W ≡

 (w1− wG)
>

...

(wn − wG)
>

 (16)

Then the above estimation error depending on thel̂ j

is given as

Err j (l̂ j ) = 1

n
||β j − β̂ j ||2 (17)

Because the sum of theErr j (l̂ j ) makes a total error
of Err total(L̂>), the minimization of (11) is given by
minimizing theErr j (l̂ j ). This second minimization is
given straightforwardly aŝl j = (W>W)−1W>β j and
the minimum value is given as

Min{Err j }= 1

n
||β j −W(W>W)−1W>β j ||2

= 1

n
β>j (I −W(W>W)−1W>)β j (18)

4.2. Optimal Base Vectors for Visual Servoing

Based on the previous discussion on the optimality of
the Interaction Matrix, we obtain the most effective or-
thogonal base set of{φ1,φ2, . . . ,φK }(K < M). The
following algorithm is an extension of the ODV method
for pattern recognition (Hamamoto et al., 1991).

Now we reduce the imagexi into the new reduced
imagedi = (di 1, di 2, . . . ,di K ) by using the set of new
eigen vectors as

di j = (xi − c,φ j ) (19)

As was discussed, minimizing the estimation error and
obtaining the most efficient control is equivalent to ob-
taining the flatest constraint surfaceπ for the camera
and the object poses and this newd.

However, if we are allowed to choose any arbitrary
base vector, we get a nonsense solutiondi = 0 which
makes the estimation error always 0. To avoid such a
nonsense solution and, at the same time, to obtain the
most sensitive images to the difference of poses, that
is, to obtain the flatest constraint surface and, at the
same time, the most accurate estimation of the posi-
tion error to the goal, we must minimize not simply
{Min{Err j }} but {Min{Err j }

σ 2
j
}, whereσ 2

j is the variance
of the j -th component of the reduced image. This min-
imization means to obtainφ j which minimizesErr j

and, simultaneously, maximizes the varianceσ 2
j .

This variance is given by usingX = [x1 − c, x2 −
c, . . . , xn− c] and α j ≡ X>φ j as σ 2

j = 1
nα
>
j α j .
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Thus, we must minimize

Min{Err j }
σ 2

j

= β
>
j (I −W(W>W)−1W>)β j

α>j α j
(20)

This means that the optimal orthonormal system of
{φ1,φ2, . . . ,φK } is given by employing the above{g j }
which minimizes

Min{Err j }
σ 2

j

= φ
>
j Y(I −W(W>W)−1W>)Y>φ j

φ>j X X>φ j

= g>j E>Y(I −W(W>W)−1W>)Y>Eg j

g>j E>X X>Eg j

.

(21)

For a vectorg j , the formg>j Ag j /g>j Bg j with matrices
A and B is well-known as the Rayleigh quotient, and
g j minimizing this form is given as the eigen vector
corresponding to the minimum eigen value ofB−1A.
Therefore, applying this theory, this vectorg j is given
straightforwardly as an eigen vector corresponding to

Figure 6. The schematics of the procedure to construct the optimal feature extraction bases for the control.

the minimum eigen value of the matrix

3−1E>Y(I −W(W>W)−1W>)Y>E, (22)

where3 = E>X X>E = diag(λ1, λ2, . . . , λM) and
theλi is thei -th largest eigen value ofQ = 1

n X X>.
Once g j is obtained, we can construct an or-

thonormal system{φ1, φ2, . . . ,φK } from g j , because
(φi ,φ j ) = (gi , g j ). This can be done by determineg1
first, which minimizes above in (21), theng2 subject
to be orthogonal tog1. By iterating this step, we ob-
tain the coefficientsg1, g2, . . . . That is,g j is searched
within the subspace orthogonal to the space spanned
by {g1, . . . ,g j−1}, and so on.

We summarize the procedure to construct the opti-
mal feature extraction bases for the control in Fig. 6.

5. Experiments for Effective Control

This section presents the experimental results of the
simultaneous control of the camera and object motions
by the proposed method. The first experiment was to
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control the poses of a camera mounted on a robot arm
and an object also mounted on another robot arm. The
robot arm mounting the camera moved in a scene where
the target object was also moving. Other objects in the
scene were static.

The second experiment was to control the motions
of two cameras and a moving target object in a static
scene. The two camera were viewing the target object
from different view directions, and two respective goal
images were given to specify each camera and the target
object goals.

The following experimental results show that our
method could be extended for such complex cases.

5.1. Simultaneous Control of Camera and Object
Motions

The camera was mounted on a robot arm (MIT-
SUBISHI RV-E2), and another robot arm (MIT-
SUBISHI RV-M1) was mounting a target object. The
goal image, shown in Fig. 7(a), was taken by the camera
at its goal pose. Our objective was to move the camera
and the object from their arbitrary initial poses to the
poses where the camera could take the same image as

Figure 7. The goal image and the rearranged eigen images for the
control of the camera and object motion in the first experiment. (a)
Goal image; (b) Rearranged eigen images.

the given goal and the target object must be observed
just as in the goal image.

In this experiment, the camera and the object poses
each had 3 DOF (x, y, andz positions), So the total
DOF was 6. That is, the control parameter vectorw
was a 6 dimensional vector.

First, we took 61 sample images at different camera
positions around and including its goal pose by fixing
the target object position at its goal pose. Then, fixing
the camera pose at its goal, 60 additional sample images
were taken for different object positions around its goal.
The total number of sample images was 121.

From these sample images, we obtained 20 eigen
images{e1, . . . ,e20} by the eigen space method. Then,
using these 20 eigen images, we computed a new set
of 8 reconstructed eigen images{φ1, . . . ,φ8}. These
reconstructed eigen images are shown in Fig. 7.

Figure 8 shows the constraint surfaceπ in thed-w
space. This shows the plottings of (a) componentd1 of
the new reduced imaged with respect tox coordinate
Rx of the camera andx coordinateTx of the target
object, and (b)d2 with respect to the the robot arm’sx
andy coordinatesRx andRy.

Their values were obtained by (9) by applying the
set of new eigen images of Fig. 7(b) to images taken at
every position of the camera and the object shown in
this figure.

This figure shows we had an almost flat surface for
the constraint surfaceπ.

Using these new reconstructed eigen images, we
computed the Interaction Matrix, and controlled the
camera pose and target object motions with the algo-
rithm described above.

Their motion converged to the goal from a
wide range of initial positions. Figure 9 shows the

Figure 8. The constraint surface ind-w space for the first experi-
ment. (a)d1 with respect to the camera’sx coordinateRx and the
target object’sx coordinateTx ; (b) d2 with respect to the camera’sx
andy coordinatesRx andRy.
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Figure 9. Experimental results starting at several initial positions. (a) and (b) the trajectories of the camera and the target object, respectively,
starting at several initial positions, from (c) to (f) four examples of initial images obtained by the camera at the four positions indicated in (a)
and (b). ((c) Exp. 1; (d) Exp. 2; (e) Exp. 3; (f) Exp. 4).

trajectories of the camera and the target object starting
at several initial positions. In this figure, four examples
of initial images obtained by the camera at the four po-
sitions indicated in the figures (a) and (b) are shown in
from (c) to (f).

5.2. Control of Two Cameras and an Object

Next, we conducted an experiment for a more compli-
cated case (Fig. 10). Here, the target object was moved
on a x-φ stage which made translation and rotation
with 2 DOF. That is, the target object can shift along
one direction and rotate in a static scene. This motion
was observed by two cameras from different view di-
rections. These cameras were mounted on the robot
arms used for the previous experiment. One camera
had 6 DOF and the other had 3 DOF in their motions.
Therefore, the total number of the control parameters

Figure 10. The configuration of the second experiment of two cam-
eras and the object motions.

was 11, which was the dimensionality ofw for this
case.

We have two images by the two cameras. We com-
bined the two images to form a single image, now twice
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Figure 11. Two images by the two cameras are considered as a
single image, twice the original size by combining them.

as large, as shown in Fig. 11. Then, the dimension of
the image dataN becomes(2n) × n. We treat these
combined two images as one observed image.

Figure 12 shows the goal image in this form. It should
be noted that, as shown in the goal image, beside the
target object, camera 2 itself was also the object for
camera 1. This would be too complicated problem for
the conventional approach.

For the sample image set, we took 321 images by
changing the pose of camera 1 only around its goal
pose, 60 images by changing the pose of camera 2 only,
40 images by changing the target object pose, and the
goal image. The total number of sample images was
422.

For this case, as the first step, we obtained 70 eigen
images by the eigen space method from this sample set.
Then, we reconstructed the space for optimal control
spanned by 20 newly reconstructed eigen images. In
Fig. 13, 9 out of these 20 reconstructed eigen images
are shown.

Figure 14 shows an example of the initial image ob-
tained at one of the initial positions of the cameras
and the target object. The result of the control from
the initial positions of the cameras and the target ob-
ject is shown in Fig. 15. In this figure, (a) shows the
changes of the errors of the positions and poses of cam-

Figure 12. Goal image for the second experiment.

Figure 13. Reconstructed eigen images for the second experiment.

era 1 from its goal with respect to the control steps. (b)
shows the errors of camera 2 positions and the position
and pose of the object. These plottings show that all the
errors converged to 0 monotonically and all positions
and poses returned back to their respective goals. (c)
shows images taken by the cameras on the way to the
goal in this experiment.

Also, we have made experiments starting from var-
ious initial positions in a wide range around the goal,
and almost all controls succeeded to return the cameras
and the target object to their respective goals. This in-
dicates the feasibility of the proposed method for such
complex cases where the simultaneous controls of plu-
ral cameras and target objects’ motions. Fig. 16 shows
other experimental results of the controls starting from
four initial positions. (a) shows the trajectories of cam-
era 1, (b) shows the trajectories of camera 2, and from
(c) to (f) show the initial images obtained at these four
initial positions.

As described above, the goal image of camera 1
included the image of camera 2. Therefore, we also
conducted an experiment to simultaneously control the
motions of the two cameras and the object by using
only the image by camera 1. The comparisons of the
final errors for their positions and poses starting from

Figure 14. An initial image.
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Figure 15. Experimental results of the control from an initial positions where the initial images are shown in Fig. 14. (a) Position and pose
errors of camera 1; (b) Position and pose errors of camera 2 and the object; (c) Images taken on the way to the goal.

the same initial positions in Fig. 15 are shown in the
Table 1.

This table shows that all the cameras and object could
return their respective goals by using only one image,
but, by using two cameras, we obtained much higher
accurate final poses than in the single camera cases.

Of course, we had more and various information from
two cameras, and we could utilize this to achieve better
control.

However, it should be noted here that such a config-
uration could not be realized by using the conventional
image feature based method. This is due to the fact
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Figure 16. (a), (b) Trajectory of the camera motions from four initial positions. From (c) to (f) are the images taken at the four initial positions
shown in (a) and (b). (a) Trajectories of camera 1 motion; (b) Trajectories of camera 2 motion; (c) Exp. 1; (d) Exp. 2; (e) Exp. 3; (f) Exp. 4.

that the Interaction Matrix would be hard to construct
properly.

On the other hand, as shown here, all we need to do
is to increase the dimensionality of the raw image by

Table 1. Comparison of the final errors of the controls using one
image and two images (Positions inmmand Poses and Rotation in
degree).

Camera 1 Camera 2 Target object
Number of

images Position Pose Position Position Rotation

2 1.42 0.32 0.45 0.24 0.23

1 5.25 7.25 4.25 12.3 −4.52

a factor of two. We could apply our method to such a
complex case and achieve efficient control without any
further considerations. This is the main advantage of
the proposed method.

6. Conclusions

A general scheme to represent the relation between
dynamic images and camera motion was presented.
Then, its application to visual servoing was pro-
posed. In the method, image processings to extract
image features and to establish their correspondences
between dynamic images were not needed. It does
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not also require exact camera and hand-eye calibra-
tions.

For the visual servoing we use the eigen space
method to reduce the dimensionality of image data.
Then, we considered to reconstruct the eigen space to
enable more effective control. The result suggests the
importance of using proper Interaction Matrices for vi-
sual servoing. The results of the experiments promise
usefulness of our approach in vision guided robotics.
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Notes

1. If the imaging condition is controllable, it can be considered to
belong to the components withinF dimensional space. If it is
only an observed value, it belongs to theN dimensional space.

2. The feasibility of this approach depends on how much this di-
mension can be reduced. Image feature extraction, where some
features characterizing the image are represented with a num-
ber of geometrical values can also be considered as a method of
this reduction of dimensionality. But, as described above, such an
approach still has some difficulties.
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