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Abstract. General availability of inexpensive, all-terrain, lightweight
autonomous mobile robots would drive innovation in many application
areas such as security, remote sensing, inspection, and landmine detec-
tion. Many of these tasks require accurate 6-DOF robot localization, and
cameras are potentially ideal for this purpose, but most current tech-
niques use stereo vision sensors, which are expensive or difficult to cali-
brate. Towards flexible and low cost vision-based robot localization, we
have designed, implemented, and evaluated a prototype system incorpo-
rating SIFT feature detection and factorization-based methods for sparse
Euclidean reconstruction from three uncalibrated views. We test the sys-
tem on synthetic data, in a virtual world, and in a real-world outdoor
environment, using three different reconstruction algorithms. We find
that of the algorithms tested, Han and Kanade’s algorithm achieves the
best reconstruction. We conclude that SIFT combined with factorization-
based structure from motion is suitable for single-camera mobile robot
localization.

1 Introduction

Many mobile robot applications require precise 6 degree of freedom estimates
of the robot’s position in the world. Chief among these are what we might call
“coverage” applications like landmine detection, home cleaning, lawn mowing,
airport runway crack detection, and so on, in which we must ensure that every
point on a given surface in the workspace is covered by the robot’s sensors and/or
actuators.

We are interested in the development of inexpensive, all-terrain, lightweight
robots for coverage applications, especially for cases in large-scale environments
in which the environment map is not known a priori. Due to their light weight,
low cost, and the rich information they provide, cameras are ideal sensors for
mobile robot localization and mapping in these applications.

Recently, there have been several applications of vision sensors to the problem
localization and mapping in large-scale environments [1–4] but these systems



use binocular or trinocular stereo. To minimize the cost of the robot, it should
be possible to perform localization and mapping using a single camera. While
there has been progress in this direction [5, 6], the systems are not designed to
scale to large environments. The largest-scale experiments to date have employed
variants of the Rao-Blackewellized particle filter [7] such as FastSLAM [8] that
require Gaussian landmark measurements in robot (or camera) coordinates.

Since a single camera sensor model would normally provide a cone-shaped
measurement uncertainty for 2D point features, to obtain Gaussian measure-
ments of a feature location using a single camera, we would need views of that
feature from more than one camera location. With known cameras and known
extrinsic parameters, it is possible to obtain a Euclidean 3D reconstruction from
two views; with unknown extrinsic parameters, we require at least three views,
and we can only reconstruct up to an unknown scale factor.

For outdoor robots, it is feasible to use a 3-view uncalibrated method com-
bined with a rough absolute measurement device such as a wheel encoder or
an inexpensive GPS receiver to resolve the scale ambiguity. Once mapping is
bootstrapped and the global scale is known, previously stored landmarks can in
principle be used to resolve the scale ambiguity for new measurements.

In this paper, we therefore focus on the problem of designing a sensor to
bootstrap the mapping process via Euclidean 3D reconstruction from three inti-
tial monocular views of an unknown environment. We compare three candidate
solutions [9–11] from the literature using SIFT [12] for the 2D interest point
detector. We conduct experiments with a synthetic object, in a simulated world,
and on real imagery. Of the three Euclidean reconstruction methods, we find
that Han and Kanade’s algorithm [13, 10] achieves the best reconstruction. We
conclude that SIFT combined with factorization-based structure from motion
is a suitable design for bootstrapping a single-camera mobile robot localization
system.

2 Experimental Methods

2.1 Data collection

As a testbed for experimentation, we collected three types of data:

– Synthetic 3D data
– Images rendered from a VRML model
– Images acquired in a real-world outdoor environment

The synthetic data were 9 3D points drawn at random from a 1m-radius
sphere with center placed 10m from a virtual camera with a horizontal field of
view of 68 degrees.

The VRML simulation data consisted of a sequence of 44 images taken
approximately 25cm apart with small random fluctuations in camera rotation
within a 3D model of Housestead’s Fort, a Roman garrison from the 3rd century
A.D. on Hadrian’s Wall in Britain [14]. The virtual camera had a resolution
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Fig. 1. Sample simulation image set. (a) Initial position. (b) Second position, after
approximate 0.25m forward motion. (c) Third position, after another approximate
0.25m forward motion.

(a) (b) (c)

Fig. 2. Sample outdoor imagery after correction for camera distortion. (a) Initial posi-
tion. (b) Second position, after approximate 0.25m forward motion. (c) Third position,
after another approximate 0.25m forward motion.

of 640 × 480 pixels and a horizontal field of view of 70 degrees. A sample im-
age “triplet” from the VRML simulation is shown in Fig. 1. This environment
is an interesting testbed for mobile robot localization algorithms because it is
highly textured, creating a large number of feature points, and the textures are
highly repetitive in many places, leading to many ambiguities for correspon-
dence algorithms. The random camera rotations preclude the use of flat-earth
or three-degree-of-freedom assumptions.

The real-world outdoor data consisted of 21 images acquired with a Sony
DSC-200 digital camera on a golf course on the Asian Institute of Technology
campus. We captured the images from positions approximately 50cm from the
ground, approximately 25cm apart, with small random fluctuations in camera
rotation. We calibrated the digital camera using the CalTech camera calibration
toolbox [15] then undistorted each image according to an idealized 640 × 480
pinhole camera with with horizontal field of view of 57.9 degrees. A sample
undistorted image triplet is shown in Fig. 2.

In all three environments, we group the image sequences into triplets prior
to obtaining point correspondences and performing 3D reconstruction.

2.2 Point correspondences

Once an image triplet has been acquired, the first step is to obtain point corre-
spondences between the three images. Our method first extracts 2D SIFT [12]
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Fig. 3. SIFT features. Direction of each arrow indicate the keypoint’s orientation;
length of each arrow indicates the keypoint’s scale. (a) VRML simulation image. (b) An
undistorted outdoor image.

features, obtains a tentative set of correspondences with Beis and Lowe’s best
bin first (BBF) algorithm [16], then eliminates outliers using fundamental matrix
estimation [17] wrapped inside RANSAC [18].

The scale invariant feature transform (SIFT) [12] extracts 2D points along
with descriptors that are meant to be invariant with respect to translation, rota-
tion, and scale. The idea is to perform difference of Gaussian (DoG) filtering at
multiple scales then find the local extrema of the DoG filter’s response across x,
y, and scale. SIFT then eliminates extrema with low contrast, simple texture, or
uncertain orientation. Finally, for each extremum surviving the previous steps,
the algorithm assigns a feature descriptor consisting of relative gradient orien-
tations and magnitudes in the surrounding region. The SIFT keypoints for one
each of our simulation and golf course images are shown in Fig. 3.

Now, given descriptors {ki,j} representing keypoint j in image i, we need
to find a set of tentative correspondences C = {< k1,i,k2,j ,k3,k >} between
keypoints. Ideally, for each keypoint in image 1, we would like to compute the
“nearest neighbor” keypoint in image 2 in terms of Euclidean distance, and
similarly for the nearest neighbors of the image 2 keypoints in image 3. Our
tentative correspondence for keypoint i in image 1 would be the nearest neighbor
k2,j of k1,i and the nearest neighbor k3,k of k2,j . However, the best known
algorithms for exact nearest neighbor search in high dimensional spaces (SIFT
keypoint descriptors have 128 elements) require a prohibitive amount of compute
time, so we use Beis and Lowe’s approximate nearest neighbor algorithm based
on the k-d tree [16]. The idea is to perform standard k-d tree search but rather
than searching all bins of the tree that might contain the nearest neighbor, BBF
maintains a priority queue containing a limited number of candidate bins that
will most likely contain the nearest neighbor.

After applying BBF to find the approximate set of nearest neighbors of the
image 1 keypoints in image 2 and the approximate set of nearest neighbors of
the image 2 keypoints in image 3, we eliminate any keypoints matched to more
than one keypoint in another image, any keypoints not matched across all three
images, and any keypoint for which the nearest neighbor match is not much



closer than the second nearest neighbor. The result is a candidate set of unique
correspondences across all three images in the given triplet.

Of course, SIFT keypoint descriptors do not capture spatial relationships
with other keypoints. This means that the set of nearest-neighbor keypoints are
not necessarily spatially consistent. In fact, we find that correspondences ob-
tained as just described, even for small camera motions between subsequent im-
ages, are often less than 50% correct. To eliminate inconsistent correspondences,
we apply RANSAC-based [18] fundamental matrix estimation as recommended
by Hartley and Zisserman [17] and implemented by OpenCV [19]. We perform
outlier elimination for each image pair separately. For a given set of point cor-
respondences between two images, the approach repeatedly selects a random
sample of 7 correspondences, uses a 7-point algorithm for fundamental matrix
estimation, then calculates the the number of “inlier” correspondences for which
the putative matching point is within a fixed distance of the predicted epipolar
line. The fundamental matrix with the most inliers is retained, used to reject
outliers, then a final fundamental matrix is estimated from all of the inliers using
a normalized 8-point algorithm.

After eliminating the outlying correspondences in each pair of images, we
form a set of high-confidence keypoints matched across all three images. These
correspondences are used as input to the 3D Euclidean reconstruction process.

2.3 Euclidean reconstruction

Once we have obtained a reliable set of corresponding points across three frames,
it is possible to obtain a Euclidean 3D reconstruction up to an unknown scale
factor. In our experiments, we apply three different approaches for Euclidean
reconstruction:

– Christy and Horaud [9]
– Han and Kanade [13, 10]
– Tang and Hung [11]

Christy and Horaud’s method [9] iteratively performs a Euclidean 3D recon-
struction of the corresponding points under the assumption of a paraperspective
projection then applies to each image measurement an adjustment by a “para-
perspective correction” reflecting the difference between perspective and para-
perspective projections of the 3D point. At convergence (the algorithm is not
guaranteed to converge), the affine 3D reconstruction from the paraperspective-
corrected image points is also a perspective 3D reconstruction of the original
image points. The affine reconstruction step first factors the image measure-
ments into motion (projection) and shape (3D point) components using Tomasi
and Kanade’s method [20]. This gives a projective reconstruction which is then
upgraded to a Euclidean reconstruction by applying constraints requiring that
the projections must be rigid transformations rather than arbitrary projections.

Han and Kanade’s approach [13, 10], rather than affine reconstruction, em-
ploys iterative projective reconstruction. The method begins by assuming the



projective depth of every point is 1. It then iteratively factors the image mea-
surements scaled by their projective depths into shape and motion components
then recomputes the projective depths. After convergence of the projective re-
construction step, Han and Kanade apply metric constraints similar to Christy
and Horaud’s, but also allow for uncertainty about the camera’s intrinsic pa-
rameters.

Tang and Hung [11] factor the same scaled measurement matrix as Han
and Kanade into separate shape and motion components, but they also allow
for points to be missing in some views and guarantee convergence by explicitly
minimizing the same objective function (with respect to different parameters)
in every step of each iteration. To upgrade from a projective reconstruction to
a Euclidean reconstruction, Tang and Hung use the same method as Han and
Kanade.

2.4 Reconstruction quality measurement

Each of the three types of data we collected (synthetic, simulation, and real-
world) requires a different method for measuring reconstruction quality.

For all three data sources, we report reprojection error, i.e., the RMS error
between the actual observed 2D points and the projections of the corresponding
reconstructed 3D points.

For the synthetic data, we know the ground truth for the 3D points but the
reconstruction is only known up to a similarity ambiguity. In this case we find a
least-squares estimate of a projective transformation between the ground truth
data and the reconstruction, then report the RMS error for the transformed 3D
reconstructions of the points. This only measures the quality of the projective
reconstruction, not the Euclidean reconstruction of the 3D data.

3 Results

Here we describe our experiments applying the three Euclidean reconstruction
algorithms to each of three types of 2D data. The data sources have already
been described. We generated the synthetic data in Gnu Octave. The simulated
images of Housestead’s Fort were rendered with OpenGL from a VRML 1.0
model. We used Hess’ implementation of SIFT and BBF [21]. For RANSAC with
fundamental matrix estimation, we used OpenCV [19]. The maximum distance
from an inlier correspondence and its predicted epipolar line was 0.5 pixels.

3.1 Synthetic data

Table 3.1 shows the performance of each reconstruction algorithm in terms of re-
projection error and 3D point reconstruction error for the 9 points we randomly
generated on a 1m-radius sphere. The Han and Kanade method performed best
in terms of reprojection of the Euclidean reconstruction. All algorithms per-
formed very well in terms of projective reconstruction, with error less than 0.1%
of the distance to the camera.



Table 1. Results for synthetic data experiment

Method 2D RMS (pixels) 3D RMS (meters)

Christy and Horaud [9] 0.6660 0.0081
Han and Kanade [10] 0.0566 0.0081
Tang and Hung [11] 0.3387 0.0072

3.2 Simulation data

On our simulation images, SIFT detected an average of 439 feature points per
image. After BBF search and RANSAC we obtained an average of 29 matching
keypoints across all three images in each triplet.

Table 3.2 shows the performance of each reconstruction algorithm in terms of
reprojection error over all 42 image triplets in the simulation sequence. (Recall
that we do not have ground truth for the 3D points in the simulation.) The Han
and Kanade method performed best.

Table 2. Results for simulation data experiment

Method 2D RMS (pixels)

Christy and Horaud [9] 2.3738
Han and Kanade [10] 1.0297
Tang and Hung [11] 7.0835

3.3 Outdoor data

On our undistorted outdoor images, SIFT detected an average of 2290 feature
points. After BBF search and RANSAC we obtained an average of 122 matching
keypoints across all three images in each triplet.

Table 3.3 shows the performance of each reconstruction algorithm in terms
of reprojection error, over all 19 image triplets in the image sequence. (Recall
that we do not have ground truth for the 3D points in the real-world data.) The
Han and Kanade method again performed best.

Table 3. Results for outdoor data experiment

Method 2D RMS (pixels)

Christy and Horaud [9] 2.2060
Han and Kanade [10] 1.1813
Tang and Hung [11] 1.8826



4 Discussion and Conclusion

One way to minimize the cost of robots using vision-based localization and map-
ping is to eliminate all sensors except for a single camera. However, bootstrap-
ping 3D localization and mapping without any a priori knowledge requires 2D
correspondences across 3 views, a good Euclidean reconstruction algorithm, and
some way to resolve the scale ambiguity.

In this paper, we have shown that Han and Kanade’s reconstruction ap-
proach, combined with SIFT 2D feature extraction, is well-suited to the 3D map
bootstrapping task. With perfect correspondences, the method achieves excel-
lent results, in terms of both reprojection error and 3D projective reconstruction
error. As we increase the realism of the test, moving from synthetic data to a
VRML simulation to real-world outdoor imagery, the error increases, as ex-
pected, but Han and Kanade’s approach still outperforms two other methods on
the same data.

Techniques like those demonstrated in this paper will be extremely useful in
the constructon of low-cost autonomous mobile robots able to perceive and act
in highly uncertain environments.

In future work, we plan to deploy the reconstruction technique on a proto-
type teleoperated landmine detection robot and explore methods for growing an
established map once the scale ambiguity is resolved.
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