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Abstract

Color is a powerful feature for tracking deformable objects in image sequences with complex backgrounds. The color particle filter has
proven to be an efficient, simple and robust tracking algorithm. In this paper, we present a hybrid valued sequential state estimation
algorithm, and its particle filter-based implementation, that extends the standard color particle filter in two ways. First, target detection
and deletion are embedded in the particle filter without relying on an external track initialization and cancellation algorithm. Second, the
algorithm is able to track multiple objects sharing the same color description while keeping the attractive properties of the original color
particle filter. The performance of the proposed filter are evaluated qualitatively on various real-world video sequences with appearing
and disappearing targets.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Tracking moving objects in video sequences is a central
concern in computer vision. Reliable visual tracking is
indispensable in many emerging vision applications such
as automatic video surveillance, human–computer interfac-
es and robotics. Traditionally, the tracking problem is for-
mulated as sequential recursive estimation [1]: having an
estimate of the probability distribution of the target in
the previous frame, the problem is to estimate the target
distribution in the new frame using all available prior
knowledge and the new information brought by the new
frame. The state–space formalism, where the current
tracked object properties are described in an unknown
state vector updated by noisy measurements, is very well
adapted to model the tracking. Unfortunately the sequen-
tial estimation has an analytic solution under very restric-
tive hypotheses. The well known Kalman filter [2,3] is
such a solution, and is optimal for the class of linear Gauss-
ian estimation problems. The particle filter (PF), a numer-
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ical method that allows to find an approximate solution to
the sequential estimation [4], has been successfully used in
many target tracking problems [1] and visual tracking
problems [5]. Its success, in comparison with the Kalman
filter, can be explained by its capability to cope with mul-
ti-modal measurements densities and non-linear observa-
tion models. In visual tracking, multi-modality of the
measurement density is very frequent due to the presence
of distractors – scene elements which has a similar appear-
ance to the target [6]. The observation model, which relates
the state vector to the measurements, is non-linear because
image data (very redundant) undergoes feature extraction,
a highly non-linear operation.

1.1. Joint detection and tracking

Our work evolves from the adaptive color-based particle
filter proposed independently by [7,8]. This color-based
tracker uses color histograms as image features following
the popular Mean-Shift tracker by Comaniciu et al. [9].
Since color histograms are robust to partial occlusion,
are scale and rotation invariant, the resulting algorithm
can efficiently and successfully handle non-rigid deforma-
oint detection and tracking of color objects, Image Vis. Comput.
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tion of the target and rapidly changing dynamics in com-
plex unknown background. However, it is designed for
tracking a single object and uses an external mechanism
to initialize the track. If multiple targets are present in
the scene, but they are distinctive from each other, they
can be tracked independently by running multiple instances
of the color particle filter with different target models. In
contrast, when several objects sharing the same color
description are present in the scene (e.g. football game tele-
cast, recordings of colonies of ants or bees, etc.), the color
particle filter approach fails either because particles are
attracted by the different objects and the computed state
estimates are meaningless, or particles tend to track only
the best-fitting target – a phenomenon called coalescence
[10]. In both cases alternative approaches must be found.

In this paper we develop a particle filter which extends
the color particle filter of [7,8] by integrating the detection
of new objects in the algorithm, and by tracking multiple
similar objects. Detection of new targets entering the scene,
i.e., track initialization, is embedded in the particle filter
without relying on an external target detection algorithm.
Also, the proposed algorithm can track multiple objects
sharing the same color description and moving within the
scene. The key feature in our approach is the augmentation
of the state vector by a discrete-valued variable which rep-
resents the number of existing objects in the video
sequence. This random variable is incorporated into the
state vector and modeled as an M-state Markov chain. In
this way, the problem of joint detection and tracking of
multiple objects translates into a hybrid valued (continu-
ous–discrete) sequential state estimation problem. We pro-
pose a conceptual solution to the joint detection and
tracking problem in the Bayesian framework and we imple-
ment it using sequential Monte Carlo methods. Experimen-
tal results on real data show that the tracker, while keeping
the attractive properties of the original color particle filter,
can detect objects entering or leaving the scene; it keeps an
internal list of observable objects (that can vary from 0 to a
predefined number) without the need of external detection
and deletion mechanisms.

1.2. Related work

Mixed or hybrid valued (continuous–discrete) sequential
state estimation, and its particle-based solution, have been
successful in many video sequence analysis problems. In
[11], the proposed tracking algorithm switches between dif-
ferent motion models depending on a discrete label, included
in the state vector, which encodes which one of a discrete set
of motion models is active. Black and Jepson proposed a
mixed state–space approach to gesture/expression recogni-
tion [12]. First several models of temporal trajectories are
trained. Next the models are matched against new unknown
trajectories using a PF-based algorithm in which the state
vector contains a label of the model that matches the
observed trajectory. The Bayesian multiple-blob tracker
[13], BraMBLe, manages multiple blob tracking also by
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incorporating the number of visible objects into the state vec-
tor. The multi-blob observation likelihood is based on filter
bank responses which may come from the background image
or one of the object models. In contrast to BraMBLe, which
requires background and foreground models, the method
that we propose does not need a background estimation
and can be used directly in camera moving sequences. More-
over, using color for describing the targets leads to small
state vector size in comparison with contour tracking. The
low dimensionality of the state–space permits the use of a
smaller number of particles for the same estimzation accuracy.
This allows the algorithm to track many similar objects given
some computational resources.

Classically the problem of visual tracking of multiple
objects is tackled using data association techniques [14]. Ras-
mussen and Hager [6] use the Joint Probabilistic Data Asso-
ciation Filter (JPDAF) to track several different objects.
Their main concern is to find correspondence between image
measurements and tracked objects. Other approaches
include [15,16] where moving objects are modeled as blobs,
i.e., groups of connected pixels, which are detected in the
images using a combination of stereo vision and background
modeling. MacCormick and Blake [10] studied particle-
based tracking of multiple identical objects. They proposed
an exclusion principle to avoid the coalescence onto the
best-fitting target when two targets come close to each other.
This principle prevents a single image feature from being
simultaneously reinforced by mutually exclusive hypotheses
(either the image feature is generated by one target or by the
other, but not both at the same time). Our approach circum-
vents the need of the exclusion principle by integrating into
the filter the target-merge operation (one target occludes
the other) and target-split operation (the two targets are vis-
ible again) through the object existence variable. Recently
the mixture particle filter has been proposed [17]. In this
work, the coalescence of multiple targets is avoided by main-
taining the multi-modality of the state posterior density over
time. This is done by modeling the state density as a non-
parametric mixture. Each particle receives, in addition to a
weight, an indicator describing to which mixture component
it belongs. A re-clustering procedure must be applied regu-
larly to take into account appearing and disappearing
modes.

1.3. Paper organization

The paper is organized as follows. In the next section
we formulate joint detection and tracking of multiple
targets as a sequential state estimation problem. First
we explain how the discrete variable denoting the num-
ber of targets is modeled. Then the two step conceptual
solution to the hybrid estimation problem is given. In
Section 3, we present a numerical solution to the esti-
mation problem which is obtained by a particle filter
using color histograms as target features. Section 4 is
devoted to experiments. Conclusions are given in the last
section.
oint detection and tracking of color objects, Image Vis. Comput.



Fig. 1. A Markov chain of Ek variable for M = 2.
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2. Sequential recursive estimation

The aim is to perform simultaneous detection and track-
ing of objects described by some image features (we chose
the color histograms), in a video sequence Zk = {z1,
z2, . . .,zk}, where zj, is the image frame at discrete-time
(sequence) index j = 1, . . .,k. This task is to be performed
in a sequential manner, that is as the image frames become
available over time. In the following, we first briefly review
sequential recursive estimation for the case of a single tar-
get. The reader is referred to [18,1] for more details. We
then provide in detail the proposed formal recursive solu-
tion for multiple-target tracking.

2.1. Bayesian estimation for single-target tracking

In the state–space formalism, the state of the target is
described by a state vector xk containing parameters such
as target position, velocity, angle, or size. The target
evolves according to the following discrete-time stochastic
model called the dynamic model

xk ¼ fk�1ðxk�1; vk�1Þ; ð1Þ
where fk�1 is a known function and vk�1 is the process
noise. Equivalently, target evolution can be characterized
by the transition density p(xkjxk�1). The target state is relat-
ed to the measurements via the observation model

zk ¼ hk�1ðxk;wkÞ; ð2Þ
where hk�1 is a known function and wk�1 is the measure-
ment noise. Again, the observation density p(zkjxk) charac-
terizes equivalently the relationship between the state
vector and the measurement. Given the sequence of all
available measurements Zk = {zi, i = 1, . . .,k}, we seek
p(xkjZk). The Bayesian estimation allows to find p(xkjZk)
in a recursive manner, i.e., in terms of the posterior density
at previous time step p(xk�1jZk�1). The conceptual solution
is found in two steps. Using the transition density one can
perform the prediction step:

pðxkjZk�1Þ ¼
Z

pðxkjxk�1Þpðxk�1jZk�1Þdxk�1: ð3Þ

The prediction step makes use of the available knowledge
of target evolution encoded in the dynamic model. The up-
date step uses the measurement zk, available at time k, to
update the predicted density:

pðxkjZkÞ / pðzkjxkÞpðxkjZk�1Þ: ð4Þ
These two steps, repeated for each frame, allow to compute
recursively the state density for each frame.

2.2. Bayesian estimation for detection and multi-target

tracking

In the case of multiple targets, each target i is character-
ized by one state vector xi,k and one transition density
p(xkjxk�1) if independent motion models are assumed. This
Please cite this article in press as: J. Czyz et al., A particle filter for j
(2006), doi:10.1016/j.imavis.2006.07.027
results in a multi-object state vector Xk ¼ ðxT
1;k; . . . ; xT

M ;kÞ
T

where superscript T stands for the matrix transpose [19].
However the detection of appearing objects and deletion
of disappearing objects is not integrated in the estimation
process. To accommodate the Bayesian estimation with
detection and varying number of targets, the state vector
Xk is augmented by a discrete variable Ek, which we call
existence variable, which denotes the number of visible or
existing objects in the video frame k. The problem then
becomes a jump Markov or hybrid estimation problem
[20]. In the following we first describe how the existence
variable Ek is modeled, we then present the proposed mul-
ti-target sequential estimation.

2.2.1. Object detection and deletion

The existence variable Ek is a discrete-valued random
variable and E 2 E ¼ f0; 1; . . . ;Mg with M being the max-
imum expected number of objects. The dynamics of this
random variable is modeled by an M-state Markov chain,
whose transitions are specified by an (M + 1) · (M + 1)
transitional probability matrix (TPM) P = [pij], where

pij ¼ PrfEk ¼ jjEk�1 ¼ ig; ði; j 2 EÞ ð5Þ
is the probability of a transition from i objects existing at
time k � 1 to j objects at time k. The elements of the
TPM satisfy

PM
j¼1pij ¼ 1 for each i; j 2 E. The dynamics

of variable E is fully specified by the TPM and its initial
probabilities at time k = 0, i.e., li = Pr{E0 = i}, for
i = 0,1, . . .,M.

For illustration, if we were to detect and track a single
object (i.e., M = 1), the TPM is a 2 · 2 matrix given by:

P ¼
ð1� P bÞ P b

P d ð1� P dÞ

� �
;

where Pb and Pd represent the probability of object ‘‘birth’’
(entering the scene) and ‘‘death’’ (leaving the scene), respec-
tively. Similarly, for M = 2, a possible Markov chain which
does not allow transitions from zero to two objects and
from two to zero objects, is shown in Fig. 1. The TPM of
this model is given by:

P ¼
ð1� P bÞ P b 0

P d ð1� P d � P mÞ P m

0 P r ð1� P rÞ

2
64

3
75:

Again Pb, Pd, Pm and Pr are the design parameters. For
higher values of M a similar model must be adopted.

2.2.2. Formal solution and state estimates

This section describes the conceptual solution to inte-
grated detection and tracking of multiple objects in the
sequential Bayesian estimation framework.
oint detection and tracking of color objects, Image Vis. Comput.
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Let us first introduce a new state vector yk, which con-
sists of variable Ek and the state vector xi,k for each ‘‘exist-
ing’’ object i. The size of yk depends on the value of Ek that
is:

yk ¼

Ek if Ek ¼ 0;

½xT
1;kEk�T if Ek ¼ 1;

½xT
1;kxT

2;kEk�T if Ek ¼ 2;

..

. ..
.

½xT
1;k . . . xT

M ;kEk�T if Ek ¼ M ;

8>>>>>>>><
>>>>>>>>:

; ð6Þ

where xm,k is the state vector of object m = 1, . . .,Ek at time
k. Given the posterior density p(yk�1jZk�1), and the latest
available image zk in the video sequence, the goal is to con-
struct the posterior density at time k, that is p(ykjZk). This
problem is an instance of sequential hybrid estimation,
since one component of the state vector is discrete valued,
while the rest is continuous valued.

Once the posterior pdf p(ykjZk) is known, the probabil-
ity Pm = Pr{Ek = mjZk} that there are m objects in a video
sequence at time k is computed as the marginal of p(ykjZk),
i.e.:

P m ¼
Z

. . .

Z
pðx1;k; . . . ; xm;k;Ek ¼ mjZkÞ

� dx1;k . . . dxm;k ð7Þ

for m = 1, . . .,M. The case m = 0 is trivial, since in this case
p(ykjZk) reduces to Pr{Ek = 0jZk}. The MAP estimate of
the number of objects at time k is then determined as:

m̂k ¼ arg max
m¼0;1;...;M

P m: ð8Þ

This estimate provides the means for automatic detec-
tion of new object appearance and the existing object
disappearance. The posterior pdfs of state components
corresponding to individual objects in the scene are then
computed as the marginals of pdf pðx1;k; . . . ; xm̂;k;
Ek ¼ m̂jZkÞ.

The two step procedure consisting of prediction and
update is described in the following.

2.2.3. Prediction step

Suppose that m objects are present and visible in the
scene with 0 6 m 6M. In this case Ek = m and the predict-
ed state density can be expressed as:

pðx1;k; . . . ; xm;k;Ek ¼ mjZk�1Þ ¼
XM

j¼0

pj; ð9Þ

where, using notation

Xj
k � x1;k . . . xj;k; ð10Þ

we have

pj ¼
Z

pðXm
k ;Ek ¼ mjXj

k�1;Ek�1 ¼ j;Zk�1Þ

� pðXj
k�1;Ek�1 ¼ jjZk�1ÞdXj

k�1 ð11Þ
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for j = 0, . . .,M. Eq. (9) is a prediction step because on its
right hand side (RHS) features the posterior pdf at time
k � 1. Further simplification of Eq. (11) follows from

pðXm
k ;Ek ¼ mjXj

k�1;Ek�1 ¼ j;Zk�1Þ
¼ pðXm

k jX
j
k�1;Ek ¼ m;Ek�1 ¼ jÞPrfEk ¼ mjEk�1 ¼ jg: ð12Þ

Note that the second term on the RHS of Eq. (12) is an ele-
ment of the TPM, i.e., Pr{Ek = mjEk�1 = j} = pjm. Assum-
ing that objects’ states (kinematics and size parameters) are
mutually independent, the first term of the RHS of Eq. (12)
can be expressed as:

pðXm
k jX

j
k�1;Ek ¼ m;Ek�1 ¼ jÞ

¼

Qm
i¼1

pðxi;kjxi;k�1Þ if m ¼ j;

Qj
i¼1

pðxi;kjxi;k�1Þ
Qm

i¼jþ1

pbðxi;kÞ if m > j;

Qj
i¼1

½pðxi;kjxi;k�1Þ�di if m < j;

8>>>>>>>><
>>>>>>>>:

;

where

• p(xi,kjxi,k�1) is the transitional density of object i,
defined by the object dynamic model, see Eq. (1). For
simplicity, we assume independent motion models of
the targets. In theory nothing prevents from creating
joint motion models. However, this would require huge
amounts of data to train the models.

• pb(xi,k) is the initial object pdf on its appearance, which
in the Bayesian framework is assumed to be known
(subscript b stands for ‘‘birth’’). For example, we can
expect the object to appear in a certain region (e.g. along
the edges of the image), with a certain velocity, length
and width. If this initial knowledge is imprecise, we
can model pb(xi,k) with a uniform density.

• d1, d2, . . .,dj, which features in the case m < j, is a ran-
dom binary sequence, such that di 2 {0,1} andPj

i¼1di ¼ m. Note that the distribution of the di (which
may depend on xi) reflect our knowledge on disappear-
ance of object i. Again, Pr{di = 0jxi} might be higher if
the object xi is close to the edges of the image. If this
knowledge is imprecise, we can model these distributions
by uniform distributions.

2.2.4. Update step

The update step results from the application of the
Bayes rule and formally states:

pðXm
k ;Ek ¼ mjZkÞ

¼ pðzkjXm
k ;Ek ¼ mÞpðXm

k ;Ek ¼ mjZk�1Þ
pðzkjZk�1Þ

; ð13Þ

where pðXm
k ;Ek ¼ mjZk�1Þ is the prediction density given

by Eq. (9) and pðzkjXm
k ;Ek ¼ mÞ is the image likelihood

function. From image zk we extract a set of features
qi,k, for each of i = 1, . . .,m objects, and use them as
oint detection and tracking of color objects, Image Vis. Comput.
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measurements (the choice of the features is discussed in
Section 3.2). Assuming these features are mutually inde-
pendent from one object to another, we can replace
pðzkjXm

k ;Ek ¼ mÞ with

pðq1;k; . . . ; qm;kjXm
k ;Ek ¼ mÞ ¼

Ym

i¼1

pðqi;kjxi;kÞ: ð14Þ

As the image region where qi,k is computed is encoded in
the state vector xi,k there is no problem of associating mea-
surements to state vectors. The assumption that object fea-
tures are independent for different objects holds only if the
image region inside which we compute object features are
non-overlapping. In the overlapping case, the same image
feature is attributed to two different objects, which is not
realistic. In order to prevent several objects from being
associated to the same feature, we impose that the distance
between two objects cannot be smaller than a threshold.
Therefore when a target A passes in front of a target B
and occludes it, only one target will be existing. The draw-
back is that when B reappears, there must be some logic
that says ‘‘OK this is B again’’. For the time being, B will
be simply re-detected and considered as a new object. To
solve this problem one option is to have a ‘‘track manage-
ment system’’ on top of the presented algorithm. This sys-
tem would store the position, heading and speed (and
possibly other useful attributes) of the object when it disap-
pears behind the occlusion and compare it to the position
of a new object that appears in the vicinity (both in space
and time). Using simple heuristics the correspondence be-
tween the disappearance/apparition could be established
in many cases. Another option is to use a multi-camera set-
up. The proposed algorithm would output a list of 2D
target positions for each camera view that are collected
to a central data association module. This module would
perform data association and output 3D positions of the
targets. The problem of occlusion is largely avoided in this
case since when a target is occluded in one view, it is often
visible in the other.

The described conceptual solution for simultaneous
detection and tracking of a varying number of objects next
has to be implemented. Note that the hybrid sequential
estimation is non-linear even if the dynamic and observa-
tion models are linear [1], a Kalman filter is therefore inap-
propriate for solving the problem and one must look for
approximations.
3. Color-based particle filter

The general multi-target sequential estimation presented
in the previous section can be adapted to different applica-
tions by an appropriate choice of the dynamic and observa-
tion models. In visual tracking the state vector
characterizes the target (region or shape parameters). The
observation model reflects which image features will be
used to update the current state estimate. As in [9,7,8],
we use color histograms extracted from the target region
Please cite this article in press as: J. Czyz et al., A particle filter for j
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as image feature. This choice is motivated by ease of imple-
mentation, efficiency and robustness. However, the general
framework for joint detection and tracking can be adapted
to other observation features such as appearance models
[21].

3.1. Dynamic model

The state vector of a single object typically consists of
kinematic and region parameters. We adopt the following
state vector

xk ¼ ½xkykH kW k�T; ð15Þ
where (xk,yk) denotes the center of the image region (in our
case a rectangle) within which the computation of object’s
color histogram is carried out; Hk and Wk denote the image
region parameters (in our case its width and height); super-
script T in Eq. (15) stands for the matrix transpose. Object
motion and the dynamics of its size are modeled by a ran-
dom walk, that is the state equation is linear and given by:

xk ¼ xk�1 þ wk�1: ð16Þ
Process noise wk�1 in Eq. (16) is assumed to be white, zero-
mean Gaussian, with the covariance matrix Q. Other mo-
tion models (e.g. constant velocity) and higher dimensional
state vectors (e.g. one could include the aspect ratio change
rate of the image region rectangle in the state vector) might
be more appropriate depending on the application.

3.2. Color measurement model

Following [9,7,8], we do not use the entire image zk as
the measurement, but rather we extract from the image
the color histogram qk, computed inside the rectangular
region whose location and size are specified by the state
vector xk: the center of the region is in (xk, yk); the size
of the region is determined by (Hk, Wk).

We adopt the Gaussian density for the likelihood func-
tion of the measured color histogram as follows:

pðqkjxkÞ /NðDk; 0; r2Þ ¼ 1ffiffiffiffiffiffi
2p
p

r
exp � D2

k

2r2

� �
; ð17Þ

where Dk = dist[q*,qk] is the distance between (i) the refer-
ence histogram q* of objects to be tracked and (ii) the his-
togram qk computed from image zk in the region defined by
the state vector xk. The standard deviation r of the Gauss-
ian density in Eq. (17) is a design parameter.

Suppose q* = {q*(u)}u=1, . . ., U and qk = {qk(u)}u=1, . . ., U

are the two histograms calculated over U bins. We adopt
the distance Dk between two histograms derived in [9] from
the Bhattacharyya similarity coefficient, defined as:

Dk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

XU

u¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q�ðuÞqkðuÞ

pvuut : ð18Þ

The computation of histograms is typically done in the
RGB space or HSV space [8]. A weighting function, which
oint detection and tracking of color objects, Image Vis. Comput.
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assigns smaller weights to the pixels that are further away
from the region center, is often applied in computing the
histograms. In this way the reliability of the color distribu-
tion is increased when boundary pixels belong to the back-
ground or get occluded.

In the framework of multiple object, we must extract
multiple histograms from the measurement zk as specified
by Eq. (14). Therefore, based on Eq. (17), the multi-object
observation likelihood becomes

pðzkjXm
k ;Ek ¼ mÞ / 1ffiffiffiffiffiffi

2p
p

r
exp � 1

2r2

Xm

i¼1

D2
i;k

( )
; ð19Þ

where Di,k = dist[q*,qi,k] is the distance between ith object
color histogram and the reference color histogram. Note
that qi,k is the color histogram computed from zk in the re-
gion specified by xi,k.

We point out that the described measurement likelihood
function is not necessarily restricted to color video sequences
– recently it has been applied for detection and tracking of
objects in monochromatic FLIR imagery [22].

3.3. Particle filter

Particle filters are sequential Monte Carlo techniques
specifically designed for sequential Bayesian estimation
when systems are non-linear and random elements are
non-Gaussian. The hybrid estimation presented in the pre-
vious section, with the dynamic model and the highly non-
linear observation model described above, is carried out
using a particle filter. Particle filters approximate the pos-
terior density p(ykjZk) by a weighted set of random samples
or particles. In our case, a particle of index n is character-
ized by a certain value of En

k variable and the corresponding
number of state vectors xn

i;k where i ¼ 1; . . . ;En
k , i.e.,

yn
k ¼ En

k ; x
n
1;k; . . . ; xn

En
k ;k

h i
ðn ¼ 1; . . . ;NÞ;

where N is the number of particles. The pseudo-code of
the main steps of this filter (single cycle) are presented in
Table 1
Particle filter pseudo-code (single cycle)

½fyn
kg

N
n¼1� ¼ PF½fyn

k�1g
N
n¼1; zk �

(1) Transitions of Ek�1 variable (random transition of the number of
existing objects):
½fEn

kg
N
n¼1� ¼ ETrans½fEn

k�1g
N
n¼1;P�

(2) FOR n = 1:N
a. Based on ðEn

k�1;E
n
kÞ pair, draw at random xn

1;k ; . . . ;xn
En

k ;k
;

b. Evaluate importance weight ~wn
k (up to a normalizing

constant) using Eq. (24).
(3) END FOR
(4) Normalize importance weights

a. Calculate total weight: t ¼ SUM½f~wn
kg

N
n¼1�

b. FOR n = 1:N
• Normalize: wn

k ¼ t�1 ~wn
k

END FOR
(5) Resample:
½fyn

k ;�;�g
N
n¼1� ¼ RESAMPLE½fyn

k ;w
n
kg

N
n¼1�

(6) Compute the output of the PF
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Table 1. The input to the PF are the particles at time
k � 1 and the image at time k; the output are the particles
at time k.

Next we describe in more detail each step of the algo-
rithm of Table 1.

• The first step in the algorithm represents random transi-
tion of En

k�1 to En
k based on the TPM P. This is done by

implementing the rule that if En
k�1 ¼ i then En

k should be
set to j with probability pij. See for example [1] (Table
3.9) for more details.

• Step 2.a of Table 1 follows from Eq. (13). If En
k�1 ¼ En

k ,
then we draw xn

i;k � pðxkjzk; x
n
i;k�1Þ for i ¼ 1; . . . ;En

k . In
our implementation we use the transitional prior for this
purpose, that is xn

i;k � pðxkjxn
i;k�1Þ. If the number of

objects is increased from k � 1 to k, i.e., En
k�1 < En

k , then
for the objects that continue to exist we draw xn

i;k using
the transitional prior (as above), but for the newborn
objects we draw particles from pb(xk). Finally if
En

k�1 > En
k , we select at random En

k objects from the pos-
sible En

k�1, with equal probability. The selected objects
continue to exist (the others do not) and for them we
draw particles using the transitional prior (as above).

• Step 2.b follows from Eqs. (14) and (19). In order to per-
form its role of a detector, the particle filter computes its
importance weights based on the likelihood ratio

LkðmÞ ¼
Ym

i¼1

pðqi;kjxi;kÞ
pðqB

i;kjxi;kÞ
; ð20Þ

where qB
i;k is the color histogram of the image background

computed in the region specified by xi, k. Using Eq. (19),
the likelihood ratio can be computed for each existing par-
ticle n as

Ln
kðEn

kÞ ¼ exp � 1

2r2

XEn
k

i¼1

Dn
i;k

� �2

� Dn;B
i;k

� �2
� �( )

; ð21Þ

where

Dn
i;k ¼ dist q�; qn

i;kðzkÞ
h i

ð22Þ

is the distance between the reference histogram q* and the
histogram qn

i;k computed from zk in the region specified by
xn

i;k and

Dn;B
i;k ¼ dist q�; qn

i;kðzBÞ
h i

ð23Þ

is the distance between the reference histogram q* and the
histogram qn

i;kðzBÞ computed at the same position but from
the background image zB. The unnormalized importance
weights are computed for each particle as:

~wn
k ¼

1 if En
k ¼ 0;

Ln
kðEn

kÞ if En
k > 0:

�
ð24Þ

Note that if the distance sum
PEn

k
i¼1Dn

i;k in Eq. (21) is smaller
than the background distance sum

PEn
k

i¼1Dn;B
i;k , then the

weight ~wn
i;k is greater than 1, and this particle has a better

chance of survival in the resampling step.Strictly speaking,
oint detection and tracking of color objects, Image Vis. Comput.



Fig. 2. Surveillance camera sequence: detected and tracked persons are marked with a rectangle.
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the computation of Lk requires that the color histogram of
the image background is known at every location of the
image. In many cases this is impractical (especially when
the camera is moving and the background is varying),
hence we approximate the distance DB

i;k between the target
histogram and the background histogram as constant over
all the image and for i = 1, . . .,M. Introducing the constant
CB ¼ expfðDB

i;kÞ
2
=2r2g the likelihood ratio becomes

Lk ¼
Ym

i

exp
1

2r2
ðDB

i;kÞ
2

� �
exp � 1

2r2

Xm

i¼1

D2
i;k

( )
ð25Þ

¼ðCBÞm exp � 1

2r2

Xm

i¼1

D2
i;k

( )
: ð26Þ

We thus treat the constant CB as a design parameter as in
[7]. CB is adapted to take into account the similarity be-
tween the target and the background histogram. An addi-
tional condition must be added. To prevent a region
histogram from being attributed to two overlapping objects
and to avoid the appearance of multiple objects on the
same image region, the weight of the particle is set to zero
if two objects are too close to each other, i.e., ~wn

k ¼ 0 if
ðxn

j;k � xn
i;kÞ

2 þ ðyn
j;k � yn

i;kÞ
2
< R2 where R2 is a constant fixed

by the user.

• For the resampling step 5, standard O(N) algorithms
exist, see for example Table 3.2 in [1].

• The output of the PF (step 6) is carried out for the
reporting purposes, and consists of estimation of the
number of objects m̂ and the estimation of objects’
states. The number of objects is estimated based on
Eq. (8), where Pr{Ek = mjZk} is computed in the PF as:

PrfEk ¼ mjZkg ¼
1

N

XN

n¼1

dðEn
k ;mÞ ð27Þ

and d(i, j) = 1, if i = j, and zero otherwise (Kroneker delta).
The estimate of the state vector of object i ¼ 1; . . . ; m̂ is
then

x̂i;kjk ¼

PN
n¼1

xn
i;kdðEn

k ; iÞ

PN
n¼1

dðEn
k ; iÞ

: ð28Þ
Fig. 3. The probability of existence for objects 1 and 2 in the video
sequence of Fig. 2.
4. Experimental results

Experiments were conducted on several real-world
image sequences. The sequences can be found at http://eu-
terpe.tele.ucl.ac.be/Tracking/pf.html. The practical details
of the implemented algorithm are described next.

The transitional probability matrix is simplified as
described in Section 2.2.1: only transitions from mk�1

objects at time k � 1 to mk�1 ± 1 objects at k are allowed,
with probability 0.05. In this way the TPM is a tri-diagonal
Please cite this article in press as: J. Czyz et al., A particle filter for j
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matrix, with approximately 5% of the particles in the state
with Ek = mk�1 ± 1. The probability that the number of
objects remains unchanged is accordingly set to 0.90. This
simplification of the TPM means that if two objects appear
at the same time, the estimate of the object number m̂ will
be incremented in two steps.

The distribution of newborn particles pb(xi,k) was
adopted to be a uniform density over the state vector vari-
ables (i.e., no prior knowledge as to where the objects will
appear). Finally, the color histograms were computed in
the RGB color space using 8 · 8 · 8 bins as in [8]. The tar-
get histogram is acquired using a few training frames. In
each frame, the target region is selected manually and a his-
togram is computed from the region. The target histogram
is obtained by averaging the histograms obtained for each
frame.

The number of particles required by the filter depends
on the selected value of M and the prior knowledge on
where the objects are likely to appear (this knowledge is
modeled by pb(xi,k)). For M = 1, the filter with up to
N = 150 particles achieves adequate accuracy both for
detection and estimation. For M = 6 identical objects, it
was necessary to use N = 5000 particles in order to detect
rapidly new appearing objects. This number can certainly
be decreased using a better prior pb(xi,k) or a more ade-
quate dynamic model depending on the application. Also,
that the transition density that we use as proposal density
is not optimal [23]. As we are primarily interested in testing
the viability of the algorithm, we used the simplest models
and the least prior knowledge in order to stay independent
of a particular application.

In the first example the objective is to detect and
track two different objects (i.e., two humans with differ-
ent color histograms) in a video sequence recorded with
a surveillance camera. The image resolution is 435 ·
343 pixels. The first person (person A) wears a white
shirt, with a black tie and his pants are black. The sec-
oint detection and tracking of color objects, Image Vis. Comput.
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Fig. 4. Can sequence: detected and tracked cans are marked with a rectangle.
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ond person (person B) is in a blue t-shirt. There are 200
image frames available for detection and tracking, with a
Please cite this article in press as: J. Czyz et al., A particle filter for j
(2006), doi:10.1016/j.imavis.2006.07.027
camera moving slowly in order to follow person A. The
estimated probabilities of existence of both person A and
oint detection and tracking of color objects, Image Vis. Comput.



Fig. 5. Football sequence: detected and tracked players are marked with a rectangle.
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B are shown in Fig. 2. Eight selected image frames are
displayed in Fig. 2. Here we effectively run two particle
filters in parallel, each tuned (by the reference histogram)
to detect and track its respective object. Each filter is
using 150 particles, with r = 0.8 and CB = 30. Person
A appears in the first image frame and continues to exist
throughout the video sequence. The particle filter detects
it in the frame number 14: the probability of existence of
person 1 jumps to the value of 1 between frames 14 and
16, as indicated in Fig. 3. A detected object/person is
indicated in each image by a white rectangle, located at
the estimated object position. Person B enters the scene
(from the left) in frame 50 and is detected by the PF
in frame 60. Frame 79 is noteworthy: here person B
partially occludes person A, and this is very well reflect-
ed in the drop of the probability of existence for person
A; see again Fig. 3. In frame 160, person B leaves the
scene, and hence its probability of existence drops to
zero; person A is continued to be tracked until the last
frame.

In the second example, the aim is to detect and track
three identical red and white-colored cans in a cluttered
background. The complete sequence is 600 frames long
and can be viewed on the web site given above. Fig. 4
Please cite this article in press as: J. Czyz et al., A particle filter for j
(2006), doi:10.1016/j.imavis.2006.07.027
shows an interesting event: one can is passing in front of
the second. The filter is using N = 1000 particles with
parameters r = 0.6 and CB = 70, the image size is 640 ·
480. The two cans appear at frame 101 and are detected
at frame 151. At frame 183, one can is occluded by the
other. The second object is deleted by the filter at frame
187. At frame 226, the second can is again visible and the
filter detects its presence at frame 232. Note that the filter
does not perform data association. As the object are not
distinguishable, it cannot maintain the ‘‘identity’’ of the
cans when they merge and subsequently split.

In the third example the objective is to detect (as they
enter or leave the scene) and track the soccer players of
the team in red and black shirts (with white-colored num-
bers on their back). Fig. 5 displays 12 selected frames of
this video sequence, with a moving camera. The image res-
olution is 780 · 320 pixels. The filter is using N = 5000 par-
ticles, with parameters r = 0.6 and CB = 80. We observe
that initially five red players are present in the scene.
Frames 4, 9, 35 and 67 show that the first, second, third
and fourth player are being detected, respectively. Hence
m̂67 ¼ 4. At frame 99, the first detected player leaves the
scene. It is deleted by the filter at frame 102, m̂102 switches
back to 3. At the same time, another player is entering the
oint detection and tracking of color objects, Image Vis. Comput.
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scene. It is detected at frame 141. One of the players leaves
the scene at the top of frame 173, and subsequently it is
deleted. This demonstrates a quick response of the particle
filter to the change of the number of objects. All three
remaining players are tracked successfully until the last
frame.

The algorithm processing time is of course related to the
number of particles needed to make the algorithm work.
When the number of objects is small (i.e., 1, 2 objects), with
‘‘gentle’’ motion (i.e., the dynamical model is accurately
describing the motion), then the number of particles is
below 500. In that case, our C++ implementation can
run at 15 frames/s on a 2.8 GHz CPU. However, in the
football sequence showed in the experiments, there are five
objects to detect and track and the required number of par-
ticles is then 5000. In that case the algorithm works at
about 1 frame/s. Thus the main drawback of the proposed
approach is that the number of particles increases with the
number of objects (i.e., the size of the state vector). An
excellent analysis of the relationship between the state vec-
tor size and the number of particles was presented in [24]
and can be summarized as follows: using a smart proposal
density in the PF, this relationship can be made linear,
otherwise it tends to be exponential.

5. Conclusion

The paper presented a formal recursive estimation
method for joint detection and tracking of multiple
objects having the same feature description. This formal
solution was then implemented by a particle filter using
color histograms as object features. The performance of
the detecting and tracking algorithm was then tested
on several real-world sequences. From the results, the
algorithm can successfully detect and track many identi-
cal targets. It can handle non-rigid deformation of tar-
gets, partial occlusions and cluttered background. Also
the experimental results confirm that the method can
be successfully applied even when the camera is moving.
The key hypothesis in the adopted approach is that the
background is of a sufficiently different color structure
than the objects to be tracked. However, to alleviate this
problem different observation features can be used in
addition to color as for example appearance models
[21] or contours.

This basic algorithm can be improved in several ways.
For example, color histograms can be computed in differ-
ent regions of the target (face, shirt, pants, etc.) in order
to take into account the topological information [7]. Also,
the number of required particles could be reduced by
adopting a better proposal density for existing particles
and a better prior density of appearing objects.
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