
International Journal of Computer Vision 45(2), 129–156, 2001
c© 2001 Kluwer Academic Publishers. Manufactured in The Netherlands.

Three-Dimensional Reconstruction of Points and Lines with Unknown
Correspondence across Images∗

Y.-Q. CHENG AND X.G. WANG
Robotics Institute, NSH, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, USA

R.T. COLLINS, E.M. RISEMAN AND A.R. HANSON
Department of Computer Science, University of Massachusetts, Amherst, MA 01003, USA

riseman@cs.umass.edu

Received July 7, 2000; Accepted July 6, 2001

Abstract. Three-dimensional reconstruction from a set of images is an important and difficult problem in computer
vision. In this paper, we address the problem of determining image feature correspondences while simultaneously
reconstructing the corresponding 3D features, given the camera poses of disparate monocular views. First, two
new affinity measures are presented that capture the degree to which candidate features from different images
consistently represent the projection of the same 3D point or 3D line. An affinity measure for point features in
two different views is defined with respect to their distance from a hypothetical projected 3D pseudo-intersection
point. Similarly, an affinity measure for 2D image line segments across three views is defined with respect to a 3D
pseudo-intersection line. These affinity measures provide a foundation for determining unknown correspondences
using weighted bipartite graphs representing candidate point and line matches across different images. As a result
of this graph representation, a standard graph-theoretic algorithm can provide an optimal, simultaneous matching
and triangulation of points across two views, and lines across three views. Experimental results on synthetic and
real data demonstrate the effectiveness of the approach.

Keywords: feature correspondence matching, point/line affinity measure, weighted bipartite graph matching,
maximum network flow

1. Introduction

Three-dimensional model acquisition remains a very
active research area in computer vision. One of the
key questions is how to reconstruct accurate 3D mod-
els from a set of calibrated 2D images via multi-
image triangulation. The basic principles involved in
3D model acquisition are feature correspondence de-
termination and triangulation, with the two commonly
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project under contract number DAAE07-91-C-R035, and the Na-
tional Science Foundation (NSF) under grant number CDA8922572.

used types of image features being points and lines.
Usually, 2D features are extracted first, such as cor-
ners, curvature points, and lines from each image. Then,
the correspondence of these features is established be-
tween any pair of images, usually referred to as “the
correspondence problem.” Finally, the 3D structure is
triangulated from these 2D correspondences.

Many reconstruction papers assume the correspon-
dence problem has been solved (Aggarwal et al., 1981;
Bedekar and Haralick, 1996; Gruen and Baltsavias,
1998; Ito and Aloimonos, 1988; Lee et al., 1986; Lee
and Joshi, 1993; Lessard et al., 1989). Unfortunately,
in many applications, this information is not avail-
able and mechanisms to achieve correspondence are
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unreliable. This has caused serious criticism of feature-
based methods (Basu and Aloimonos, 1987; Chou and
Kanatani, 1987; Goldgof et al., 1992; Lee et al., 1990;
Scott and Longuet-Higgins, 1991; Shapiro and Brady,
1992). The process of finding 2D image feature cor-
respondences can be computationally expensive and
difficult to implement reliably, requiring subsequent
algorithms to employ robust mechanisms for detecting
outliers due to mismatches (Kumar and Hanson, 1992a;
Kumar, 1992).

Even if the image feature correspondences are
known, robust triangulation of the 3D models using
noisy image data is still a non-trivial problem and an
on-going research topic. Extensive research has been
devoted to developing robust algorithms in this area
(Ayache, 1991; Blostein and Huang, 1987; Deriche
et al., 1992; Hartley, 1994; Kumar and Hanson, 1992a;
Kumar, 1992; Zhang and Faugeras, 1990a, 1990b), in-
cluding processing of monocular motion sequences,
stereo pairs, and sets of distinct views. Although both
point-based and line-based triangulation are commonly
employed, more attention has been paid to line-based
triangulation since it generally provides more accurate
reconstructions.

In this paper, we address the problem of deter-
mining image feature correspondences given known
camera poses, while simultaneously computing the cor-
responding 3D features. We restrict our attention to
simultaneous determination of image feature corre-
spondences and recovery of their 3D structure using
matching and triangulation of noisy 2D image points
and lines. Our approach assumes a set of calibrated
images, for which both intrinsic (lens) parameters and
either absolute or relative poses are known. Therefore
these approaches are well-suited for photogrammet-
ric mapping applications where extrinsic parameters
are already known, such as 3D aerial reconstruction
in cultural settings (ARPA, 1994), for wide-baseline
multi-camera stereo systems, or for model extension
applications where a previous partial model has been
used to determine camera pose for a set of new views,
from which previously unmodeled scene features are
now to be recovered (Collins et al., 1993, 1995, 1996;
Kumar and Hanson, 1992a).

This paper is organized as follows. Section 2 reviews
previous related work in the area of 3D reconstruction
with unknown apriori correspondences. Section 3 in-
troduces two new affinity measures for determining
image point and line correspondences across images,
and uses them to construct weighted bipartite graphs.

Section 4 formulates the image feature matching prob-
lem as the general maximum-weight bipartite match-
ing problem and develops two algorithms to simultane-
ously match and reconstruct 3D points and lines from
noisy 2D image points and lines, respectively. Finally,
Section 5 and Section 6 present and analyze experi-
mental results from synthetic and real image data sets.
Section 7 gives our conclusions.

2. Previous Work

2.1. Motion Estimation without Correspondences

Aggarwal et al. (1981) reviewed the correspondence
problem two decades ago. In recent years, a variety
of correspondence problems (Aggarwal et al., 1981;
Basu and Aloimonos, 1987; Cheng et al., 1994, 1996;
Collins, 1996; Goldgof et al., 1992; Ito and Aloimonos,
1988; Lee and Joshi, 1993; Lee et al., 1990; Shapiro
and Brady, 1992; Wang et al., 1996) have been studied.
In addition, many researchers have worked on the prob-
lem of motion estimation without pre-specified corre-
spondences (Aloimonos and Rigoutsos, 1986; Chou
and Kanatani, 1987; Goldgof et al., 1992; Ito and
Aloimonos, 1988; Lee et al., 1986, 1990; Wang et al.,
1996).

Aloimonos et al. (1986), presented an algorithm to
estimate 3D motion without apriori correspondences
by combining motion and stereo matching. Huang and
his research group (Goldgof et al., 1992; Lee et al.,
1986, 1990) presented a series of algorithms to esti-
mate rigid-body motion from 3D data without matching
point correspondences. Goldgof et al. (1992) presented
moment-based algorithms for matching and motion es-
timation of 3D point or line sets without correspon-
dences and applied these algorithms to object tracking
over the image sequences. The basic idea is to find two
coordinate systems based on relative positions of 3D
points/lines before and after the motion, then compute
the motion parameters (rotation and translation) that
make these coordinate systems coincide. The disad-
vantages of the approach include sensitivity to noise
and to missing or false points or lines.

Lee et al. (1990) proposed an algorithm to deal with
the correspondence problem in image sequence anal-
ysis. This method is based on the following three as-
sumptions: (1) the objects undergo a rigid motion; (2)
a perspective projection camera model can be used; (3)
the translation vector is small compared to the distance
of the object.
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Recently, we presented a mathematical symmetry in
the solutions of rotation parameters and point corre-
spondences, derived a closed-form solution based on
eigenstructure decomposition for correspondence re-
covery in ideal cases with no missing points, and de-
veloped a weighted bipartite matching algorithm to de-
termine the correspondences in general cases where
missing points occur (Wang et al., 1996).

2.2. Determination of Correspondences
from Nonrigid Objects

Objects in the world can be nonrigid, and an object’s ap-
pearance can deform as the viewing geometry changes.
Consequently, research has been carried out to address
the problem of correspondence and description us-
ing deformable models (Pentland and Horowitz, 1991;
Pentland and Sclaroff, 1991; Sclaroff and Pentland,
1993; Scott and Longnuet-Higgins, 1991; Shapiro and
Brady, 1992).

Scott and Longuet-Higgins (1991) developed an al-
gorithm to determine the possible correspondences of
2D point features across a pair of images without use
of any other information (in particular, they had no in-
formation about the poses of the cameras). They first
incorporated a proximity matrix description which de-
scribes Gaussian-weighted distances between features
(based on inter-element distances) and a competition
scheme allowing candidate features to contest for best
matches. Then they used the eigenvectors of this ma-
trix to determine correspondences between two sets of
feature points.

Shapiro and Brady (1992) also proposed an eigen-
vector approach to determining point-feature corre-
spondence based on a modal shape description. Re-
cently, Sclaroff and Pentland (1993) described a modal
framework for correspondence and description. They
first developed a finite element formulation using
Gaussian basis functions as Galerkin interpolants, then
used these interpolants to build stiffness and mass ma-
trices. Correspondences were determined by decom-
posing the stiffness and mass matrices into a set of
eigenvectors.

2.3. Determination of Correspondences
among Disparate, Monocular Images

Methods based on tracking features such as points and
line segments through a sequence of closely-spaced

image frames cannot be applied in our present domain,
since they are based on small-motion approximations,
while we are presented with a set of discrete, dis-
parate, monocular views. Furthermore, heuristic mea-
sures based on similarity of image feature appearance
across multiple images will also fail, since widely dis-
parate viewpoints, taken at different times of day and
under different weather conditions can lead to cor-
responding image features of significantly different
appearance. Gruen and Baltsavias (1988) describe a
constrained multi-image matching system where in-
tensity templates extracted from one reference image
are affine-warped and correlated along epipolar lines in
each other image. Kumar et al. (1994) present a multi-
image plane + parallax matching approach where they
compensate for the appearance of a known 3D surface
between a reference view and each other view, then
search for corresponding points along lines of residual
parallax.

Collins (1996) introduces the term “true multi-
image” matching and presents a new space-sweep ap-
proach to multi-image matching that makes full and
efficient use of the geometric relationships between
multiple images and the scene to simultaneously deter-
mine 2D feature correspondences and the 3D positions
of feature points in the scene.

Bedekar and Haralick (1996) first pose the triangu-
lation problem as that of finding the Bayesian maxi-
mum a posteriori estimate of the 3D point, given its
projections in N images, assuming a Gaussian error
model for the image point coordinates and the camera
parameters. Then, they consider the correspondence
problem as a statistical hypothesis verification problem
and solve this problem by an iterative steepest descent
method.

Graph theoretic methods also have been applied
(Cheng et al., 1994, 1996; Gold and Rangarajan, 1996;
Griffin, 1989; Kim and Kak, 1991; Roy and Cox, 1998;
Wang et al., 1996; Wu and Leahy, 1993; Wu and Leou,
1995). Gold and Rangarajan (1996) presented a new
algorithm for graph matching, which uses graduated
assignment. They applied “softassign,” a novel con-
straint satisfaction technique, to a new graph matching
energy function that uses a robust, sparse distance mea-
sure between the links of the two graphs. Wu and Leon
(1995) proposed a two-pass greedy bipartite match-
ing algorithm to determine the approximate solution of
the stereo correspondence problem. Griffin (1989) pre-
sented a bipartite graph matching method to determine
the correspondences between 2-D projections of a 3-D
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scene. Roy and Cox (1998) described an algorithm for
solving the N-camera stereo correspondence problem.

2.4. Our Approach

The work in this paper is based on an optimal graph
theoretic approach using a residual error function de-
fined on the image plane to construct a bipartite graph,
a corresponding flow network, and finally a maximum
network flow that determines the correspondences be-
tween two images (Cheng et al., 1994). Unlike many
other matching techniques, our method of network
flow ensures that a maximal matching can be found.
From the point of view of implementation, this match-
ing technique can be implemented efficiently and in
parallel, and has been successfully applied by oth-
ers to matching problems involving graphs of large
size (about 100,000 vertices) (Johnson and McGeoch,
1993).

What is needed for correspondence matching among
disparate, monocular images is a description of the
affinity (or 2D/3D spatial relationship) between im-
age features. The term “affinity” is first introduced by
Ullman (1979) as a measure of the pairing likelihood
of two objects in two sets. Here, we define the affinity
as a measure of the degree to which candidates from
different images consistently represent the projection
of the same 3D point or the same 3D line.

Traditionally, two separate processing phases are
employed to reconstruct 3D scene structure: feature
matching and 3D triangulation. With this division of
processing, it is very difficult to employ 3D informa-
tion to measure the affinity between image features
during the matching phase. We argue that it is better
to combine matching and triangulation in an integrated
manner. This is accomplished by introducing an affinity
measure between image point and line features based
on their distance from a hypothetical projected 3D
pseudo-intersection point or line, respectively (Cheng
et al., 1996). The ideas developed in this paper are an
extension of our previous work (Cheng et al., 1994;
1996).

The challenge in combining matching and triangula-
tion for image line features is that it is more difficult to
describe the affinity between image lines than it is for
image points. Line segment endpoints are not mean-
ingful since there may exist significant fragmentation
and occlusion in image line data, and therefore only
the position and orientation of the infinite image line
passing through a given line segment can be consid-

ered reliable. Moreover, this implies that at least three
images are necessary to describe line affinity, since the
projection planes for any pair of image lines in two im-
ages always intersect in a 3D line (Note: if parallel, the
planes are said to intersect at infinity). Thus, no con-
clusive evidence about possible correspondences be-
tween infinite image lines may be derived from only
two images.

One of the contributions of our work is an affinity
measure for lines based on the rapid computation of
a 3D pseudo-intersection line from a set of possibly
corresponding image lines during the matching pro-
cess. This approach leads to general maximum-weight
bipartite matching techniques to deal with the 3D re-
construction problem without apriori specification of
known image feature correspondences.

3. Measuring 2D Image Point amd Line Affinity

3.1. Measuring 2D Image Point Affinity from Two
Images Via a 3D Pseudo-Intersection Point

Given a point p1 in image I1, we seek its match p2

in another image I2. Point p2 necessarily belongs on
an epipolar line of image I2 determined completely
by p1, and vice versa. Most of the existing matching
algorithms e.g. Ayache (1991) directly utilize this 2D
epipolar line constraint to determine the image point
correspondences from two images. However, it is very
difficult to employ 3D information to measure the affin-
ity between image features from this 2D epipolar line
constraint. We argue that it is better to combine match-
ing and triangulation in an integrated manner.

The key observation is that for any pair of image
points p1 and p2 from two images I1 and I2, there ex-
ists a 3D pseudo-intersection point, defined as the point
with the smallest sum of squared distances from it to the
two projection lines of p1 and p2. The physical mean-
ing of the pseudo-intersection point is that ideally, if p1

and p2 are corresponding image points from I1 and I2,
then their pseudo-intersection point is a real 3D point
recovered by the traditional triangulation constraint.

Given any pair of image points chosen at random,
one from each image, the pair may or may not truly cor-
respond to a single 3D point in the scene. The two image
points always yield a 3D pseudo-intersection point in
either case, but when this 3D point is projected back
into each image it will only coincide reasonably well
with the original pair of 2D image points if the points
are a true correspondence, and will yield a very poor
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Figure 1. A triangulation process for a pair of images.

fit otherwise. Therefore, the distance between the pro-
jected pseudo-intersection point and the original pair
of image points yields an affinity measure that signifies
whether that pair of points forms a compatible corre-
spondence.

Let us now provide a formal specification of the affin-
ity measure, with the reader referring to Fig. 1. Given
two poses (Rl , τ l) and (Rr , τ r ) from two images Il and
Ir , any pair of 2D points pl

i and pr
j (i = 1, 2, . . . , nl ;

j = 1, 2, . . . , nr ) from Il and Ir , define two 3D lines
L1 and L2 such that L1 passes through points pl

i and
τ l , and L2 passes through points pr

j and τ r . L1 and L2

are the projection lines of points pl
i and pr

j , respectively.
Suppose each projection line Lk (k = 1, 2) is written

as

x − xk

uxk
= y − yk

uyk
= z − zk

uzk
(1)

with unit direction vector uk = (uxk, uyk, uzk)
T .

Consider first how to compute an optimal 3D
pseudo-intersection point Pq(xq , yq , zq) with the
smallest sum of distances from Pq to the two lines L1

and L2. The error function can be defined (Goldgof
et al., 1992) as

E = [(xq − xk)uyk − (yq − yk)uxk]2

+ [(xq − xk)uzk − (zq − zk)uxk]2 (2)

+ [(yq − yk)uzk − (zq − zk)uyk]2

After setting ∂E
∂xq

= ∂E
∂yq

= ∂E
∂zq

= 0, we obtain the
optimal 3D pseudo-intersection point Pq (Goldgof

et al., 1992)
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As mentioned before, if pl
i and pr

j are true corre-
sponding image points, then Pq is the real 3D point to
be recovered. However, there are four cases that are ex-
ceptions: (1) no 3D point could be obtained for pl

i and
pr

j , because the two 3D lines L1 and L2 are parallel; (2)
an incorrect “negative” 3D point could be obtained for
pl

i and pr
j , due to the two 3D lines L1 and L2 intersecting

behind one or both cameras, as shown in Fig. 2; (3) a
wrong “epipolar” 3D point Pw is obtained due to am-
biguous correspondences, e.g. a typical problem with
pl

i corresponding to either pr
j or pr

w is shown in Fig. 3.
This case shows that a point pl

i in image Il could in-
tersect with the projection line of more than one image
point in image Ir ; (4) a pseudo-intersection 3D point
Pq is computed although pl

i and pr
j don’t correspond at

all.
The first case, with parallel projection lines, is ex-

ceedingly rare, but is easily detected by examining
whether a solution exists for Eq. (3). It also can be
detected by examining whether the directions of the
projection lines L1 and L2 are the same.

Figure 2. A wrong “negative” 3D point corresponding to a pair
of image points that intersect behind one or both cameras. This is a
detectable condition, even though it satisfies the definition of pseudo-
intersection.
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Figure 3. An error in correspondence produces a wrong 3D pseudo-
intersection point Pw , or ambiguity in pairs of correspondences. Pq

is the correct pseudo-intersection point, but an incorrect correspon-
dence using Pr

w along the correct epipolar line produces Pw as an
incorrect psuedo-intersection point. If Pl

w is an existing candidate
correspondence, then two pairs of ambiguous correspondences can
be successfully resolved.

For the second case, as all pairs of image points from
two images are considered initially as possible corre-
spondences, some of those will intersect in their nega-
tive directions and satisfy the minimal distance condi-
tion to lines L1 and L2, but are incorrect. Fortunately,
it is easy to detect this kind of “negative” 3D point by
examining the directions of rays from τl to pl

i and from
τl to Pq or rays from τr to pr

j and from τr to Pq to make
sure that they are the same.

The third case is the interesting one, caused by an
incorrect correspondence, due to ambiguity. For exam-
ple, as shown in Fig. 3, suppose pl

i corresponds to pr
j

with Pq as the correct 3D point. However, the known
poses specify epipolar lines, and since pr

w lies on the
known epipolar line of pl

i in image Ir , then both are
plausible but ambiguous candidates for a correspon-
dence match. Thus pl

i and pr
w would intersect at a 3D

point Pw. However, this kind of ambiguity might be de-
tected because pl

w might correspond to another existing
point Pr

w appearing in image Ir . For this case, the true
(maximum) correspondences could be detected for the
two sets of points, i.e., pl

i corresponds to pr
j and pl

w cor-
responds to pr

w. Unfortunately, if the point pl
w doesn’t

appear in the first image, it is difficult to resolve this
inherent ambiguity. In such situations, a third image
would greatly reduce such ambiguities.

For the fourth case, since it is an incorrect corre-
spondence, the pseudo-intersection point Pq is located
far from the two projection lines. This case is easily
detected by the 2D affinity function defined below.

For any pair of image points (pl
i , pr

j ), we project the
“pseudo-intersection” point Pq into the two images Il

and Ir , to get the two projected image points pl ′
i (u′

i , v
′
i )

and pr ′
j (u′

j , v
′
j ). Finally, we compute the error func-

tions El
i j and Er

i j :

El
i j = ∥∥pl

i − pl ′
i

∥∥
2, Er

i j = ∥∥pr
j − pr ′

j

∥∥
2 (4)

and define a 2D point affinity function sfp(pl
i , pr

j ) as

sfp
(

pl
i , pr

j

) = e−(El
i j +Er

i j )/2 (5)

The criterion underlying sfp(pl
i , pr

j ) is that the best
estimate for any 3D pseudo-intersection point is the
point that minimizes the sum of the squared distances
between the predicted image location of the computed
3D point and its actual image locations in the first and
second images. If sfp(pl

i , pr
j ) = 0, it means that pl

i

is not a possible match for pr
j ; if sfp(pl

i , pr
j ) = 1, it

means that pl
i is a perfect match for pr

j .

3.2. Measuring 2D Line Affinity from Three Images
via a 3D Pseudo-Intersection Line

Here, we develop an analagous line pseudo-intersection
measure, similar to the 2D affinity measure between
image point features in the last subsection. Given the
poses of three images, a 2D affinity measure among
image line segments is developed for the problem of
determining image line correspondences, while simul-
taneously computing the corresponding 3D lines. The
challenge in combining matching and triangulation for
image line features is that it is more difficult to de-
scribe the affinity between image line segments. Since
it is well-known that line segment endpoints are prone
to error due to fragmentation and unreliable termina-
tions in image line data, only the position and orienta-
tion of the infinite image line passing through a given
line segment of sufficient length can be considered re-
liable. Moreover, this implies that at least three images
are necessary to describe affinity, since the projection
planes for any pair of image lines in two images always
intersect in a 3D line (if parallel, the planes are said to
intersect at infinity), and thus no conclusive evidence
about possible correspondences between infinite image
lines may be derived from only two images.

Given three images and their corresponding camera
poses, we assume that three line segments are chosen
at random, one from each image, so that the set may
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or may not truly correspond to a single 3D line in the
scene. For any triplet of image lines from three images,
there exists a 3D pseudo-intersection line L with the
smallest sum of squares of the mutual moments of L
with respect to the two projection lines of the two end-
points for each image line. As this computation will be
performed many times on images with large numbers of
line segments as we search for correct correspondences,
we need it to be computationally efficient, even if this
speed is achieved at the expense of accuracy. Here, the
linear line reconstruction algorithm presented in Cheng
(1996) is employed to achieve a closed-form solution
for the best 3D pseudo-intersection line. It has been
shown in Cheng (1996) that the algorithm is fast and
efficient.

For any triplet of image line segments from three
images, we wish to compute an affinity value that mea-
sures the degree to which these lines are consistent
with the hypothesis that they are all projections of the
same linear 3D scene structure. To do this, we first use
the line reconstruction algorithm presented in Cheng
(1996) to compute their pseudo-intersection line L , and
then project L back into each image to get three infinite
image lines li (i = 1, . . . , 3).

Suppose li is represented by the equation

fi u + giv + hi = 0

in pixel coordinates (u, v), and that the endpoints of
the original 2D line segment in image Ii are (ua, va)

and (ub, vb). A natural measure of the distance from
the line segment to the projected pseudo-intersection
line li is the sum of absolute pixel distances from the
line segment endpoints to li , that is

ri = | fiua + giva + hi| + | fjub + givb + hi|√
f 2
i + g2

i

. (6)

If the three image line segments actually are a true
correspondence of a single linear 3D structure, we
can expect all of them to lie “close” to their respec-
tive reprojections of the pseudo-intersection line, where
closeness is judged based on our knowledge of the er-
ror characteristics of the line segment extraction pro-
cess and the level of noise in the image. On the other
hand, if the image line segments do not correspond to a
linear scene structure, their distance from the projected
pseudo-intersection line will be large, which is true of
most of the line triplets (barring accidental alignments).
The distance is greater to the extent that the chosen lines
are truly geometrically incompatible.

Based on the above distance measure, the 2D line
affinity value sf l(l1, l2, l3) for a triplet of image line
segments from three images is defined as

sf l(l1, l2, l3) = e−(
∑3

i=1 ri )/6 (7)

where
∑3

i=1 ri/6 can be interpreted as the average dis-
tance from the set of image line segment endpoints
to their respective projected pseudo-intersection lines.
If sf l(l1, l2, l3) = 0, it means that l1, l2, and l3 are
not compatible at all; if sf l(l1, l2, l3) = 1, it means that
l1, l2, and l3 are perfectly compatible.

4. 3D Reconstruction Algorithms without
Correspondences Based on the Weighted
Bipartite Matching Technique

Traditional correspondence matching techniques use
only 2D pixel-level information. These 2D image anal-
ysis techniques encounter significant difficulty in re-
covering correct correspondences of image features,
since they do not consider the important 3D information
captured via our pseudo-intersection points or lines.

In the previous section, we developed two affinity
measures between image features, sfp(pl

i , pr
j ) in Eq.

(5) for image points and sf l(l1, l2, l3) in Eq. (7) for
image lines. The two affinity measure functions con-
tain significant information about potential correspon-
dences between image features. The important question
that immediately follows is how to use this information
in a reliable process to determine image feature cor-
respondences. Weighted bipartite matching (Johnson
and McGeoch, 1993; Jonker and Volgenant, 1987) is a
mature mathematical framework for solving matching
problems using our affinity measure.

In this section, we will show how the problem of im-
age feature matching can be formulated as a maximum-
weight bipartite matching problem by using the 2D
image point affinity function in Eq. (5) and the 2D
image line affinity function in Eq. (7). An efficient
graph-based algorithm for matching and reconstruc-
tion is developed to determine image feature correspon-
dences while simultaneously recovering 3D features.

4.1. Formulation as a Maximum-Weight Bipartite
Matching Problem

Given the two sets of image points L = {pl
i | i =

1, 2, . . . , nl} from image Il and R = {pr
j | j =

1, 2, . . . , nr } from image Ir , an undirected weighted
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graph G = (V, E) can be constructed as follows:
V = L ∪ R, E = {ei j }. Each edge ei j (i = 1, 2, . . . , nl ;
j = 1, 2, . . . , nr ) corresponds to a weighted link be-
tween pl

i in Il and pr
j in Ir , whose weight w(ei j )

is equal to the affinity between pl
i and pr

j , i.e.
w(ei j ) = sfp(pl

i , pr
j ). Obviously, the graph arising in

such a case is a weighted bipartite graph by construc-
tion, since two points in the same image cannot be
linked.

Given a set of line segments lα, lβ , and lγ in a triplet
of images I1, I2 and I3, two undirected bipartite graphs
G1 = (V1, E1) and G2 = (V2, E2) can be constructed
as follows. First, generate two vertex sets V1 and V2

such that V1 = I1 ∪ I2 and V2 = I2 ∪ I3. Next, for all
feasible matches among any three image lines lα , lβ
and lγ , one from each image, generate their edges
e1
αβ ∈ E1 and e2

βγ ∈ E2 with weights equal to the affin-
ity measure sf l(lα, lβ, lγ ), as defined in the last section,
i.e. w(e1

αβ) = w(e2
βγ ) = sf l(lα, lβ, lγ ). Note that in gen-

eral this could involve taking all triplets of image line
segments, one from each image, unless domain specific
information is used to prune the set of possible matches
down to a smaller feasible set. Often such information
should be available through domain constraints.

It should be noted that due to the fragmentation of
image lines, multiple competing edges could exist be-
tween the same two nodes in either graph. For example,
suppose there exists a possible correspondence among
the line segments lα , lβ , and lγ from the three images
respectively, and another possible correspondence be-
tween lα , lβ , and l′γ . It would seem then, that two edges
between lα and lβ are needed, one to store the weight
for sf l(lα, lβ, lγ ) and one for sf l(lα, lβ, l′γ ). In prac-
tice, we remove these trivial conflicts at graph creation
time by checking if an edge already exists between two
nodes before adding a new one. If the affinity value of
the new edge is larger than the edge already there, then
the old edge is replaced by the new one, otherwise it is
left alone.

From the previous subsections, we know that for any
pair of image points pl

i and pr
j , there is a weighted link

ei j between pl
i and pr

j in the weighted bipartite graph
G. Similarly, for any triplet of image line segments lα ,
lβ , and lγ , there is a weighted link e1

αβ between lα
and lβ in the first bipartite graph G1 and a weighted
link e2

βγ between lβ and lγ in the second bipartite
graph G2. Ideally, if the image features (points/lines)
are in true correspondence then their weights w(ei j ), or
w(e1

αβ) and w(e2
βγ ) should be equal to the maximum

weight of 1; thus they significantly contribute to the

final matching to be determined, and the number of total
image feature (point/line) correspondences is equal to
the size of the matching. Due to the errors in some of the
camera poses and the locations of the extracted image
points or line segments, however, the weights w(ei j ),
or w(eαβ) and w(eβγ ) will be below 1, but often can
be expected to be high (i.e. approach 1).

On the other hand, from graph theory, we know
that given an undirected graph, a matching is a sub-
set of edges M ⊆ E such that for all vertices v ∈ V ,
at most one edge of M is incident on v. A vertex
v ∈ V is matched by M if some edge in M is inci-
dent on v; otherwise, v is unmatched. The maximum-
weight matching is a matching Mw such that the sum
of the weights of the edges in Mw is maximum over
all possible matchings. Therefore, the image feature
correspondences to be determined correspond to the
maximum-weight matching in the bipartite graphs G
for determination of image point correspondences, or
G1 and G2 for determination of image line correspon-
dences.

4.2. Reduction to the Maximum-Flow Problem

As discussed from Subsection 4.1, the correspondence
problem of image points and lines can be considered as
the problem of finding the maximum-weight matching
in the weighted bipartite graphs. The remaining ques-
tion is how to find the maximum-weight matching in
the weighted bipartite graphs.

If each edge has a unit weight in the bipartite graph,
then we get the unweighted bipartite matching prob-
lem, which is to find a matching of maximum cardi-
nality. The above image feature matching problem for
image points and lines could be reduced to the un-
weighted matching problem by setting all the weights
in the bipartite graph to be 1 if sf p(pl

i , pr
j ) ≥ Tp for im-

age points pl
i and pr

j , or if sf l(lα, lβ, lγ ) ≥ Tl for image
line segments lα, lβ , and lγ . Here, the thresholds Tp

and Tl would be chosen empirically. For the weighted
bipartite graph shown in Fig. 4(a), its unweighted coun-
terpart is shown in Fig. 4(a) by setting all the weights in
the bipartite graph to be 1 if sfp(p1

i , p2
j ) ≥ Tp = 0.8.

The problem of image feature matching seems on
the surface to have little to do with flow networks, but
it can in fact be reduced to a maximum-flow problem.
By relating the unweighted matching problem for bi-
partite graphs to the max-flow problem for simple net-
works, the matching problem becomes simpler, and the
fastest maximum flow algorithm can be used to find the
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Figure 4. The weighted and unweighted bipartite graphs: (a)
weighted bipartite graph; (b) unweighted bipartite graph.

maximum matching, which was discussed in Cheng
et al. (1994). In order to reduce the problem of a maxi-
mum matching in the bipartite graph G to a maximum
flow problem in the flow network G ′, the trick is to
construct a flow network in which flows represent cor-
respondences. We build a corresponding flow network
G ′ = (V ′, E ′) for the bipartite graph G as follows: Let
the source s and sink t be new vertices not in V , let
V ′ = V ∪ {s, t}, and let the directed edges of G ′ be
given by

E ′ = {(s, v′
i ) : v′

i ∈ L} ∪ {(v′
i , v

′
j ) : v′

i ∈ L , v′
j ∈ R,

(v′
i , v

′
j ) ∈ E} ∪ {(v′

j , t) : v ∈ R}

and finally, assign unit flow capacity to each edge in
E .

Further, it has been shown that a maximum matching
Mw in a bipartite graph G corresponds to a maximum
flow in its corresponding flow network G ′. Therefore,
the unweighted image feature correspondence problem
is exactly equivalent to finding the maximum flow in
G ′ = (V ′, E ′), and we can compute a maximum match-
ing in G by finding a maximum flow in G ′. The main
advantage of formulating the image feature correspon-
dence problem as the unweighted bipartite matching
problem is that there exist very fast algorithms (e.g.
Goldberg’s algorithm is O(|V ||E | log |V |)), which can
be implemented in an efficient and parallel way to find
the maximum matching in the unweighted bipartite
graph.

4.3. Solving for the Maximum-Weight
Bipartite Match

The main disadvantage of the unweighted bipartite
matching formulation is that it is crucial to choose an

appropriate value for the threshold Tp for the image
point correspondence problem and Tl for the image
line segment correspondence problem before the un-
weighted bipartite matching algorithm is performed.
If Tp or Tl is too small, more outliers will be created;
if Tp or Tl is too large, it will filter out too many correct
correspondences. For example, as shown in Fig. 4(a), if
we choose Tp = 0.9, then the correct correspondence
(5, e) could be filtered. In this case, we would miss the
matching (5, e) and could not then disambiguate the
matchings (4, d) and (4, e) for the left image point
“4”. Therefore, it is necessary to deal with the general
maximum-weight bipartite matching problem, which is
the generalization of the unweighted bipartite matching
problem. Although the weighted matching problem is
not characterized by maximum flows in terms of aug-
menting paths, it indeed can be solved based on exactly
the same idea: start with any empty matching, and re-
peatedly discover augmenting paths. In the following,
we focus on how to find the maximum-weight match-
ing in the weighted bipartite graph.

Consider the matching M shown in Fig. 5(a). The
edges (1, a), (2, b), (3, c), and (4, e) are matched,
and the edges (4, d) and (5, e) are unmatched. Given a
matching M in a bipartite graph G = (V, E), a simple
path in G is called an augmenting path with respect to
matching M if its two endpoints are both unmatched,
and its edges alternate between E − M and in M .
The augmenting path P = {(5, e), (4, e), (4, d)} with
respect to matching M is shown in Fig. 5(b). Endpoints
5 and d are unmatched, and the path consisting of alter-
nating edges (5, e) in E − M , (4, e) in M , and finally
(4, d) in E − M .

Let p denote an augmenting path with respect to
matching M , and P denote the set of edges in p, then
M ⊕ P is called the symmetric difference of M and P .
M ⊕ P is the set of elements that are in one of M or P ,

Figure 5. The symmetric difference operator of M and P: (a)
matching M ; (b) augmenting path P wrt. M ; (c) M ⊕ P .
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but not both, i.e. M ⊕ P = (M − P)∪ (P − M). It can
be shown that M ⊕ P has the following properties:
(1) it is a matching; (2) |M ⊕ P | = |M | + 1. The
symmetric difference M ⊕ P is shown in Fig. 5(c),
i.e. M ⊕ P = {(1, a), (2, b), (3, c), (4, e), (5, d)}, and
|M ⊕ P| = 4 + 1 = 5.

For the matching M , its total weight of matching M
is defined as

w(M) =
∑
e∈M

w(e)

Let M ′ be a set of edges; then an incremental weight
�M ′ is defined as the total weight of the unmatched
edges in M ′ minus the total weight of the matched
edges in M ′:

�M ′ = w(M ′ − M) − w(M ′ ∩ M)

From the definition of incremental weight, we know
that for an augmenting path p with respect to M , then
�P gives the net change in the weight of the matching
after augmenting p:

w(M ⊕ P) = w(M) + �P

Intuitively, we can use an iterative algorithm to
construct a maximum-weight matching. Initially, the
matching M is empty. At each iteration, the match-
ing M is increased by finding an augmenting path of
maximum incremental weight. This is repeated until no
augmenting path with respect to matching M can be
found. It has been proven that repeatedly performing
augmentations using augmenting paths of maximum
incremental weight, yields a maximum-weight match-
ing Mw (Johnson and McGeoch, 1993).

The remaining problem is how to search for aug-
menting paths with respect to matching M in a sys-
tematic and efficient way. Naturally, a search for aug-
menting paths must start by constructing alternating
paths from the unmatched points. Because an augment-
ing path must have one unmatched endpoint in L and
the other in R, without loss of generality, we can start
growing alternating paths only from unmatched ver-
tices of L . We may search for all possible alternating
paths from unmatched vertices of L simultaneously
in a breadth-first manner. Here, an efficient Gabor’s
N-cubed weighted matching algorithm (Johnson and
McGeoch, 1993) is used to compute the maximum-
weight matching in the weighted bipartite graph. This
algorithm has two basic steps: (1) to find a shortest
path augmentation from a subset of left vertices in L

to a subset of right vertices in R; (2) to perform the
shortest augmentation. The algorithm is very efficient;
more implementation details are discussed in Johnson
and McGeoch (1993).

Since the number of matched vertices increases by
two each time, this takes at most n

2 augmentations. It
has been shown that for a matching M of size k of max-
imum weight among all matchings of size at most k, if
there exists a matching M∗ of maximum weight among
all matchings in G, and w(M∗) ≥ w(M), then M has
an augmenting path of positive incremental weight.
Therefore, the image feature correspondence problem
can be exactly reduced to finding the maximum-weight
matching in the weighted bipartite graph.

In summary, the general matching and reconstruc-
tion algorithm for image point correspondences can be
achieved by the following steps:

Step 1: compute a pseudo-intersection point for each
pair of image points pl

i and pr
j .

Step 2: calculate the value of sfp(pl
i , pr

j ) in Eq. (5) for
each pair of image points pl

i and pr
j .

Step 3: remove the pair from further graph-based
matching analysis if its sfp(pl

i , pr
j ) value is less than

a certain predefined threshold.
Step 4: determine if the pair should not be added into

a weighted bipartite graph in Step 5 with respect to
incorrect Cases 1 and 2, which were discussed in
Section 3.1.

Step 5: construct a weighted bipartite graph G =
(V, E) for image points.

Step 6: find the maximum weighted matching Mw for
G.

Step 7: determine image point correspondences and
their corresponding 3D points from the maximum
matching Mw.

Similarly, the general matching and reconstruc-
tion algorithm for image line correspondences can be
achieved by the following steps:

Step 1: compute a pseudo-intersection line for each
triplet of image lines l1, l2, and l3.

Step 2: calculate the value of sf l(l1, l2, l3) in Eq. (7)
for each triplet of image lines l1, l2, and l3.

Step 3: remove the triplet from further graph-based
matching analysis if its sf l(l1, l2, l3) value is less
than certain predefined threshold.

Step 4: construct two weighted bipartite graphs G1 =
(V1, E1) and G2 = (V2, E2) for image line segments.

Step 5: find the maximum weighted matching Mw for
G1 and G2.
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Step 6: determine image line correspondences and their
corresponding 3D lines from the maximum match-
ing Mw.

It should be noted that Step 3 in the above two match-
ing algorithms is not necessary, but can filter out a great
number of incorrect correspondences thus improving
computational efficiency by reducing the size of the
bipartite graphs.

5. Experimental Results for Correspondence
of Image Points

In this section, we present experiments to character-
ize the performance of our approach to 3D point re-
construction while simultaneously determining corre-
spondences, based on the affinity function defined in
Eq. (5). We examine the performance in terms of the
number of the recovered image point correspondences,
and the distance between each triangulated 3D pseudo-
intersection point and its actual 3D point. In all the
experiments, we assume that both the intrinsic camera
parameters and poses are known. The algorithm uses
two sets of image points separately extracted from two
images as input, and produces a set of image point cor-
respondences and their corresponding triangulated 3D
points.

5.1. Synthetic Data

The synthetic experiments are performed on a set of
synthesized 3D points representing a rigid object. To
evaluate performance with known ground truth, a set
of 40 3D points were randomly generated from the ob-
ject and projected into two images. The image point
locations for each image were corrupted by Gaussian
noise. Noise for each image point location was assumed
to be zero-mean, identically distributed, and indepen-
dent. The standard deviation ranges from 1.0 pixel to
5.0 pixels. In order to examine how the robustness of
matching is affected by missing points (i.e. no correct
correspondence in the other image), 16 sets were gener-
ated with different percentages of missing points rang-
ing from 0

40 % to 15
40 %. For each of these reduced point

sets, 100 trials of noisy samples were used to spatially
perturb the remaining points for each of the five levels
of noise. For each sample of the same set, the number
of missing points is the same, i.e. the same percentage
of image points were randomly deleted. The algorithm
was run on each of the samples, and the number of

incorrect image point correspondences was computed
for each sample run. Figure 6 shows the average num-
ber of incorrect correspondences for each noise level.

As shown in Fig. 6, the algorithm works very well
if the number of missing points is 0, i.e. each 3D point
to be recovered is visible in both images. On average,
there is only one incorrect correspondence even for the
highest noise level of 5 pixels. For lower levels of noise
ranging from 1 pixel to 3 pixels, there is little effect on
the performance of the algorithm for different num-
bers of missing points. For the higher levels of noise,
the number of incorrect correspondences increases lin-
early as the difference in the sizes of image points from
two images increases. From Fig. 6, we can see that on
average, the number of incorrect correspondences rises
about 3% at any of the noise levels. Therefore, our ex-
periments have shown that the algorithm can tolerate
a significant difference in the number of image points
from two images and is robust against a reasonable
level of noise.

5.2. PUMA Sequence

The 3D point reconstruction algorithm with unknown
correspondences is applied to the set of real images
referred to as the UMass PUMA sequence originally
collected by R. Kumar (1992), since the images were
acquired by a camera mounted on a PUMA robot arm.
The image sequences were captured with a SONY B/W
AVC D-1 camera with an effective field of view of 41.7◦

(fovx: field of view x-axis) by 39.5◦ (fovy: field of view
y-axis) and the image resolution is 256 × 242. Thirty
frames were taken over a total angular displacement of
116 degrees. The maximum displacement of the camera
in these twenty frames is approximately 2 feet along
the world y-axis and 1 foot along the world x-axis.

For each image, line segments were first extracted by
the Boldt algorithm (Boldt et al., 1989), and then 2D
corner image points were computed by calculating the
intersection point between any pair of nearby image
line segments. Figure 7 shows two sets of extracted
and unmatched image points from the 1st frame and
the 10th frame, respectively. There is a difference in the
number of image points from the two images, since the
1st frame has 113 image points while the 10th frame has
107 image points. There are two kinds of error sources:
the 2D image point locations and the estimated cam-
era parameters. The noise in the image points is due
to many typical factors such as camera distortion and
errors in the image line extraction algorithm. The noise
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Figure 6. Performance of the image point matching algorithm against five levels of noise with different numbers of missing points. The average
number of incorrect correspondences is shown for the true set of 3D points. Noise level k means all points were perturbed with Gaussian noise
of standard deviation k.

in the camera parameters is mainly due to errors in
camera calibration. As seen in Fig. 7, some image
points were extracted in the 1st frame, but not in
the 10th frame, and vice versa. Thus, it is a general
3D point reconstruction problem with unknown image
point correspondences.

Figure 8 shows a subset of 43 correct image point
correspondences determined from the two frames. The
corresponding 3D points reconstructed by the algo-
rithm are reported in Table 1. This experiment uses
the ground truth 3D data supplied in Kumar’s thesis
(1992). Note that here we only reported the compar-
isons between the reconstructed 3D points and their
ground truth data for those 3D points whose ground
truth coordinates are available. As shown in Table 1,
there is only one incorrect correspondence labeled 21,
where the correspondence is of two different image
points from the 1st frame and 10th frame. Point 21 in
Frame 1 is on the lower of two rectangles (the upper
left corner), while Point 21 in Frame 10 is on the up-
per rectangle (the lower left corner). Although they are
very close in the images, the absolute error between the
triangulated 3D point recovered by this incorrect cor-
respondence and the original 3D point associated with
image point 21 in the first frame has large error, 9.69

feet. For the other 42 correct correspondences, the av-
erage distance between the triangulated 3D points and
ground truth data is 0.43 feet.

5.3. RADIUS Image Set

The 3D point reconstruction algorithm without apriori
correspondences is also applied to the RADIUS im-
age set. This experiment uses data supplied through
the ARPA/ORD RADIUS project (Research and De-
velopment for Image Understanding Systems) (ARPA,
1994). The images and camera parameters used in
this experiment were the “model board 1” data set
distributed with version 1.0 of the RCDE (RADIUS
Common Development Environment) software pack-
age (Martin Marietta and SRI International, 1993). The
image size is approximate 1320 × 1035 pixels. Unlike
the PUMA image sequence used in last subsection,
each pair of images from this data set were taken from
two disparate views. Eight images were provided in
this data set.

For each image, line segments and 2D corner points
were extracted as part of an automated building detec-
tion algorithm (Collins et al., 1998). These 2D corner
points are thus extracted in a different manner than
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Figure 7. PUMA sequence data for matching experiments: (a) ex-
tracted image points (113 points) in the 1st frame; (b) extracted image
points (107 points) in the 10th frame.

those in the PUMA sequence. Here the points to be
matched are the corners of building polygons. Figures
9 and 10 show two sets of extracted and unmatched
image points from images J3 and J7, respectively. It
should be noted that J3 and J7 have two different num-
bers of missing points although they have exactly the
same number of image points, i.e. 186 points. Again,
both the 2D image points and the camera parameters
are noisy. The noise in the image points is again due to
errors in point localization and camera calibration.

Figure 8. (a) 43 matched image points in the 1st frame; (b) 43
matched image points in the 10th frame.

Our algorithm recovered 61 correspondence rooftop
polygon points, all of them correct (Figs. 11 and 12).
The corresponding 3D points reconstructed by the al-
gorithm are reported in Table 2. This experiment uses
the ground truth 3D data supplied in the “model board
1” data set. Here we only report the comparisons be-
tween the reconstructed 3D points and their ground
truth data for those 3D points whose ground truth
coordinates are available. From Table 2, we can see
that for some image correspondences such as 20, 21, 34,
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Table 1. 3D point reconstruction error for the PUMA ROOM data (average 3D error: 0.43 feet without incorrect point 21.

Actual 3D point Computed 3D points

Line x y z x y z Error (feet)

1 −6.06 −0.47 13.70 −5.94 −0.52 13.48 0.26

2 −6.06 −0.47 11.56 −5.89 −0.55 11.18 0.43

3 −6.06 −0.47 16.81 −6.87 −0.50 16.62 0.83

4 −6.06 −0.47 14.68 −6.88 −0.49 14.50 0.84

5 −8.58 −0.47 16.81 −8.53 −0.48 16.64 0.18

6 −8.58 −0.47 14.68 −8.54 −0.45 14.59 0.11

7 0.00 4.05 20.82 0.20 4.04 18.89 1.94

8 0.00 8.13 13.51 0.13 8.21 13.32 0.25

9 0.00 6.81 14.91 0.17 6.89 14.64 0.33

10 0.00 7.31 13.51 0.15 7.38 13.28 0.28

11 0.00 7.00 13.89 0.19 7.09 13.60 0.36

12 0.00 7.00 11.76 0.18 7.11 11.47 0.36

13 0.00 5.36 13.89 0.11 5.39 13.76 0.17

14 0.00 4.69 14.89 0.18 4.72 14.66 0.30

15 0.00 4.66 16.00 0.27 4.72 16.19 0.33

16 0.00 4.98 11.95 0.25 5.07 11.58 0.46

17 0.00 4.92 14.11 0.23 4.98 13.77 0.41

18 0.00 4.25 11.96 0.34 4.22 11.42 0.64

19 −3.32 9.01 7.03 −3.17 9.23 6.35 0.73

20 −1.45 9.01 3.13 −1.08 9.18 2.27 0.95

21 −3.02 3.80 11.28 0.68 4.26 2.33 9.69

22 −6.32 8.11 0.00 −6.13 8.27 −0.85 0.88

23 −4.20 8.07 0.00 −4.00 8.19 −0.64 0.68

24 −6.35 6.49 0.00 −6.20 6.56 −0.55 0.58

25 −1.77 2.86 0.00 −1.52 2.87 −0.68 0.73

26 −7.26 8.09 0.00 −7.11 8.17 −0.47 0.50

27 −7.26 6.45 0.00 −7.15 6.50 −0.25 0.27

28 −4.82 −0.47 17.82 −4.68 −0.52 17.64 0.23

29 −4.81 −0.47 14.82 −4.67 −0.54 14.56 0.30

30 −4.81 −0.47 16.95 −4.66 −0.52 16.73 0.27

31 −4.43 −0.47 11.63 −4.22 −0.55 11.30 0.40

33 −6.44 −0.47 16.95 −6.35 −0.52 16.74 0.23

34 −6.94 −0.47 19.45 −6.86 −0.52 19.24 0.23

35 −6.94 −0.47 17.82 −6.88 −0.50 17.66 0.18

36 −7.53 −0.47 17.54 −7.48 −0.49 17.38 0.16

37 −3.32 9.01 15.03 −3.42 9.04 15.08 0.12

38 0.00 5.37 11.76 0.35 5.48 11.17 0.70

39 0.00 4.10 14.09 0.24 4.15 13.76 0.41

40 −1.43 3.64 0.00 −1.21 3.67 −0.55 0.59

41 −4.23 6.45 0.00 −4.05 6.53 −0.61 0.64

43 −6.87 0.11 13.75 −6.84 0.09 13.71 0.05
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Figure 9. Extracted image points in image J3. The 186 points are a result of generating 2D building polygons via the ASCENDER system.

Figure 10. Extracted image points (186 points) in image J7.
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Figure 11. Experiments with RADIUS detect 61 matched image points in image J3.

Figure 12. Experiments with RADIUS detect 61 matched image points in image J7.
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Table 2. 3D point reconstruction error for the RADIUS image data.

Actual 3D point Computed 3D points

Line x y z x y z Error (feet)

1 15.79 22.79 −1.15 16.12 22.79 −0.87 0.44

2 15.77 16.40 −1.15 16.01 16.51 −1.33 0.32

3 20.51 16.39 −1.15 20.74 16.48 −1.39 0.34

4 20.52 22.78 −1.15 20.83 22.76 −0.93 0.38

5 9.90 39.36 −1.21 10.45 39.46 −1.32 0.56

6 9.90 40.13 −1.21 10.45 40.16 −1.29 0.55

7 5.89 40.13 −1.21 6.26 40.17 −1.00 0.43

8 5.89 39.35 −1.21 6.26 39.44 −1.01 0.43

15 17.55 7.14 −0.16 17.79 7.17 0.46 0.67

16 17.52 0.76 −0.16 17.77 0.88 0.46 0.68

17 20.08 0.75 −0.16 20.32 0.80 −0.35 0.31

18 20.11 7.13 −0.16 20.34 7.14 −0.18 0.23

20 17.26 10.35 −0.22 17.53 10.48 1.06 1.31

21 17.27 13.36 −0.22 17.56 13.56 1.05 1.32

22 20.29 13.35 −0.22 20.52 13.52 0.06 0.40

23 22.92 11.25 −0.97 22.98 11.49 −0.86 0.27

24 1.60 23.56 −0.43 1.86 23.44 −1.06 0.69

25 1.61 26.53 −0.43 1.85 26.61 −1.21 0.82

26 −4.41 26.55 −0.43 −4.04 26.69 −0.65 0.45

27 −4.42 23.58 −0.43 −4.04 23.47 −0.49 0.40

28 1.64 27.16 −0.78 1.86 27.21 −1.29 0.56

29 1.61 23.38 −0.78 1.86 23.40 −1.04 0.36

30 4.49 26.52 −0.55 4.75 26.55 −0.60 0.27

31 4.34 16.55 −0.55 4.62 16.57 −0.53 0.28

32 14.33 16.40 −0.55 14.60 16.45 −0.65 0.29

33 14.49 26.31 −0.94 14.75 26.35 −1.06 0.30

34 14.45 24.56 −0.55 13.07 24.90 −2.01 2.03

35 12.88 26.39 −0.55 13.12 26.38 −1.98 1.45

36 20.47 26.36 1.71 20.91 26.42 −0.19 1.96

49 20.65 32.76 −1.19 20.13 35.10 −0.05 2.65

50 20.72 35.92 −1.19 20.16 35.92 −0.10 1.22

51 12.80 36.09 −1.19 13.09 36.17 −0.73 0.55

52 12.78 35.26 −1.19 13.05 35.34 −0.86 0.43

55 13.16 33.77 −1.47 13.46 33.78 −1.23 0.38

56 13.16 33.01 −1.47 13.42 33.16 −1.43 0.30

57 19.01 33.74 −1.47 19.59 33.04 −0.93 1.05

58 19.01 32.97 −1.47 19.59 33.66 −1.05 0.99

35, 36, 49, 50, and 57, the triangulated 3D points have
large errors although their correspondences are deter-
mined correctly by our algorithm. This is due mainly
to the errors in the locations of rooftop polygon points,

since it is well known that these 2D errors have a sig-
nificant effect on the triangulated 3D data, especially
when there are only two images (Collins et al., 1998).
Some of the increased size of errors can be attributed to
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2D corners being “moved” due to shadows in one of the
views (e.g. point 49 which produced the largest error).
In order to improve overall accuracy, more images
are required. Nevertheless, the results are quite good,
with the average distance between the triangulated 3D
points and ground truth data across 61 correct image
point correspondences being 0.45 feet.

6. Experimental Results for Image Lines

In this section, we will demonstrate the performance
of the 3D line reconstruction algorithm with unknown
correspondences. It should be noted that the accuracy
of the triangulated 3D lines depends upon the perfor-
mance of the line reconstruction algorithm employed.
Here, we use a fast line reconstruction algorithm with
computational efficiency and robustness against noise
(Cheng, 1996). Therefore, in the following, we will
simply report a comparison between the triangulated
3D lines and their ground-truth data, and concentrate
instead on characterizing the performance of the al-
gorithm for determining the 2D line correspondences
that are used for 3D line reconstruction. Thus, more
detailed experiments are reported in terms of the num-
ber of the recovered image line correspondences. In
all the experiments presented here, we again assume
that both the intrinsic camera parameters and poses are
known. Unlike the previous section, image lines are
extracted directly as image features, and the algorithm
uses three sets of image lines across three images as
input, computing the image line correspondences and
their corresponding triangulated 3D lines as output.

6.1. Synthetic Data

Simulations were performed on a set of synthetic 3D
lines representing a rigid body. A set of 40 3D lines were
randomly generated from an object, and projected into
three images. The two endpoints of each image line
segment in three images were corrupted by Gaussian
noise. Noise for each image line segment endpoint was
assumed to be zero-mean, identically distributed, and
independent. The standard deviation of line endpoint
noise ranges from 1.0 pixel to 5.0 pixels. In order to
examine how the number of incorrect correspondences
is affected by the number of missing image line seg-
ments, 16 sets of 100 noisy line samples were created
for each level of noise, in terms of 16 different per-
centages of missing lines ranging from 0

40 % to 15
40 %.

For each sample of the same set, the number of miss-

ing lines is the same, i.e. the same percentage of image
lines were randomly deleted. The algorithm was run on
each of the samples, and the average number of incor-
rect image line correspondences was computed across
samples used. Figure 13 shows 16 different average
numbers of incorrect correspondences for each noise
level, respectively.

As shown in Fig. 13, the algorithm works very well
if the number of missing lines is 0, i.e. each 3D line
is visible in all three images. For example, on average,
there are only about 0.5 incorrect correspondences for
the noise level of 5 pixels. For the lower levels of noise
ranging from 1 pixel to 3 pixels, there is little effect on
the performance of the algorithm for different numbers
of missing points. For the higher levels of noise, the
number of incorrect correspondences increases as the
number of missing image lines increases. From Fig. 13,
we can see that on average, the number of incorrect
correspondences rises about 0.5 lines (about 2%) at
any of the noise levels. Therefore, our experiments have
shown that the algorithm can tolerate a difference in the
number of image lines from three images and is robust
against a reasonable level of noise.

6.2. PUMA Sequence

In this subsection, we test on the indoor PUMA im-
age sequence again. For each image, 2D image line
segments were extracted by the accurate Boldt line ex-
traction algorithm (Boldt et al., 1989). Figure 14 shows
a triplet of the extracted line sets from the 1st, 10th, and
20th frames in the sequence with 196, 185, and 189
image line segments, respectively. Figure 15 shows 76
correct image line segment correspondences. Again,
this experiment uses the ground truth 3D data supplied
in Kumar’s thesis (1992). Here we only report the com-
parisons between the reconstructed 3D lines and their
ground truth data for those 3D lines whose ground truth
coordinates of two endpoints are available. Table 3 re-
ports a comparison between the triangulated 3D lines
and their ground-truth data. For the 35 line correspon-
dences, the average orientation error is 3.36 degree, and
the average distance error is 0.11 feet.

6.3. RADIUS Image Set

The goal of this experiment is to test the performance of
the correspondence process for larger size images and
a huge line data set, and we will not attempt evaluation
of 3D accuracy here. Again, this experiment uses the
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Figure 13. Performance of the image line matching algorithm against 5 levels of noise with different numbers of missing points.

RADIUS image data set (J1–J8) supplied through the
ARPA-ORD RADIUS project (ARPA, 1994). Each im-
age contains approximately 1320 × 1035 pixels, with
about 11 bits of grey level information per pixel. The
dimensions of each image vary slightly because the im-
ages have been resampled, and unmodeled geometric
and photometric distortions have been introduced to
more accurately reflect actual operating conditions.

Here, the Boldt line algorithm (Boldt et al., 1989),
was run on all of the eight images J1–J8. To reduce
the number of lines to a computationally manageable
size these images were first reduced in resolution to
half their original size before line extraction. After
line extraction, the segments found were rescaled back
into original image coordinates, then filtered so that
each line segment in the final set has a length of at
least 10 pixels and a contrast (difference in average
grey level across the line) of at least 15 grey levels.
This procedure produced more than 2000 line segments
per image. Figures 16, 17, and 18 show three sets of
line segments produced from images J1, J2, J3, res-
pectively.

As shown in Figs. 16, 17, and 18, the three line
sets are huge, and the numbers of image line segments

from the three images are different, since J1, J2, and
J3 have 2662, 2772, and 2734 image line segments,
respectively. Both the 2D image lines and the camera
parameters are noisy. Clearly, there exists significant
fragmentation in the three image line data sets. Due to
this fragmentation, there may be several line segment
correspondences that correspond to the same 3D line.
Geometrically, each finite image line segment corre-
sponds to a finite line segment in its corresponding 3D
line. Due to fragmentation, each of three line segments
in an image line correspondence often is from a differ-
ent part of the actual 3D line triple. In order to reduce
some unnecessary correspondences obtained by the
line matching and reconstruction algorithm, a “com-
mon part” constraint was imposed. This constraint en-
sures that any line segment correspondence must have
an overlapping common part in their 3D intersection
line. Another advantage of this constraint is that it can
eliminate some incorrect correspondences which have
no common element in their corresponding 3D pseudo-
intersection lines, although they have small affinity val-
ues. The result of the algorithm was 232 line segment
correspondences across three images, shown in Fig. 19,
20, and 21.
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Figure 14. Boldt lines in PUMA sequence. Three sets of image
line segments extracted by the Boldt algorithm: (a) 196 image line
segments in frame 1; (b) 185 image line segments in frame 10; (c)
189 image line segments in frame 20.

Figure 15. 76 matched line segments from Boldt lines in PUMA
sequence: (a) frame 1; (b) frame 10; (c) frame 20.
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Table 3. 3D line reconstruction error for the PUMA Sequence frames using the Boldt line algorithm: Processing of
frames 1,10,20 produces an average orientation error of 3.36 degree, and average distance error of 0.11 feet.

Actual 3D lines Computed 3D lines

ux uy uz ux uy uz

Line mx my mz mx my mz Orient error Distance error

4 −0.00 −0.00 1.00 0.08 0.02 1.00 4.74 0.05

−8.19 −0.00 −0.00 −7.98 −0.91 0.66

5 −0.00 −0.01 1.00 0.00 −0.02 1.00 0.21 0.19

−7.01 −0.00 −0.00 −7.13 0.16 0.03

7 0.00 0.00 1.00 0.01 0.01 1.00 0.71 0.05

−7.25 0.00 0.00 −7.30 0.04 0.09

8 −0.00 −0.00 1.00 0.02 −0.00 1.00 1.38 0.12

−7.03 −0.00 −0.00 −7.15 −0.09 0.17

9 0.00 1.00 0.00 0.12 0.97 −0.20 13.41 0.01

13.89 0.00 0.00 14.50 −1.65 0.62

10 0.00 −0.02 1.00 −0.01 −0.01 1.00 0.95 0.22

−5.02 0.00 0.00 −4.84 0.35 −0.04

11 −0.00 −0.03 1.00 0.02 −0.04 1.00 1.39 0.12

−5.34 −0.00 −0.00 −5.49 −0.09 0.12

12 1.00 −0.00 −0.00 1.00 −0.02 0.10 5.90 0.09

−0.00 −7.03 9.01 −1.05 −6.71 9.10

15 1.00 0.01 0.00 1.00 0.00 0.06 3.60 0.03

0.14 −11.28 4.17 −0.23 −11.09 4.16

17 0.00 1.00 0.00 0.06 0.99 −0.16 9.58 0.00

11.28 0.00 2.94 12.63 −0.09 3.44

18 1.00 0.01 0.00 1.00 0.01 −0.04 2.09 0.02

0.14 −11.28 2.79 0.16 −10.87 2.74

23 −0.00 −0.00 1.00 0.01 0.00 1.00 0.63 0.04

0.47 −4.82 −0.00 0.51 −4.90 0.00

24 −0.00 −0.00 1.00 −0.03 0.02 1.00 1.93 0.02

0.47 −4.43 −0.00 0.72 −3.95 0.09

29 0.00 0.00 1.00 0.02 −0.02 1.00 1.91 0.01

0.47 −6.94 0.00 0.09 −7.35 −0.16

30 −0.00 −0.00 1.00 0.01 −0.00 1.00 0.41 0.02

0.47 −7.53 −0.00 0.38 −7.63 −0.03

33 1.00 −0.00 −0.00 1.00 0.00 −0.04 2.48 0.10

−0.00 −15.03 9.01 0.45 −14.65 9.14

34 0.00 1.00 0.01 0.02 1.00 −0.04 3.31 0.03

14.85 0.00 0.00 15.24 −0.31 0.20

35 0.00 0.00 1.00 0.00 0.01 1.00 0.49 0.04

−9.01 −3.32 0.00 −9.05 −3.34 0.07

36 0.00 1.00 −0.00 −0.10 0.98 0.18 11.93 0.01

11.78 0.00 0.00 10.56 1.21 −0.54

37 0.00 −0.00 1.00 −0.00 −0.02 1.00 0.90 0.22

−5.40 0.00 0.00 −5.65 0.26 −0.00

(Continued on next page.)
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Table 3. (Continued).

Actual 3D lines Computed 3D lines

ux uy uz ux uy uz

Line mx my mz mx my mz Orient error Distance error

39 0.00 −0.07 1.00 0.00 −0.03 1.00 2.17 0.21

−5.05 0.00 0.00 −4.55 0.19 0.02

44 1.00 0.02 −0.00 1.00 0.01 −0.02 1.45 0.19

0.28 −11.28 5.26 0.21 −10.99 5.28

50 1.00 −0.02 0.00 0.99 −0.03 0.13 7.34 0.01

0.00 0.00 6.37 −0.81 0.15 6.35

56 1.00 0.00 0.01 1.00 −0.01 0.01 0.74 0.25

0.00 −14.85 −0.47 −0.19 −14.59 −0.60

58 1.00 0.01 0.00 1.00 −0.06 0.01 4.27 0.31

0.19 −13.75 1.57 −0.83 −13.51 1.00

59 1.00 −0.05 0.00 1.00 −0.05 0.06 3.44 0.04

−0.74 −13.73 0.37 −0.77 −13.85 0.32

60 1.00 −0.00 0.00 1.00 −0.00 0.07 3.95 0.06

−0.06 −13.75 0.08 −0.08 −13.91 0.02

61 1.00 0.00 0.00 1.00 0.01 0.08 4.74 0.01

0.00 −16.81 −0.47 0.20 −17.14 −0.43

63 1.00 0.00 0.05 1.00 −0.00 0.03 1.25 0.02

0.02 −17.92 −0.47 −0.08 −17.52 −0.54

64 1.00 0.00 0.00 1.00 −0.02 0.06 3.48 0.03

0.00 −11.13 9.01 −0.71 −10.82 9.06

65 0.00 1.00 0.00 −0.10 0.99 0.13 9.26 0.34

16.00 0.00 0.00 15.73 1.67 −0.47

66 0.00 0.00 1.00 −0.00 0.01 1.00 0.47 0.42

−9.01 −1.45 0.00 −9.11 −1.04 −0.01

71 1.00 0.00 0.00 1.00 −0.01 −0.05 3.20 0.01

0.00 −19.48 −0.47 −0.31 −18.98 −0.59

72 1.00 0.00 0.00 1.00 −0.01 −0.01 0.65 0.12

0.00 −17.82 −0.47 −0.15 −17.59 −0.57

73 1.00 −0.00 −0.00 1.00 −0.00 −0.00 0.29 0.20

−0.00 −16.95 −0.47 −0.08 −16.73 −0.54

7. Conclusions

This paper addresses the problems of determining
image feature correspondences while simultaneously
computing the corresponding 3D features, for images
with known camera pose. Our novel contribution is the
development and application of an affinity measure be-
tween image features (points and lines), i.e. a measure
of the degree to which candidates from different im-

ages consistently represent the projection of the same
3D point or the same 3D line. We use optimal bipar-
tite graph matching to solve the problem of simulta-
neous recovery of correspondence and 3D reconstruc-
tion. The matching mechanism is general and robust
since it ensures that a maximal matching can be found
based upon proven graph theoretical algorithms. From
the point of view of implementation, this graph-based
matching technique can be implemented efficiently and
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Figure 16. RADIUS model board image J1. The Boldt straight line extraction algorithm produced 2662 lines.

Figure 17. RADIUS model board image J2. The Boldt straight line extraction algorithm produced 2772 lines.
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Figure 18. RADIUS model board image J3. The Boldt straight line extraction algorithm produced 2734 lines.

Figure 19. 232 matched line segments for RADIUS model board image J1.
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Figure 20. 232 matched line segments for RADIUS model board image J2.

in parallel, and has been successfully applied to match-
ing problems involving graphs of quite large size.

Experiments with both synthetic and real image
data sets were conducted to evaluate performance of
the point and line matching algorithms. The experi-
ments have shown that the algorithms are robust in
the presence of significant amounts of missing points
and lines, and noise in the camera parameters and in
the extracted image point and line features. The pre-
sented integrated matching and triangulation methods
are well-suited for photogrammetric mapping applica-
tions where camera pose is already known, for wide-
baseline multi-camera stereo systems, and for model
extension where a set of known features are tracked.
Also, these techniques potentially have a wider ap-
plication domain than traditional matching and re-
construction algorithms, since our matching mecha-
nism is general-purpose and only the affinity measures
would need to be redefined. They could also be ex-

tended to deformable 3D matching and reconstruction
problems.

Some remaining issues associated with generaliza-
tion to multi-image analysis over larger numbers of im-
ages are subject for further study. In order to perform
3D reconstruction from m images, the point matching
and triangulation algorithm could be repeated for each
image pair of ( m

2 ), and the integrated line matching
and triangulation algorithm could be repeated for each
image triplet of ( m

3 ). This is not true multi-image match-
ing, since all images are not used together, and the two
affinity measures are not able to describe the affinity
among image features (points and lines) over multiple
images. The development of a new multi-image match-
ing algorithm based on more general affinity measures
is left for future work. Finally, it is desirable to develop
a unified matching and reconstruction algorithm based
on both image points and image lines, combining the
advantages of both.
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Figure 21. 232 matched line segments for RADIUS model board image J3.
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