Seeing the Objects Behind the Dots: Recognition in Videos from a Moving Camera

Bjorn Ommer, Theodor Mader, Joachim M. Buhmann Present by: Alisa Kunapinun

Abstract

This paper also significantly contributes to the systems design aspect—showing how all of these subtasks can be combined in a computer vision system so that they mutually benefit from another.

Keywords

- Object Recognition
- Segmentation
- Tracking
- Videos Analysis
- Compositionality
- Visual Learning

Process on this paper

Problem are investigated

- Category-level recognition
- Reducing supervision during learning
- Segmentation of videos from a moving camera
- Tracking without manual interaction
- Object models and shape representation

Process Pipeline

Region Tracking and Object Segmentation

- Tracking Object Regions
 - Compositions as Spatial Groupings of Parts
 - A composition represents all its constituent interest points
 - Tracking Compositions
 - Temporal Grouping of Composition

$$\Gamma^{t}(j) = \{i : \text{IP } i \text{ in neighborhood of } j\text{-th comp.}\}.$$
 (1)

$$\mathbf{g}_{j}^{t} := \frac{1}{|\Gamma^{t}(j)|} \sum_{i \in \Gamma^{t}(i)} \mathbf{d}_{t}^{i}. \tag{2}$$

$$\mathbf{x}_j^{t+1} := \mathbf{x}_j^t + \frac{1}{|\Gamma^t(j)|} \sum_{i \in \Gamma^t(j)} \mathbf{d}_t^i. \tag{3}$$

$$\mathbf{h}_{j}^{t} = \eta \mathbf{g}_{j}^{t} + (1 - \eta)\mathbf{h}_{j}^{t-1}. \tag{4}$$

Joint Tracking and Segmentation of Objects Based on Floating Image Regions

- Problem: assemble the object regions into the different objects and into background.
- Solving: Expectation-Maximization approach (EM)
- After use EM-Algorithm: Using Segmentation to Refine Object Region Tracking Algorithm

EM-Algorithm

```
CompSegmentation(\{\mathbf{h}_{i}^{t}\}_{j}, \{\mathbf{T}_{v}^{t-1}\}_{v=1,...,K})
        Initialization: \forall \nu : \mathbf{T}_{\nu}^{t} \leftarrow \mathbf{T}_{\nu}^{t-1}
2
        repeat
           E-Step: □ update assignments:
             \mathbf{M}_{j,v}^{t} \leftarrow 1 \Big\{ v = \operatorname{argmin}_{\widehat{v}} \mathcal{R} \left( \mathbf{T}_{\widehat{v}}^{t}, \mathbf{h}_{j}^{t}, \mathbf{x}_{j}^{t} \right) \Big\}
           M-Step: ▷ update segments:
6
          for \nu = 1, \dots, K
               do Solve with Levenberg-Marquardt
                       (start with \widehat{\mathbf{T}}_{v}^{t} \leftarrow \mathbf{T}_{v}^{t}):
                       \mathbf{T}_{v}^{t} \leftarrow \operatorname{argmin}_{\widehat{\alpha},\widehat{s},\widehat{\delta}_{x},\widehat{\delta}_{v}} \sum_{j} \mathbf{M}_{j,v}^{t} \mathcal{R}\left(\widehat{\mathbf{T}}_{v}^{t}, \mathbf{h}_{j}^{t}, \mathbf{x}_{i}^{t}\right)
        until convergence of \mathbf{M}_{i,v}^t
        return \mathbf{M}^t, \{\mathbf{T}_v^t\}_{v=1,\dots,K}
9
```

Using Segmentation to Refine Object Region Tracking Algorithm

```
CompositionTracking(\{\mathbf{h}_i^{t-1}, \mathbf{x}_i^t\}_j, \{\mathbf{T}_v^{t-1}\}_{v=1,...,K})
           Detect interest points i in frame t
           for all compositions j \triangleright update comps with IP flow:
   3 do \Gamma^t(j) \leftarrow \{i : \|\mathbf{x}_i^t - \bar{\mathbf{x}}_i^t\| \le w\}
  4 \mathbf{g}_{i}^{t} \leftarrow \frac{1}{|\Gamma^{t}(i)|} \sum_{i \in \Gamma^{t}(j)} \mathbf{d}_{t}^{i}
  5 \mathbf{h}_{i}^{t} \leftarrow \eta \mathbf{g}_{i}^{t} + (1 - \eta) \mathbf{h}_{i}^{t-1}
  6 \mathbf{M}^t, \{\mathbf{T}_{v}^t\}_{v} \leftarrow \text{CompSegmentation}(\{\mathbf{h}_{i}^t\}_{j}, \{\mathbf{T}_{v}^{t-1}\}_{v})
           for all compositions j \triangleright update\ comps\ with\ segmentat.:
          do \Gamma^t(j) \leftarrow \{i : i \in \Gamma^t(j) \land \}
                                                   1 = \mathbf{M}_{j, \operatorname{argmin}_{\widehat{v}} \mathcal{R}(\mathbf{T}_{v}^{t}, \mathbf{d}_{t}^{i}, \bar{\mathbf{x}}_{i}^{t})}^{t}
                  \mathbf{g}_{j}^{t} \leftarrow \frac{1}{|\Gamma^{t}(j)|} \sum_{i \in \Gamma^{t}(j)} \mathbf{d}_{t}^{i}
10 \mathbf{h}_{i}^{t} \leftarrow \eta \mathbf{g}_{i}^{t} + (1 - \eta) \mathbf{h}_{i}^{t-1}
                  \mathbf{x}_{i}^{t+1} \leftarrow \mathbf{x}_{i}^{t} + \frac{1}{|\Gamma^{t}(i)|} \sum_{i \in \Gamma^{t}(i)} \mathbf{d}_{t}^{i}
           return \{\mathbf{h}_{i}^{t}, \mathbf{x}_{i}^{t+1}\}_{j}, \{\mathbf{T}_{v}^{t}\}_{v}
```

Object Representations for Category-Level Recognition

- Compositional, Appearance-Based Model: Use multi-class SVM
- Recognition Using the Motion of Dot Patterns: Use SVM
- Global Shape and Local Appearance Combined
- Processing Pipeline for Training: Use SVM

Output

Process Output

Process Output(2)

Experiments

- Recognition Performance on Videos with Substantial Camera Motion
 - use 10-fold cross-validation and train on 16 randomly
 - Object models are learn on a randomly drawn subset of 15 frames per train video

Experiment Output

- Baseline Performance of Appearance w/o
 Compositions and Shape—Bag-of-Parts
 - 53.0 . 5.6% of all frames correctly.
- Compositional Segmentation and Recognition w/o Shape Model
 - 64.9 . 5.4% per frame.

Experiment Output(2)

Comparing the Different Algorithm

Object model	Per frame	Per video				
Dataset of Ommer and Buhmann (2007)						
(car, bicycle, pedestrian, streetcar):						
Approach of Ommer and Buhmann (2007)	74.3 ± 4.3	87.4 ± 5.8				
Compositional motion (13)	52.6 ± 1.1	68.2 ± 3.4				
Appearance-only: bag-of-parts	53.0 ± 5.6	58.9 ± 6.5				
Segment. w/o shape: bag-of-comps	64.9 ± 5.4	78.9 ± 5.8				
Shape: $P(c^{t,v} V^{t,v})$ (11)	74.4 ± 5.3	88.4 ± 5.2				
Compositional appear + location (12)	79.6 ± 5.5	90.7 ± 5.3				
Combined shape + appear (14)	81.4 ± 2.9	94.5 ± 4.9				
Dataset (Ommer and Buhmann 2007) plus additional category						
"cow" from (Magee and Boyle 2002):						
Compositional appearance (12)	76.5 ± 2.4	88.4 ± 2.3				

Experiment Output(3)

Comparing Different Object Models

True classes →	Bicycle	Car	Pedest	Streetcar	
Bicycle	74.3	3.2	13.7	2.9	
Car	7.8	84.1	4.2	5.9	
Pedestrian	13.3	2.5	80.0	3.9	
Streetcar	4.7	10.2	2.2	87.3	

Experiment Output(4)

- Computational Demands
 - recognizes objects in videos of 768x576 pixel
 - using the combined shape and appearance model at the order of 1 fps on a 3 GHz Pentium 4 desktop PC.

Processing step	Comp. demand
Tracking and segmentation, Algorithm 2:	
IPs i , flow \mathbf{d}_t^i (Algorithm 2, line 1)	27.7%
Updating comps (Algorithm 2, line 2-5)	5.2%
EM estimation Algorithm 1, i.e. (Algorithm 1, line 6)	4.9%
Updating comps with segm. (Algorithm 2, line 7–11)	0.3%
Feature extraction and recognition:	
Computing loc feat hists to represent a_i^t (Sect. 3.2)	36.5%
Computing all individual probs in (14)	12.3%
Eval. GM of Fig. 5, i.e. calc. product in (14)	0.09%
Video stream ops, writing of results, etc.	12.9%

Experiment Output(5)

Action Recognition using KTH

True classes →	Box	Hclp	Hwav	Jog	Run	Walk
Boxing	84.5	0.0	5.5	0.0	0.0	0.0
Hand clapping	1.0	87.0	16.5	0.0	0.0	0.0
Hand waving	12.5	13.0	75.5	0.0	0.0	0.0
Jogging	0.0	0.0	0.5	93.0	0.0	0.0
Running	2.0	0.0	0.0	3.0	92.3	5.0
Walking	0.0	0.0	2.0	4.0	7.7	95.0