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Abstract Histograms of local appearance descriptors are
a popular representation for visual recognition. They are
highly discriminant with good resistance to local occlusions
and to geometric and photometric variations, but they are
not able to exploit spatial co-occurrence statistics over scales
larger than the local input patches. We present a multilevel
visual representation that remedies this. The starting point is
the notion that to detect object parts in images, in practice it
often suffices to detect co-occurrences of more local object
fragments. This can be formalized by coding image patches
against a codebook of known fragments or a more general
statistical model and locally histogramming the resulting la-
bels to capture their co-occurrence statistics. Local patch de-
scriptors are converted into somewhat less local histograms
over label occurrences. The histograms are themselves local
descriptor vectors so the process can be iterated to code ever
larger assemblies of object parts and increasingly abstract
or ‘semantic’ image properties. We call these higher-level
descriptors “hyperfeatures”. We formulate the hyperfeature
model and study its performance under several different im-
age coding methods including k-means based Vector Quan-
tization, Gaussian Mixtures, and combinations of these with
Latent Dirichlet Allocation. We find that the resulting high-
level features provide improved performance in several ob-
ject image and texture image classification tasks.
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1 Introduction

One of the most popular representations for visual recogni-
tion is local coding using invariant local descriptors (Schiele
and Crowley 2000; Schaffalitzky and Zisserman 2001;
Agarwal et al. 2004; Lowe 2004; Dorko and Schmid 2005;
Lazebnik et al. 2003, 2004; Csurka et al. 2004; Opelt et al.
2004; Jurie and Triggs 2005; Fei-Fei and Perona 2005). The
image is treated as a loose collection of quasi-independent
local patches, each patch is represented by a vector of robust
visual descriptors, and a statistical summarization or aggre-
gation process is used to capture the statistics of the result-
ing set of descriptor vectors. There are several variants for
each component. Patches can be selected at one or at many
scales, and either densely, at random, or sparsely according
to local informativeness criteria (Harris and Stephens 1988;
Kadir and Brady 2001). There are many types of local de-
scriptors and they can incorporate various degrees of resis-
tance to common perturbations such as viewpoint changes,
geometric deformations, and photometric transformations
(Schmid and Mohr 1997; Lowe 2004; Schaffalitzky and Zis-
serman 2001; Mikolajczyk and Schmid 2005; Mikolajczyk
et al. 2005). Results can be aggregated in a variety of ways,
either over local regions to make higher-level local descrip-
tors, or globally to make whole-image descriptors.

The simplest example is the ‘texton’ or ‘bag-of-features’
approach. This was initially developed for texture analy-
sis (e.g. Malik and Perona 1990; Leung and Malik 1999),
but it turns out to give surprisingly good performance
in many image classification and object recognition tasks
(Varma and Zisserman 2003; Dorko and Schmid 2005;
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Csurka et al. 2004; Opelt et al. 2004; Jurie and Triggs 2005;
Fei-Fei and Perona 2005). Local image patches or their fea-
ture vectors are coded using vector quantization against a
fixed codebook, and the votes for each codebook centre are
tallied to produce a histogram characterizing the distribu-
tion of patches over the image or local region. Codebooks
are typically constructed by running clustering algorithms
such as k-means over large sets of training patches. Soft
voting into several nearby centres can be used to reduce
aliasing effects. More generally, EM can be used to learn
a mixture distribution or a deeper latent variable model in
descriptor space, coding each patch by its vector of poste-
rior mixture-component membership probabilities or latent
variable values.

1.1 Hyperfeatures

The main limitation of local coding approaches is that they
capture only the first order statistics of the set of patches
(within-patch statistics and their aggregates such as means,
histograms, etc.), thus ignoring the fact that inter-patch sta-
tistics such as co-occurrences or spatial relationships are im-
portant for many recognition tasks. To alleviate this, sev-
eral authors have proposed methods for incorporating an
additional level of representation that captures pairwise or
neighborhood co-occurrences of coded patches (Puzicha et
al. 1999; Schiele and Pentland 1999; Schmid 2004; Agarwal
et al. 2004; Lazebnik et al. 2003).

This paper takes the notion of an additional level of rep-
resentation one step further, generalizing it to a generic
method for creating multi-level hierarchical codings. The
basic idea is that image content should be coded at several
levels of abstraction, with the higher levels being spatially
coarser but (hopefully) semantically more informative. Our
approach is based on local histograms, c.f. (Puzicha et al.
1999; Schmid 2004). At each level, the image is divided
into local regions with each region being characterized by
a descriptor vector. The base level contains raw image de-
scriptors. At higher levels, each vector is produced by cod-
ing (e.g. vector quantizing) and locally pooling the finer-
grained descriptor vectors from the preceding level. For in-
stance, suppose that the regions at a particular level consist
of a regular grid of overlapping patches that uniformly cover
the image. Given an input descriptor vector for each member
of this grid, the descriptors are vector quantized and their
resulting codes are used to build local histograms of code
values over (say) 5 × 5 blocks of input patches. These his-
tograms are evaluated at each point on a coarser grid, so
the resulting upper level output is again a grid of descrip-
tor vectors (local histograms). The same process can be re-
peated at higher levels, at each stage taking a local set of
descriptor vectors from the preceding level and returning its
coded local histogram vector. We call the resulting higher-
level features hyperfeatures. The codebooks are learned in

the usual way, from descriptor vectors of the correspond-
ing level taken from a set of training images. For improved
scale-invariance, the process runs at each layer of a conven-
tional multi-scale image pyramid, so each level of the hy-
perfeature hierarchy contains a whole pyramid of descrip-
tor vectors, not just a grid.1 The hyperfeature construction
process is illustrated in Fig. 1.

Our main claim is that hyperfeatures provide a useful set
of features for visual recognition. In particular, the use of
vector quantization coding followed by local histogramming
of membership votes provides an effective means of inte-
grating higher order spatial relationships into texton style
image representations. The resulting spatial model is some-
what ‘loose’—it codes nearby co-occurrences, not precise
geometry—but for this reason it is robust to spatial misalign-
ments and deformations and to partial occlusions, and it fits
well with the “spatially weak/strong in appearance” philos-
ophy of texton representations. The basic intuition is that
in practice, notwithstanding its geometric weakness, sim-
ple co-occurrence of characteristic part fragments often suf-
fices to characterize the presence of the parts, so that as one
moves up the hyperfeature hierarchy larger and larger as-
semblies of parts are coded until ultimately one codes the
entire object. Hyperfeature stacks are naturally robust to oc-
clusions and feature extraction failures owing to their loose
agglomerative nature. Even when the top level object is not
successfully represented, substantial parts of it are often cap-
tured by the lower levels of the hierarchy and the system can
still cue recognition on these.

1.2 Previous Work

This paper is an extended version of the ECCV paper (Agar-
wal and Triggs 2006). The additional material includes the
on-line version of the basic hyperfeature learning algorithm
(Sect. 3) and more extensive experimental results.

The hyperfeature representation has several precursors.
Classical ‘texton’ or ‘bag of feature’ representations (Ma-
lik and Perona 1990; Leung and Malik 1999) are global
histograms over quantized image descriptors—‘level 0’ of
the hyperfeature hierarchy. A hierarchical feature-matching
framework for simple second level features is developed
in (Lang and Seitz 1997), and histograms of quantized
‘level 1’ features are used to classify textures and recog-
nize regularly textured objects in (Puzicha et al. 1999;
Schmid 2004).

Hyperfeature stacks also have analogies with multilevel
neural models such as the neocognitron (Fukushima 1980),
Convolutional Neural Networks (CNN) (LeCun et al. 2004)

1Terminology: ‘layer’ denotes a standard image pyramid layer, i.e. the
same image at a coarser scale; ‘level’ denotes the number of folds of
hyperfeature (quantize-and-histogram) local coding that have been ap-
plied, with each transformation producing a different, higher-level ‘im-
age’ or ‘pyramid’.
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Fig. 1 Constructing a hyperfeature stack. The ‘level 0’ (base fea-
ture) pyramid is constructed by calculating a local image descriptor
vector for each patch in a multiscale pyramid of overlapping image
patches. These vectors are vector quantized according to the level 0
codebook, and local histograms of codebook memberships are accu-
mulated over local position-scale neighborhoods (the smaller darkened
regions within the image pyramids) to make the level 1 feature vectors.
Other local accumulation schemes can be used, such as soft voting or

more generally capturing local statistics using posterior membership
probabilities of mixture components or similar latent models. Softer
spatial windowing is also possible. The process simply repeats itself at
higher levels. The level l to l + 1 coding is also used to generate the
level l output vectors—global histograms over the whole level-l pyra-
mid. The collected output features are fed to a learning machine and
used to classify the (local or global) image region

and HMAX (Riesenhuber and Poggio 1999; Serre et al.
2005; Mutch and Lowe 2006). These are all multilayer net-
works with alternating stages of linear filtering (banks of
learned convolution filters for CNN’s and of learned ‘sim-
ple cells’ for HMAX and the neocognitron) and nonlin-
ear rectify-and-pool operations. The neocognitron activates
a higher level cell if at least one associated lower level
cell is active. In CNNs the rectified signals are pooled
linearly, while in HMAX a max-like operation (‘complex
cell’) is used so that only the dominant input is passed
through to the next stage. The neocognitron and HMAX
lay claims to biological plausibility whereas CNN is more
of an engineering solution, but all three are convolution-
based discriminatively-trained models. In contrast, although
hyperfeatures are still bottom-up, they are essentially a de-
scriptive statistics model not a discriminative one: train-
ing is completely unsupervised and there are no convolu-
tion weights to learn for hyperfeature extraction, although
the object classes can still influence the coding indirectly
via the choices of codebook. The basic nonlinearity is also
different: for hyperfeatures, nonlinear descriptor coding by
nearest neighbor lookup (or more generally by evaluat-
ing posterior probabilities of membership to latent feature
classes) is followed by a comparatively linear accumulate-

and-normalize process, while for the neural models linear
convolution filtering is followed by simple but nonlinear rec-
tification.

A number of other hierarchical feature representations
have been proposed very recently. Some of these, e.g. (Serre
et al. 2005; Mutch and Lowe 2006), follow the HMAX
model of object recognition in the primal cortex while others
such as (Epshtein and Ullman 2005) are based on top-down
methods of successively breaking top-level image fragments
into smaller components to extract informative features.
This does not allow higher levels to abstract from the fea-
tures at lower levels. Another top-down approach presented
in (Lazebnik et al. 2006) is based on pyramid matching that
repeatedly subdivides the image to compute histograms at
various levels. Again, unlike the hyperfeatures that we pro-
pose in this paper, this does not feed lower level features
into the computational process of higher ones. Hyperfea-
tures are literally “features of (local sets of) features”, and
this differentiates them from such methods. Another key
distinction of hyperfeatures is that they are based on local
co-occurrence alone, not on numerical geometry (although
quantitative spatial relationships are to some extent captured
by coding sets of overlapping patches). Advantages of this
are discussed in Sect. 3.
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Fig. 2 Codebook centers obtained for SIFT descriptors from a dataset
of 684 images from 4 object categories (the VOC’05 dataset—see
Sect. 4). The intensity of each small line segment represents the weight
of the corresponding orientation bin in the corresponding SIFT cell.
Left: Vector quantization cluster centers obtained using the mean-shift
based clustering algorithm of (Jurie and Triggs 2005). Right: Gaussian
mixture centres. The two codebooks clearly code information very dif-

ferently. VQ picks relatively sparse ‘natural features’ while the GM
tends to converge to denser, more averaged out features corresponding
to structures such as vertical/horizontal lines, textures, etc., relying to a
large extent on variance differences to separate the different Gaussian
components. The blank patch occurs very frequently in this dataset, es-
pecially in uncluttered background regions, and so it is almost always
prominent among the centres

Note that the term ‘hyperfeature’ has also been used for
several unrelated concepts including disjunctions of boolean
features in document classification, and appearance descrip-
tors augmented with feature position coordinates in vi-
sual recognition (Ferencz et al. 2004). Our use of it was
suggested by the local pooling performed by the ‘hyper-
columns’ of the visual cortex.

2 Base Features and Image Coding

The hyperfeature framework can be used with a large class
of underlying image coding schemes. This section discusses
the schemes that were tested in this paper. For simplicity
we describe them in the context of the base level (level 0),
leaving the extension to higher levels to the next section.

2.1 Image Features

The ‘level 0’ input to the hyperfeature coder is a base set
of local image descriptors. In our case these are computed
on a dense grid—in fact a multiscale pyramid—of image
patches. As patch descriptors we use SIFT-like gradient
orientation histograms, computed in a manner similar to
(Lowe 2004) but using a regularized normalization that re-
mains finite for empty patches for better resistance to im-
age noise in nearly empty patches. (SIFT was not originally
designed to handle patches that may be empty.) The nor-
malization provides good resistance to photometric trans-
formations, and the spatial quantization within SIFT pro-
vides a pixel or two of robustness to spatial shifts. The in-
put to the hyperfeature coder in our experiments is thus
a pyramid of 128-D SIFT descriptor vectors. Other de-
scriptors could also be used, e.g. (Mori and Malik 2003;
Berg and Malik 2001).

Hyperfeature models based on sparse (e.g. keypoint
based Dorko and Schmid 2005; Csurka et al. 2004; Lazebnik
et al. 2003; Mikolajczyk et al. 2005) feature sets would also

be possible but they are not considered here, in part for sim-
plicity and in part because recent work (e.g. Jurie and Triggs
2005) suggests that dense representations will outperform
sparse ones.

2.2 Vector Quantization and Gaussian Mixtures

Vector quantization is a simple and widely-used method of
characterizing the content of image patches (Leung and Ma-
lik 1999). Each patch is coded by finding the most similar
patch in a dictionary of reference patches and using the in-
dex of this patch as a label. Here we use nearest neighbor
coding based on Euclidean distance between image descrip-
tors, with a vocabulary learned from a training set using a
clustering algorithm similar to the mean shift based on-line
cluster of (Jurie and Triggs 2005). We find that the results are
relatively insensitive to the choice of method used to obtain
this vocabulary. The histograms have a bin for each centre
(dictionary element) that counts the number of patches as-
signed to the centre. In the implementation, a sparse vector
representation is used for efficiency.

Abrupt quantization into discrete bins does cause some
aliasing. This can be reduced by soft vector quantization—
softly voting into the centers that lie close to the patch, e.g.
with Gaussian weights. Taking this one step further, we can
fit a probabilistic mixture model to the distribution of train-
ing patches in descriptor space, subsequently coding new
patches by their vectors of posterior mixture-component
membership probabilities. The full mixture model gives cen-
tres that are qualitatively very different from those obtained
by clustering, as shown in Fig. 2. In Sect. 4 we test hard
vector quantization (VQ) and diagonal-covariance Gaussian
mixtures (GM) fitted using Expectation-Maximization. The
GM codings turn out to be more effective.

2.3 Latent Dirichlet Allocation

VQ and mixture models are flexible coding methods, but
capturing fine distinctions often requires a great many cen-
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tres. This brings the risk of fragmentation, with the patches
of an object class becoming scattered over so many label
classes that it is difficult to learn an effective recognition
model for it. ‘Bag of words’ text representations face the
same problem—there are many ways to express a given un-
derlying ‘meaning’ in either words or images. To counter
this, one can attempt to learn deeper latent structure models
that capture the underlying semantic “topics” that generated
the text or image elements. This improves learning because
each topic label summarizes the ‘meaning’ of many different
word labels.

The simplest latent model is Principal Components
Analysis (‘Latent Semantic Analysis’ i.e. linear factor
analysis), but in practice statistically-motivated nonlinear
approaches such as Probabilistic Latent Semantic Analy-
sis (pLSA) (Hofmann 1999) perform better. There are
many variants on pLSA, typically adding further layers
of latent structure and/or sparsifying priors that ensure
crisper distinctions (Buntine and Perttu 2003; Canny 2004;
Keller and Bengio 2004; Buntine and Jakaulin 2005). Here
we use Latent Dirichlet Allocation (LDA) (Blei et al.
2003). LDA models document words as samples from sparse
mixtures of topics, where each topic is a mixture over word
classes. More precisely: the gamut of possible topics is char-
acterized by a learned matrix β of probabilities for each
topic to generate each word class; for each new document a
palette of topics (a sparse multinomial distribution) is gen-
erated using a Dirichlet prior; and for each word in the doc-
ument a topic is sampled from the palette and a word class
is sampled from the topic. Giving each document its own
topic mixture allows more variety than sharing a single fixed
mixture across all documents of a given class would, while
still maintaining the underlying coherence of the topic-based
structure. In practice the learned values of the Dirichlet pa-
rameter α are small, ensuring that the sampled topic palette
is sparse for most documents. Pure LDA is an unsupervised
generative topic model that does not use any discriminative
training information such as knowledge of class labels. The
process could be made more supervised by making the doc-
ument topic priors class-specific, e.g. with distinct Dirichlet
parameters for each topic. Although this might capture more
discriminative information, here we use only standard unsu-
pervised LDA.

In our case, during both learning and use, the visual
‘words’ are represented by VQ or GM code vectors and
LDA functions essentially as a locally adaptive nonlinear
dimensionality reduction method, re-coding each word (VQ
or GM vector) as a vector of posterior latent topic proba-
bilities, conditioned on the local ‘document’ model (topic
palette). The LDA ‘documents’ can be either complete im-
ages or the local regions used to construct (the current level
of) the hyperfeature coding. Below we use local regions,

which is slower but more discriminant. Henceforth, “cod-
ing” refers to either VQ or GM coding, optionally followed
by LDA reduction.

3 Constructing Hyperfeatures

The hyperfeature construction process is illustrated in Fig. 1.
At level 0, the image (more precisely the image pyramid)
is divided into overlapping local neighborhoods, with each
neighborhood containing a number of image patches (pos-
sibly across multiple scale layers in the pyramid). The co-
occurrence statistics within each local neighborhood N are
captured by vector quantizing or otherwise nonlinearly cod-
ing its patches and histogramming the results over the neigh-
borhood. This process converts local patch-level descriptor
vectors (image features) to spatially coarser but higher-level
neighborhood-level descriptor vectors (local histograms). It
works for any kind of descriptor vector. In particular, the
output is again a vector of local image descriptors so the
process can be repeated recursively over higher and higher
order neighborhoods to obtain a series of increasingly higher
level but spatially coarser descriptor vectors.

Let: F (l) denote the level-l hyperfeature pyramid; d(l) de-
note the level-l feature, codebook or histogram dimension;
(x, y, s) denote position-scale coordinates within a feature

pyramid; and F (l)
ixys denote the level-l descriptor vector at

(x, y, s) in image i. During training, a codebook or coding
model is learned from all features (all i, x, y, s) at level
l. In use, the level-l codebook is used to code the level-
l features in some image i, and these are pooled spatially
over local neighborhoods N (l+1)(x, y, s) to make the hy-

perfeatures F (l+1)
ixys . In (Agarwal and Triggs 2006), we de-

veloped a batch-mode hyperfeature coding algorithm that
learns the coding one level at a time. The algorithm is sim-
ple to implement but it becomes too memory-intensive for
large datasets because for batch VQ, E-M or LDA, at each
level l, the (densely sampled) level-l features from all im-
ages need to be stored in live memory during training. The
batch algorithm for VQ coding on N levels is summarized
as ‘algorithm 1’ in Fig. 3. In this paper we introduce an al-
ternative algorithm that processes the images sequentially
on-line, simultaneously learning codings for all levels—see
algorithm 2 in Fig. 3. The two algorithms give very similar
results (e.g. for test image classification error on the 4-class
dataset below), but the second can handle arbitrarily large
sets of training images because it only needs to store and
process one image at a time. In principle the on-line algo-
rithm is asymptotically slower than the batch one because it
processes every layer in each iteration and no layer can fully
converge until the previous ones have. However in practice
on-line k-means has rapid initial convergence and we typ-
ically find that all of the layers have stabilized before the
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Fig. 3 Hyperfeature coding algorithms

first pass through the data has been completed. In the ex-
periments below, performing only step 1 of algorithm 2 al-
ready gives acceptable results, one pass of step 2 improves
the classification performance by 1–2% on average, and fur-
ther passes make little difference. So overall the run times of
the two methods are very similar.

For vector quantization coding there is a single global
clustering during learning, followed by local histogramming
of class labels within each neighborhood during use. For
GM coding, a global mixture model is learned using EM,
and in use the mixture component membership probability
vectors of the patches from the neighborhood are summed to
get the code vector. In the on-line GM algorithm, step 2 in-
volves updating the covariances along with the centers. This

is done in the usual on-line EM manner by storing sufficient
statistics (weighted sums of number of points, point coordi-
nates and their squares of all points assigned to the cluster
so far).

If LDA is used, each neighborhood is treated as a separate
‘document’ with its own LDA context in the experiments be-
low, i.e. the parameters α, β are estimated once using all of
the training images, then used as priors for the topic distrib-
utions of each neighborhood independently.

In all of these schemes, the histogram dimension is the
size of the codebook or the GM/LDA basis. The neighbor-
hoods are implemented as small trapezoids in scale space, as
shown in Fig. 1. This shape maintains scale invariance and
helps to minimize boundary losses, which cause the pyra-
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mids to shrink in size with increasing level. The size of the
pooling region at each hyperfeature level (relative to its cor-
responding source layer in the original input pyramid) is
a parameter. The region size needs to grow with the level.
Otherwise, essentially the same information is re-encoded
at each level, causing rapid saturation and suboptimal per-
formance.

As tested here, hyperfeature coding is a purely bottom-up
descriptive statistics approach, trained without any reference
to class labels. It thus offers a relatively neutral and generic
framework for image representation that is not explicitly
specialized for discrimination between particular classes of
image content. Below we will study the effectiveness of hy-
perfeatures for image classification and region labeling. This
is done by training a separate discriminative classifier on la-
beled images after the generic hyperfeature coding has been
learned. The classifiers take the multi-level hyperfeatures
as input and output predicted class labels for each image
(Sect. 4) or for each local image region (Sect. 5).

4 Experiments on Image Classification

To illustrate the discriminative capabilities of hyperfea-
tures, we present image classification experiments on three
datasets: a 4 class object dataset based on the “Caltech 7”
and “Graz” datasets that was used for the European net-
work PASCAL’s “Visual Object Classes Challenge 2005”
(VOC’05) (Everingham et al. 2006); the 10 class KTH-TIPS
texture dataset (Fritz et al. 2004); and the CRL-IPNP (Cen-
tre of Research in Language—International Picture Naming
Project) dataset of line sketches used for picture naming in
language research.2 The VOC’05 dataset contains 684 train-
ing and 689 test images, which we scale to a maximum res-
olution of 320×240 pixels. The texture dataset contains 450
training and 360 test images over 10 texture classes, mostly
200×200 pixels. The CRL-IPNP dataset consists of 360 im-
ages of 300×300 pixels picturing various common objects
and activities. Here we divide it into just two classes, images
containing people, and others.

As base level visual features we use the underlying de-
scriptor of Lowe’s SIFT method—local histograms of ori-
ented image gradients calculated over 4×4 blocks of 4×4
pixel cells (Lowe 2004). Here this is tiled densely over
the image with no orientation normalization, not applied
sparsely at keypoints and rotated to the dominant local ori-
entation (Lowe 2004), as orientation normalization actu-
ally reduces the classification performance on the objects

2The VOC’05 object recognition database collection is available
at www.pascal-network.org/challenges/VOC. The KTH-TIPS texture
dataset is available at www.nada.kth.se/cvap/databases/kth-tips. The
CRL-IPNP dataset is available at http://crl.ucsd.edu/~aszekely/ipnp.

dataset. The input pyramid had a scale range of 8:1 with a
spacing of 1/3 octave. Patches were sampled regularly at 8
pixel intervals, giving a total of 2500–3000 descriptors per
image. For the pooling neighborhoods N , we took volumes
of 3 × 3 × 3 patches in (x, y, s) by default, increasing these
in effective size by a factor of 21/3 (one pyramid layer) at
each hyperfeature level.

Classification Framework With all of the schemes that
we tested for hyperfeature construction, the features are
learned in a completely unsupervised manner. To perform
image classification using these features, we train soft linear
one-against-rest Support Vector Machine classifiers (Vapnik
1995) independently for each class over the global output
histograms collected from the active hyperfeature levels. We
compare the performance using different numbers of hyper-
feature levels, in each case using the entire set of global his-
tograms from the stated level and from all lower ones as fea-
tures. The experiments here use SVM-light (Joachims 1999)
with default settings.

4.1 The Effect of Multiple Levels

Figure 5 presents Detection Error Tradeoff (DET)3 and
Precision-Recall curves showing the influence of hyperfea-
ture levels on classification performance for the VOC’05
dataset. We used GM coding with a 200 center codebook at
the base level and 100 center ones at higher levels. Includ-
ing higher levels gives significant gains for ‘cars’ and es-
pecially ‘motorbikes’, but little improvement for ‘bicycles’
and ‘people’. The results improve up to level 3 (i.e. using
the hyperfeatures from all levels 0–3 for classification), ex-
cept for ‘people’ where level 1 is best. Beyond this there is
overfitting: subsequent levels introduce more noise than in-
formation. The differences in behavior between classes can
probably be attributed to their differing amounts of struc-
ture. The large appearance variations in the ‘person’ class
leave little in the way of regular co-occurrence statistics for
the hyperfeature coding to key on, whereas the more regular
geometries of cars and motorbikes are captured well, as seen
in Figs. 5(a) and (b). Different coding methods and code-
book sizes give qualitatively similar evolutions with level,
but the absolute numbers can be quite different (see below).

The results on the KTH-TIPS texture dataset lead to sim-
ilar conclusions. For 4 of the 10 classes the level 0 per-
formance is already near perfect and adding hyperfeatures
makes little difference. For the remaining 6, there are gains
(often substantial ones) up to hyperfeature level 3. Curves

3DET curves plot miss rate (i.e.1—true positive rate) vs. false positive
rate on a log-log scale—the same information as a ROC curve in more
visible form. Lower curves indicate better performance.
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Fig. 4 Some typical images from the datasets used to evaluate hy-
perfeature based image classification. a The VOC’05 object dataset
contains 4 classes: motorbikes, bicycles, people and cars; b 4 of the

10 different textures in the KTH-TIPS dataset; and c the CRL-IPNP
dataset includes drawings of people, objects and scenes

Fig. 5 Detection Error Trade-off and Recall-Precision curves for the
four classes of the VOC’05 dataset. Up to a certain level, including
additional levels of hyperfeatures improves the classification perfor-
mance. For the motorbike, car and bicycle classes the best performance
is at level 3, while for the person class it is at level 1 (one level above

the base features). The large gain on the motorbike (a 5× reduction
in false positives at fixed miss rate) and car classes suggests that local
co-occurrence structure is quite informative, and is captured well by
hyperfeatures

for 4 of these 6 classes are shown in Fig. 6. The equal-error-
rate texture classification performance4 for all 10 classes for

4At the base level of the texture dataset, we needed to make a manual
correction to the SIFT VQ codebook to work around a weakness of
codebook creation. Even at the finest level at which SIFT’s are evalu-
ated here, certain textures are homogeneous enough to cause all bins of
the SIFT descriptor to fire about equally. This gives rise to a very heav-
ily populated “uniform noise” centre in the middle of SIFT space. For

VQ and GM coding is shown in Fig. 7. GM is better on aver-
age. Overall, its mean hit rate of 91.7% at equal error rate is
slightly better than the 90.6% achieved by the bank of filters

some textures this centre receives nearly all of the votes, significantly
weakening the base level coding and thus damaging the performance
at all levels. The issue can be resolved by simply deleting the rogue
centre (stop word removal). It does not occur either at higher levels or
for GM coding.
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Fig. 6 Detection Error Trade-off and Precision-Recall curves for 4 of
the 10 classes of the KTH-TIPS dataset for which hyperfeatures play a
significant role (see text). A mixture of 100 Gaussians is used at each
level. Including hyperfeatures improves the classification performance

for every texture that is poorly classified at level 0, without hurting
that for well-classified textures. The aluminium and sponge classes are
best classified by including 3 levels of hyperfeatures, and cracker and
orange peel by using 2 levels

Fig. 7 One-vs-rest classification performance (hit rate) at the equal
error point for the 10 classes of the texture dataset, using hard vector
quantization (VQ) and a diagonal Gaussian mixture model learned by

EM (GM). Each class uses its optimal number of hyperfeature levels.
GM performs best on average

Fig. 8 Average miss rates (area under DET curve—AUC) for differ-
ent codebook sizes and coding methods on the VOC’05 object test set.
Increasing the codebook size at any level almost always improves the
performance. GM coding outperforms VQ coding even with signifi-

cantly fewer centres, and adding LDA consistently improves the re-
sults. The LDA experiments shown here use the same number of topics
as VQ/GM codebook centres, so they do not change the dimensionality
of the code, but they do make it sparser

approach in (Fritz et al. 2004)—a good result considering

that these experiments used relatively few centres, widely

spaced samples and only a linear SVM.

4.2 Coding Methods and Hyperfeatures

Figure 8 shows average miss rates (i.e. Area Under the
DET Curve or 1—Area Under ROC Curve) on the VOC’05
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Fig. 9 Left: The effect of LDA on average classification performance
on test images—average miss rates for the VOC’05 objects testset. The
performance improves systematically as both code centres (here VQ)
and LDA topics are added. It continues to improve even when there
are more LDA topics than codebook centres, presumably owing to im-

proved sparsity. Right: For a fixed total number of centers (here VQ
ones), performance improves if they are distributed relatively evenly
across several levels—here 3, with the inclusion of a 4th reducing the
performance. I.e. adding higher level information is more useful than
adding finer-grained low level information

dataset, for different coding methods and numbers of cen-
ters. The overall performance depends considerably on both
the coding method used and the codebook size (number of
clusters / mixture components / latent topics), with GM cod-
ing dominating VQ, the addition of LDA always improving
the results, and performance increasing whenever the code-
book at any level is expanded. On the negative side, learning
large codebooks is computationally expensive, especially
for GM and LDA. GM gives much smoother codings than
VQ as there are fewer aliasing artifacts, and its partition of
the descriptor space is also qualitatively very different—the
Gaussians overlap heavily and inter-component differences
are determined more by covariance differences than by cen-
tre differences. LDA seems to be able to capture canonical
neighborhood structures more crisply than VQ or GM, pre-
sumably because it codes them by selecting a sparse palette
of topics rather than an arbitrary vector of codes. If used
to reduce dimensionality, LDA may also help simply by re-
ducing noise or overfitting associated with large VQ or GM
codebooks.

Given that performance always improves with codebook
size, one could argue that rather than adding hyperfeature
levels, it may be better to include additional base level fea-
tures. To study this we fixed the total coding complexity
at 600 centres and distributed the centres in different ways
across levels. Figure 9 (right) shows that spreading centres
relatively evenly across levels (here up to level 3) improves
the results, confirming the importance of higher levels of ab-
straction.

4.3 Extent of Local Spatial Aggregation

As detailed in Sect. 3, hyperfeature construction involves
aggregating descriptor statistics over local neighborhood re-
gions N at each level. It might be useful to automatically

Fig. 10 Performance on the CRL-IPNP dataset: average miss rates on
the positive class for different pooling neighborhood sizes and different
numbers of hyperfeature levels. For a 3 × 3 × 3 neighborhood (in x, y,
s), 5 levels of hyperfeatures are best, but the best overall performance
is achieved by 7 × 7 × 3 neighborhoods with 3 levels of hyperfeatures

determine the optimal extent of these regions, allowing them
to adapt in size depending on the spatial statistics of the de-
scriptors at the current level, but here we assume fixed region
sizes. Figure 10 shows the effect of using pooling neighbor-
hoods larger than the default size of 3 × 3 × 3 descriptors on
the CRL-IPNP dataset with a 100-centre codebook at each
level. The optimal performance is attained at a certain (mod-
est and dataset dependent) neighborhood size. The optimal
number of hyperfeature levels also depends on this size: as
the pooling regions grow, fewer hyperfeature levels are typi-
cally required. For the CRL-IPNP dataset, a spatial extent of
7×7×1 with 3 levels of hyperfeatures proves to be optimal.

5 Object Localization

One advantage of hyperfeatures is that they offer a con-
trollable trade-off between locality and level of abstraction:
higher level features accumulate information from larger im-
age regions and thus have less locality but potentially more
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Fig. 11 Object localization in the VOC’05 dataset by classifying lo-
cal image regions using hyperfeatures. Each row shows examples of
results using one of the four independent classifiers, each being trained
to classify foreground regions of its own class against the combined set
of all other regions—background regions and foregrounds from other

classes. An image region is labeled as belonging to the object class if
the corresponding SVM returns a positive score. We make no attempt
to enforce spatial coherence here: each region is classified indepen-
dently

representational power. However the optimal pooling re-
gions prove to have relatively modest sizes, so even quite
high-level hyperfeatures can still be local enough to provide
useful object-region level image labeling. Here we exploit
this for the bottom-up localization of objects of interest.
The image pyramid is tiled with regions and in each region
we build a mini-pyramid containing the region’s hyperfea-
tures (i.e. the hyperfeatures of all levels, positions and scales
whose support lies entirely within the region). The resulting
region-level hyperfeature histograms are then used to learn
a local region-level classifier for each class of interest. Our
goal here is simply to illustrate the representational power
of hyperfeatures, not to build a complete object recognition
system, so in the experiments below we will classify regions
individually without any attempt to exploit spatial contiguity
or top-down information.

The experiments shown here use the bounding boxes pro-
vided with the VOC’05 dataset as object masks for fore-
ground labeling.5 The foreground labels are used to train
linear SVM classifiers over the region histograms, one for
each class with all background and other-class regions be-
ing treated as negatives. Figure 11 shows some typical re-
sults obtained using these one-against-the-rest classifiers.
Even though each patch is treated independently, the final
labellings are coherent enough to allow the objects to be

5This labeling is not perfect. For many training objects, the bound-
ing rectangles contain substantial areas of background, which are thus
effectively labeled as foreground. Objects of one class also occur unla-
beled in the backgrounds of other classes and, e.g., instances of people
sitting on motorbikes are labeled as ‘motorbike’ not ‘person’. In the
experiments, these imperfections lead to some visible ‘leakage’ of la-
bels. We would expect a more consistent foreground labeling to reduce
this significantly.
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Fig. 12 Confusion matrices for region level labeling. Four two-class
linear SVM region classifiers are trained independently, each treat-
ing regions from the background and from other classes as negatives.
Left: A classical confusion matrix for the classifiers in winner-takes-
all mode with patches that have negative scores for all object classi-
fiers being labeled as background. The final row gives the population

proportions, i.e. the score for a random classifier. Right: Each column
gives entries from the pairwise confusion matrix of the corresponding
classifier used alone (independently of the others), with the negative
true-class scores (final row) broken down into scores on each other
class and on the background. (NB: in this mode, the assigned class
labels are not mutually exclusive)

loosely localized in the images. The average accuracy of lo-
cal region classification over all classes is 69%. This is sig-
nificantly lower than the performance for classifying images
as a whole, but still good enough to be useful as a bottom-
up input to higher-level visual routines. Hyperfeatures again
add discriminative power to the base level features, improv-
ing region level labeling accuracy by 4–5% on average. Fig-
ure 12 shows the key entries of the combined and the two-
class confusion matrices, with negatives being further bro-
ken down into true background patches and patches from the
three remaining classes.

6 Conclusions and Future Work

We have introduced hyperfeatures, a new multilevel non-
linear image coding mechanism that generalizes—or more
precisely, iterates—the quantize-and-vote process used to
create local histograms in texton / bag-of-feature style ap-
proaches. Unlike previous multilevel representations such
as convolutional neural networks and HMAX, hyperfeatures
are optimized for capturing and coding local appearance
patches and their co-occurrence statistics. The framework
can employ any local coding method at the individual levels.
It allows some of the spatial structure of the image to be cap-
tured and exploited without assuming rigidity or any strong
geometric model. Our experiments show that the introduc-
tion of one or more levels of hyperfeatures improves the
performance in many classification tasks, especially for ob-
ject classes that have distinctive geometric or co-occurrence
structures.

The hyperfeature idea is applicable to a wide range of
problems involving part-based representations. In this pa-
per the hyperfeatures were trained bottom-up by unsuper-
vised clustering, but more discriminative training methods
should be a fruitful area for future investigation. More fo-
cused codebooks could probably be learned by including
priors that encourage object-specific coding and by incor-
porating image class labels into the learning of the latent

topics. More general LDA like methods that use local con-
text while training could be investigated. One way to do this
is to formally introduce a “region” (or “subdocument”) level
in the word–topic–document hierarchy. Such models should
allow us to model contextual information at several different
levels of support, which may be useful for object detection.

We have seen that hyperfeatures are very discriminative
even on local image regions. This suggests that hyperfeature
based local region classifications could be used to bootstrap
more classical sliding-window object detectors. Also, com-
bining hyperfeature based representations of local image re-
gions with Markov or conditional random fields would allow
for improved object localization in images.

Acknowledgements We would like to thank the European projects
LAVA and PASCAL for financial support, and Diane Larlus, Frederic
Jurie, Gyuri Dorko and Navneet Dalal for comments and code. We are
also grateful to Andrew Zisserman and Jitendra Malik for providing
feedback on this work. Our experiments make use of code derived from
C. Bouman’s Cluster (Bouman 1997) for fitting Gaussian mixtures,
D. Blei’s implementation of LDA (Blei et al. 2003), and T. Joachim’s
SVM-Light (Joachims 1999).

References

Agarwal, A., & Triggs, B. (2006). Hyperfeatures—multilevel local
coding for visual recognition. In European conference on com-
puter vision (pp. 30–43).

Agarwal, S., Awan, A., & Roth, D. (2004). Learning to detect objects
in images via a sparse, part-based representation. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 26(11),
1475–1490.

Berg, A., & Malik, J. (2001). Geometric blur for template matching.
In International conference on computer vision & pattern recog-
nition.

Blei, D., Ng, A., & Jordan, M. (2003). Latent Dirichlet allocation. Jour-
nal of Machine Learning Research, 3, 993–1022.

Bouman, C. A. (1997). Cluster: an unsupervised algorithm for mod-
eling Gaussian mixtures. Available from http://www.ece.purdue.
edu/~bouman, April 1997.

Buntine, W., & Jakaulin, A. (2005). Discrete principal component
analysis. Technical report, HIIT.

Buntine, W., & Perttu, S. (2003). Is multinomial PCA multi-faceted
clustering or dimensionality reduction? In AI and statistics.



Int J Comput Vis (2008) 78: 15–27 27

Canny, J. (2004). GaP: A factor model for discrete data. In ACM con-
ference on information retrieval (SIGIR), Sheffield, UK.

Csurka, G., Bray, C., Dance, C., & Fan, L. (2004). Visual categoriza-
tion with bags of keypoints. In European conference on computer
vision.

Dorko, G., & Schmid, C. (2005). Object class recognition using dis-
criminative local features. Technical report, INRIA Rhône Alpes.

Everingham, M., et al. (2006). The 2005 PASCAL visual object classes
challenge. In F. d’Alche Buc, I. Dagan, & J. Quinonero (Eds.),
Springer Lecture notes in artificial intelligence. Proceedings of
the first PASCAL challenges workshop. Berlin: Springer.

Epshtein, B., & Ullman, S. (2005). Feature hierarchies for object clas-
sification. In International conference on computer vision.

Fei-Fei, L., & Perona, P. (2005) A Bayesian hierarchical model for
learning natural scene categories. In International conference on
computer vision & pattern recognition.

Ferencz, A., Learned-Miller, E., & Malik, J. (2004). Learning hyper-
features for visual identification. In Neural information process-
ing systems.

Fritz, M., Hayman, E., Caputo, B., & Eklundh, J.-O. (2004). On the
significance of real-world conditions for material classification.
In European conference on computer vision.

Fukushima, K. (1980). Neocognitron: a self organizing neural network
model for a mechanism of pattern recognition unaffected by shift
in position. Biological Cybernetics, 36(4), 193–202.

Harris, C., & Stephens, M. (1988). A combined corner and edge detec-
tor. In Alvey vision conference (pp. 147–151).

Hofmann, T. (1999). Probabilistic latent semantic analysis. In Proceed-
ings of uncertainty in artificial intelligence, Stockholm.

Joachims, T. (1999). Making large-scale SVM learning practical. In
Advances in kernel methods—support vector learning. London:
MIT Press.

Jurie, F., & Triggs, B. (2005). Creating efficient codebooks for visual
recognition. In International conference on computer vision.

Kadir, T., & Brady, M. (2001). Saliency, scale and image description.
International Journal of Computer Vision, 45(2), 83–105.

Keller, M., & Bengio, S. (2004). Theme-topic mixture model for doc-
ument representation. In PASCAL workshop on learning methods
for text understanding and mining.

Lang, G., & Seitz, P. (1997). Robust classification of arbitrary object
classes based on hierarchical spatial feature-matching. Machine
Vision and Applications, 10(3), 123–135.

Lazebnik, S., Schmid, C., & Ponce, J. (2003). Affine-invariant local
descriptors and neighborhood statistics for texture recognition. In
International conference on computer vision.

Lazebnik, S., Schmid, C., & Ponce, J. (2004). Semi-local affine
parts for object recognition. In British machine vision conference
(Vol. 2, pp. 779–788).

Lazebnik, S., Schmid, C., & Ponce, J. (2006). Beyond bags of fea-
tures: spatial pyramid matching for recognizing natural scene cat-
egories. In International conference on computer vision & pattern
recognition.

LeCun, Y., Huang, F.-J., & Bottou, L. (2004). Learning methods for
generic object recognition with invariance to pose and lighting. In
IEEE conference on computer vision and pattern recognition.

Leung, T., & Malik, J. (1999). Recognizing surfaces using three-
dimensional textons. In International conference on computer vi-
sion.

Lowe, D. (2004). Distinctive image features from scale-invariant key-
points. International Journal of Computer Vision, 60(2), 91–110.

Malik, J., & Perona, P. (1990). Preattentive texture discrimination with
early vision mechanisms. Journal of the Optical Society of Amer-
ica A, 7(5), 923–932.

Mikolajczyk, K., & Schmid, C. (2005). A performance evaluation of
local descriptors. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 27(10), 1615–1630.

Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J.,
Schaffalitzky, F., Kadir, T., & Van Gool, L. (2005). A compari-
son of affine region detectors. International Journal of Computer
Vision, 65(1–2), 43–72.

Mori, G., & Malik, J. (2003). Recognizing objects in adversarial clut-
ter: breaking a visual CAPTCHA. In International conference on
computer vision & pattern recognition.

Mutch, J., & Lowe, D. (2006). Multiclass object recognition with
sparse, localized features. In International conference on com-
puter vision & pattern recognition (Vol. I, pp. 11–18).

Opelt, A., Fussenegger, M., Pinz, A., & Auer, P. (2004). Weak hypothe-
ses and boosting for generic object detection and recognition. In
European conference on computer vision.

Puzicha, J., Hofmann, T., & Buhmann, J. (1999). Histogram cluster-
ing for unsupervised segmentation and image retrieval. Pattern
Recognition Letters, 20, 899–909.

Riesenhuber, M., & Poggio, T. (1999). Hierarchical models of object
recognition in cortex. Nature Neuroscience, 2, 1019–1025.

Schaffalitzky, F., & Zisserman, A. (2001). Viewpoint invariant texture
matching and wide baseline stereo. In International conference on
computer vision (pp. 636–643), Vancouver.

Schiele, B., & Crowley, J. (2000). Recognition without correspondence
using multidimensional receptive field histograms. International
Journal of Computer Vision, 36(1), 31–50.

Schiele, B., & Pentland, A. (1999). Probabilistic object recognition and
localization. In International conference on computer vision.

Schmid, C. (2004). Weakly supervised learning of visual models and
its application to content-based retrieval. International Journal of
Computer Vision, 56(1), 7–16.

Schmid, C., & Mohr, R. (1997). Local gray value invariants for image
retrieval. IEEE Transactions on Pattern Analysis and Machine In-
telligence, 19(5), 530–534.

Serre, T., Wolf, L., & Poggio, T. (2005). Object recognition with fea-
tures inspired by visual cortex. In International conference on
computer vision & pattern recognition.

Vapnik, V. (1995). The nature of statistical learning theory. Berlin:
Springer.

Varma, M., & Zisserman, A. (2003). Texture classification: are filter
banks necessary? In International conference on computer vision
& pattern recognition.


	Multilevel Image Coding with Hyperfeatures
	Abstract
	Introduction
	Hyperfeatures
	Previous Work

	Base Features and Image Coding
	Image Features
	Vector Quantization and Gaussian Mixtures
	Latent Dirichlet Allocation

	Constructing Hyperfeatures
	Experiments on Image Classification
	Classification Framework
	The Effect of Multiple Levels
	Coding Methods and Hyperfeatures
	Extent of Local Spatial Aggregation

	Object Localization
	Conclusions and Future Work
	Acknowledgements
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


