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Readings

Readings for these lecture notes:

- Hartley, R., and Zisserman, A. (2004), Multiple View Geometry in
Computer Vision, Cambridge University Press, Chapters 18–19.

- Triggs, B., McLauchlan, P., Hartley, R., and Fitzgibbon, A. (1999),
Bundle adjustment — A modern synthesis, Vision Algorithms: Theory
and Practice, Springer-Verlag.

- Tomasi and Kanade, Sturm and Triggs, Pollefeys et al., Davison et
al., Klein and Murray, Lourakis and Argyros, Kerl, Sturm, and
Cremers, Engel SVO, LSD SLAM, Mur-Artal, Montiel, and Tardós.

These notes contain material c© Hartley and Zisserman (2004) and others.
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Introduction
Reconstruction from N views

We have seen two-view projective and metric reconstruction techniques.
As we move to many views, however, what can we do?

In this part we consider how to obtain a sparse reconstruction given a
sequence of images.

This is where Hartley and Zisserman’s book becomes a little obsolete, as
there have been many new developments since 2004.
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Introduction
History

A brief tour of the history:
1 1970’s: The term bundle adjustment emerges in the photogrammetry

literature, referring to simultaneous optimization of parameters of a
set of cameras and a set of points observed by those cameras.

2 1992: Tomasi and Kanade show how to use SVD to factor the
observation matrix to estimate a sequence of cameras and collection
of 3D points. Limited to affine cameras with no missing points.

3 1996: Sturm and Triggs show how to use iterative factorization to
obtain a projective reconstruction. Other factorization methods refine
the technique.

4 2004: Pollefeys et al. combine keyframe selection, SfM, BA,
resectioning, loop closure, autocalibration, and 3D mesh techniques
to obtain textured 3D models from videos obtained with hand-held
cameras.

Most offline 3D reconstruction methods use a pipeline similar to Pollefeys’
approach, with manual intervention.
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Introduction
History

More recently, SfM (computer vision) and SLAM (robotics) techniques are
starting to converge.

1 2006: Davison et al. introduce the first real-time monocular SLAM
method, called MonoSLAM.

2 2007: Klein and Murray introduce PTAM (Parallel Tracking and
Mapping) aimed at augmented realilty applications.

3 2009: Lourakis and Argyros introduce SBA (Sparse BA), an efficient
open source bundle adjustment library, bringing fast BA to the
masses.

4 2013: Kerl, Sturm, and Cremers introduce DVO SLAM (Dense Visual
SLAM) for RBG-D cameras.
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Introduction
History

As compute power increases, we are seeing more incremental real time
methods with excellent results.

1 2014: Engel, Schöps, and Cremers introduce SVO, a semi-direct
method for monocular visual odometry.

2 2014: Engel, Stückler, and Cremers (2015) introduce LSD SLAM
(Large-Scale Direct Monocular SLAM), the first dense monoSLAM
method.

3 2015: Mur-Artal, Montiel, and Tardós introduce ORB-SLAM, the
most robust feature-based monoSLAM method today, combining the
basic approach of PTAM with ORB features, BA, and loop closure
techniques.

LSD SLAM brings the idea of dense photometric alignment from RGBD to
RGB, providing richer maps than ORB-SLAM at higher computational
cost.
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Introduction
History

Today, work is continuing on improving the robustness and efficiency of
visual SLAM systems.

Several methods now obtain real time results on smartphones or embedded
platforms like the Odroid XU4 or NVidia TX2.

However, it is still very difficult for state-of-the-art methods to keep track
of a set of features during rotations and fast relative motion.

Visual-inertial SLAM systems attempt to combine IMU readings (linear
acceleration and rotational velocity) with vision.

Knowing approximately how the camera has moved since the last keyframe
gives us a better idea of where to look for features in the next frame.
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Introduction
History

Some visual-inertial SLAM systems:

Christian Forster’s Ph.D. thesis (2016) demonstrates combination of
SVO with IMU preintegration to achieve very accurate VISLAM. No
open source implementation.

2016: Forster, Zhang, Gassner, Welberger, and Scaramuzza introduce
SVO-2, a faster, more accurate version of SVO incorporating Forster’s
IMU priors. Implementation is commercial (no open source).

Raúl Mur-Artal, and Juan D. Tardós (2017) introduce VI-ORB, a
visual-inertial version of ORB-SLAM using Forster’s IMU
preintegration. The authors did not release an open source version,
but there is a community developed version on github.

Stefan Leutenegger, Simon Lynen, Michael Bosse, Roland Siegwart
and Paul Timothy Furgale (2015) introduce OKVIS, “Keyframe-based
visualinertial odometry using nonlinear optimization.” Open-source
version maintained by the author available on github.
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Introduction
History

Interesting project for this class: VI-ORB or OKVIS experiments on
Pixhawk or Android...
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Bundle adjustment
The idea

Given a set of unknown 3D points Xj viewed by a set of cameras with
unknown projection matrices Pi at image points xij , we seek to find the

camera matrices Pi and 3D points Xj minimizing the reprojection error

min
P̂i ,X̂j

∑
ij

d(P̂i X̂j , x
i
j)

2

Iterative minimization of this cost function is called bundle adjustment
because it involves adjusting the bundle of rays between each camera
center and the set of 3D points.

As formulated above, we need outlier removal prior to nonlinear least
squares optimization. However, Triggs, McLauchlan, Hartley, and
Fitzgibbon (1999) argue for a formulation with a more general cost
function allowing robust estimation with the outliers included.
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Bundle adjustment
Problems with bundle adjustment

There are two big problems with bundle adjustment:

It needs a good starting point to begin optimization.

There can be a large number of parameters involved in the
minimization. For n points viewed by m cameras we have 3n + 11m
parameters. This makes the matrices used by Levenberg-Marquardt
prohibitively large.1

1Remember the linear system we have to solve on each iteration of LM?[
J
T
f (P)Jf(P) + µI

]
δP = −J

T
f (P)f(P).
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Bundle adjustment
Solutions to the problems with bundle adjustment

Solutions of the first problem (the initial solution) generally involve linear
methods such as factorization.

Solutions to the second problem (large parameter matrix):

Reduce n and/or m, by using a subset of the points or partitioning
the views [suboptimal].

Interleave estimation of camera matrices with estimation of 3D points
[guaranteed to converge but slow].

Use a sparse minimization routine:

Download the sba (sparse bundle adjustment) open source software
from http://www.ics.forth.gr/~lourakis/sba/

(For Debian) install the liblapack-dev package, and add -llapack

to your gcc command line.
Call sba motstr levmar() to estimate motion (Pi ’s) and structure
(X).
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Factorization
Affine factorization

Tomasi and Kanade’s algorithm is a maximum likelihood reconstruction in
the case of affine cameras.

It requires that all points be seen in all views.

For affine cameras we write x = (x , y)T and X = (X ,Y ,Z )T . Then we
have the projection equation

x = MX + t

We seek cameras {Mi , ti} and 3D points Xj such that the distance between
estimated and predicted image points is minimized:

min
Mi ,ti ,Xj

∑
ij

(xij − x̂ij)
2 = min

Mi ,ti ,Xj

∑
ij

(
xij − (MiXj + ti )

)2
.
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Factorization
Affine factorization

If we choose the centroid of the points to be the origin of the coordinate
system, then we can estimate the translation vectors ti easily.

Under affine projection, the origin of the coordinate system is projected to
(0, 0)T in the image. This means that t needs to translate the projection
of the origin to the mean of the observed image points:

ti =
1

n

∑
j

xij .

To simplify the remaining calculations, we set ti = 0 and adjust the points
xji accordingly.
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Factorization
Affine factorization

Now we arrange the adjusted image points in the 2m × n measurement
matrix

W =


x1

1 x1
2 · · · x1

n

x2
1 x2

2 · · · x2
n

. . . . . .
. . . . . .

xm1 xm2 · · · xmn

 .
We want to find Mi and Xj such that

W =


M1

M2

. . .
Mm

 [X1 X2 · · ·Xn

]
.

Matthew Dailey (ICT-AIT) Machine Vision 18 / 116



Factorization
Affine factorization

Since M and X are rank 3, their product is rank 3.

Since in general W will not be rank 3 due to measurement noise, we replace
it with the best possible reconstruction, the matrix Ŵ which is rank 3 and
closest to W in Frobenius norm.

Such a matrix Ŵ can be computed easily using the SVD UDVT = W by
truncating U and V to three columns to get Û and V̂, then truncating D to a
3× 3 matrix D̂, then finally letting Ŵ = ÛD̂V̂T .

Since Ŵ minimizes ‖W− Ŵ‖F , M̂ = Û and X̂ = V̂T is a maximum likelihood
reconstruction.

So we see that a straightforward application of the SVD gives us an
optimal reconstruction in the case of affine cameras.
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Factorization
Projective factorization

The affine factorization method doesn’t work for projective reconstruction,
so any serious projective distortion will introduce error into the
reconstruction.

Sturm and Triggs (1996), however, pointed out that if we knew the
projective depth of each point, then the structure and motion (camera
matrices) could be estimated correctly by factorization.

We have xij = PiXj . With a projective camera we have homogeneous
points and there is an implicit constant factor which we can make explicit
as λijx

i
j = PiXj with xij = (x ij , y

i
j , 1)T .
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Factorization
Projective factorization

If we write the depths explicitly and all points are visible in all images, we
can write the problem in terms of a scaled measurement matrix:

W =


λ1

1x
1
1 λ1

2x
1
2 · · · λ1

nx
1
n

λ2
1x

2
1 λ2

2x
2
2 · · · λ2

nx
2
n

...
...

. . .
...

λm1 xm1 λm2 xm2 · · · λmn x
m
n

 =


P1

P2

...
Pm

 [X1 X2 · · · Xn

]

Since P and X are each rank 4, W will be rank 4 and the rank 4
factorization from the SVD will give a valid P and X.

Matthew Dailey (ICT-AIT) Machine Vision 21 / 116



Factorization
Projective factorization

The key to projective factorization is how to choose the projective depths2

λij?

We could use another reconstruction method to estimate λij .

We can also initialize them arbitrarily, e.g. λij = 1, then interleave
factorization with depth estimation.

Though there is no guarantee that the iterative method will converge to a
global minimum, it is widely used in practice.

2The λi
j are called projective depths because in a Euclidean frame they would be the

lengths of the projections of the scene points onto the cameras’ principal axes.
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Factorization
Projective factorization

The algorithm works well in practice, but it is important to know what
cost function is it minimizing.

By using rank 4 decomposition, it turns out the algorithm is minimizing

‖W−Ŵ‖2
F =

∑
ij

‖λijxij−λ̂ij x̂ij‖2 =
∑
ij

(λijx
i
j−λ̂ij x̂ ij )2+(λijy

i
j−λ̂ij ŷ ij )2+(λij−λ̂ij)2

When the λij are close to each other, we see that the cost function is an
approximation to a scaled geometric distance.
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Factorization
Projective factorization

Because the projective reconstruction cost function involves λij , and the
projective factorization method minimizes geometric error when
∀i , j , λij = 1, we would like to keep the λij as close to 1 as possible.

If we scale P and X, we obtain

(αiβjλ
i
j)x

i
j = (αiPi )(βjXj)

which means we can replace the projective depths by multiplying the ith
row or jth column of W by an arbitrary factor.

One normalization method producing good results in practice is to
renormalize, on every iteration, the rows and columns of W so they have
unit norm.

As always, the image points should be normalized by isotropic scaling
before beginning.
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Factorization
Projective factorization

Projective factorization: Objective

Given a set of n image points seen in m views:

xij ; i = 1, . . . ,m, j = 1, . . . , n

compute a projective reconstruction.

Matthew Dailey (ICT-AIT) Machine Vision 25 / 116



Factorization
Projective factorization

Projective factorization: Algorithm

(i) Normalize the image data using isotropic scaling.

(ii) Set projective depths λij = 1 or use some other method to estimate
them.

(iii) Normalize the depths λij by multiplying rows and columns by constant
factors. One way is to do a pass setting the norm of each row to 1
then a pass setting the norm of each column to 1.

(iv) Form the 3m × n scaled measurement matrix W and obtain Pi and Xj
from the rank 4 factorization of W.

(v) Reproject the points into each image to obtain new estimates of the
depths and repeat from step (iii) until convergence.
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Factorization
Factorization approaches to N-view reconstruction

Factorization methods for reconstruction have received a great deal of
attention over the last 10 years.

See Tang and Hung (2006) for a method based on the projective
factorization idea that allows missing points and is also guaranteed to
converge to a local minimum.
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Resectioning
Motivation

The factorization methods just outlined are batch methods.

They cannot be used to perform on-line 3D estimation without
modification.

The resectioning method first gets an initial 3D reconstruction using, for
example, the SVD of E, then repeats the following steps for frame i :

Get correspondences between already-estimated 3D points {Xj}j∈1...n

and new 2D points {xk}k∈1...m.

Use the correspondences to estimate Pi . This is called resectioning.

Use triangulation to estimate new 3D points using correspondences
between frame i and frame i − 1.
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Resectioning method
Challenges in resectioning

The main challenges in resectioning are accumulated error, outliers, and
degenerate conditions.

To reduce accumulated error, we can periodically use bundle adjustment
to find a globally consistent, minimum error configuration of the cameras
and points.

To mitigate the effect of outliers, we use RANSAC or other robust
estimators and outlier rejection.

To avoid degenerate conditions, we apply keyframe selection, in which we
choose the images we use for reconstruction and resectioning specifically
to avoid degenerate configurations of the cameras and points.

This leads to the general algorithm, on the next page.
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Resectioning method
The algorithm

Reconstruct from an image sequence: Algorithm II

(i) Compute interest points in each image using, e.g., SIFT.

(ii) Extract keyframes from the image sequence in which significant
motion separates successive keyframes.

(iii) Obtain 2-frame reconstruction from keyframes 1 and 2.

(iv) Perform resectioning on remaining images.

(v) Bundle adjust the cameras and 3D structure for the complete
keyframe sequence to obtain a maximum likelihood projective
reconstruction.
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Resectioning method
Keyframe selection

Keyframe selection improves the runtime performance of 3D
reconstruction, helps improve accuracy, and helps avoid degeneracy.

Ahmed, Dailey, Landabaso, and Herrero (2010)3 experimented with a
variety of criteria for robust key frame extraction.

Given the first keyframe, we apply correspondence ratio and degeneracy
avoidance constraints to eliminate inappropriate candidate keyframes.

Then we select the best successor keyframe from the remaining candidate
keyframe set by maximizing an objective function.

3Ahmed, M.T., Dailey, M.N., Landabaso, J.L., and Herrero, N. (2010), Robust key
frame extraction for 3D reconstruction from video streams. In International Conference
on Computer Vision Theory and Applications (VISAPP).
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Resectioning method
Keyframe selection

The correspondence ratio Rc is a proxy for the baseline:

Rc =
Tc

Tf
,

where Tc is the number of inlier correspondences and Tf is total number
of features found.

Low values of Rc indicate low overlap between two frames, in turn
indicating long baselines.

Long baselines are desired for triangulation accuracy, but if the number of
corresponding points is insufficient, camera motion estimation accuracy
suffers.

Thus, the correspondence ratio is constrained to lie between an upper
threshold T1 and a lower threshold T2.
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Resectioning method
Keyframe selection

To avoid degenerate cases, the geometric robust information criterion
(GRIC) score is used to measure the goodness of fit for a homography or
the fundamental matrix.

GRIC =
∑
i

ρ(e2
i ) + λ1dn + λ2k ,

where i = 1 . . . n, ρ(e2
i ) is a robust function

ρ(e2
i ) = min(

e2
i

σ2
, λ3(r − d))

of the residual ei over the n correspondences, σ is the assumed standard
deviation of the error, d is the model dimension, k is the model degrees of
freedom, r is the dimension of the data, λ1 = log(r), λ2 = log(rn), and λ3

limits the residual error.

The GRIC constraint is to reject any candidate keyframes for which the
homography model has a lower GRIC score than the fundamental matrix.
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Resectioning method
Keyframe selection

After filtering by correspondence ratio and degeneracy constraints, we
select as the next keyframe the frame that maximizes certain selection
criteria incorporating

Normalized GRIC difference:

fG (i , j) =
GRICH(i , j)− GRICF (i , j)

GRICH
.

The difference is maximized when the fundamental matrix model is
much better than the homography model.

Point-to-epipolar line cost (PELC):

fGP(i , j) = wG fG (i , j) + wP(σ − PELC (i , j)),

where i is the current keyframe and j is a candidate next keyframe.
PELC tends to be high when correspondences are not accurate.
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Resectioning method
Resectioning

The camera matrix Pi is computed from 3D-2D correspondences and the
DLT algorithm.

In practice, 3D reconstruction using long video sequence suffers from
accumulated error. Some issues are:

Matching existing 3D to 2D points in an additional frame is not
perfect. Sometimes, already-existing features are treated as new
points. This arises when the camera moves back and forth or when a
point becomes occluded and then visible again.

Resectioning is highly sensitive to outliers. The camera estimate can
be completely wrong if we estimate Pi in the presence of outliers.
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Resectioning method
Example from AIT Vision and Graphics Lab

Atima Tharatipyakul worked on solving these problems by finding 2D-3D
point pairs using multiple frames then using RANSAC in camera
estimation to discard 2D-3D correspondences outliers.4

Next slide: example results from resectioning method in Atima’s work, with
5 keyframes selected from a sequence of images containing pineapples.

3 of the keyframes are shown, along with camera estimates, point cloud
estimates, and fruit ellipsoid estimates.

4Tharatipyakul, A,, 3D Visualization from Video Sequence for Agricultural Field
Inspection Robot, Master’s thesis, Asian Institute of Technology, 2011.
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Resectioning method
Example from AIT Vision and Graphics Lab
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Metric upgrade and auto-calibration
Introduction

As we already know, if K is known we can directly obtain metric
reconstructions. For two frames:

For first pair of keyframes, estimate F.

Calculate E from F and K.

Factor E to obtain P′ as described in H&Z Section 9.6.

For N frames, we factor E for the first pair of keyframes, then use
incremental resectioning and bundle adjustment.

If K is unknown or changing during the image sequence, however, we need
a method for auto-calibration.

Here we look at some of the techniques for auto-calibration from image
correspondences over an image sequence.
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Metric upgrade and auto-calibration
Idea of auto-calibration

The idea of auto-calibration:

Obtain a projective factorization W = PX.

Estimate a homography H such that W = (PH)(H−1X) is a metric
reconstruction.

PiH is metric if it can be decomposed as Ki [Ri | ti ] where the Ki are
consistent with a priori constraints (the same across the image
sequence, only focal length changing, etc.).
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Metric upgrade and auto-calibration
Direct vs. stratified methods

There are two main approaches to auto-calibration for general motion:

Direct estimation of H.

Stratified reconstruction, beginning with an affine reconstruction
(which identifies π∞) followed by metric reconstruction.

Here we only consider direct methods, though stratified methods have
some advantages, mainly that there is a linear solution for metric
reconstruction once π∞ is known (see text for details).
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Metric upgrade and auto-calibration
Framework

We seek H such that PiM = PiH = Ki [Ri | ti ] for i = 1, . . . ,m.

Since we don’t care about the absolute frame, we assume P1 = [I | 0] and
that therefore P1

M = K1[I | 0].

In general, H takes the form

H =

[
A t
vT k

]
.

Since P1
M = P1H = [I | 0], we can infer that A = K1 and t = 0.

Since H is necessarily non-singular we can assume k = 1 to obtain

H =

[
K1 0
vT 1

]
.
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Metric upgrade and auto-calibration
Framework

The plane at infinity π∞ is (0, 0, 0, 1)T in an affine or metric frame, and
H−T is the point/plane transform from the metric frame to the projective
frame. This means we can derive

π∞ =

(
−(K1)−Tv

1

)
.

Finally we can write

H =

[
K 0

−pTK 1

]
,π∞ = (pT , 1)T .
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Metric upgrade and auto-calibration
Framework

For the rest of the cameras (i = 2, . . . ,m), we write Pi = [Ai | ai ].

Using PiM = PiH, we can obtain

KiRi = (Ai − aipT )K1

and (since Ri is orthogonal),

KiKiT = (Ai − aipT )K1K1T (Ai − aipT )T .

These are the basic auto-calibration equations. If we know K1, p, and Pi ,
we can calculate PiM .
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Metric upgrade and auto-calibration
The DIAC and the absolute dual quadric

The matrix KiKiT is the dual image of the absolute conic (DIAC) ω∗i .

The DIAC is the projection of the absolute dual quadric Q∗∞:

KiKiT = ω∗i = PiQ∗∞P
iT

If we know Q∗∞, we can calculate Ki directly (by Cholesky decomposition of
PiQ∗∞P

iT .
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Metric upgrade and auto-calibration
Framework

Important facts:

The absolute conic Ω∞ is a conic on π∞ containing the intersection
of all circles and spheres with π∞.

The absolute dual quadric Q∗∞ is a rank 3 dual quadric whose
envelope is the set of planes tangent to Ω∞.

The absolute dual quadric is invariant under similarity transforms and
is just diag(1,1,1,0) in a metric frame.

The absolute dual quadric’s null space is π∞.
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Metric upgrade and auto-calibration
Auto-calibration based on Q∗∞

Auto-calibration based on Q∗∞: Objective

Given a set of matched points across several views and constraints on the
calibration matrices Ki , compute a metric reconstruction of the points and
cameras.
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Metric upgrade and auto-calibration
Auto-calibration based on Q∗∞

Auto-calibration based on Q∗∞: Algorithm

(i) Compute a projective reconstruction from a set of views, resulting in
cameras Pi and points X.

(ii) Use ω∗i = PiQ∗∞P
iT along with constraints to estimate Q∗∞.

(iii) Decompose Q∗∞ as HĨHT where Ĩ =diag(1,1,1,0).

(iv) Apply H−1 to X and H to Pi to obtain a metric reconstruction of the
point and cameras.

(v) Use iterative least squares to improve the solution.
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Metric upgrade and auto-calibration
Auto-calibration based on Q∗∞

As a nice example of linear constraints on Q∗∞, see Pollefeys et al. (2004),
Visual modeling with a hand-held camera, IJCV 59(3).

As a nice example of more sophisticated methods to enforce the rank 3,
positive semidefiniteness, and “chirality” contraints on Q∞, see Chandraker
et al. (2007), Autocalibration via rank-constrained estimation of the
absolute dual quadric, In Proceedings of CVPR.
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LSD SLAM
Introduction

Engel, Stückler, and Cremers’ (2015) method LSD SLAM (Large-Scale
Direct) is among the best of the new monocolar SLAM methods.

Sample LSD-SLAM results (Engel, Schöps, and Cremers, 2014)
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LSD SLAM
Principles

LSD-SLAM principles:

Attempt to use all information in the image (not just features).

Extract a series of “keyframes” from the video stream and find
relationship between each pair of camera poses using graph
optimization.

Pairwise optimization of the pose graph minimizes photometric error
between the two keyframes.

Keyframes are paired with inverse depth maps that maintain a mean
and variance (inverse confidence) in the inverse depth at each pixel.
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LSD SLAM
Direct vs. feature based methods

Most SfM methods are feature based.

They first estimate camera positions and 3D point positions using sparse
feature extraction, factorization of E, resectioning, and bundle adjustment.

A dense model can then be made through mesh construction and texture
mapping.

Direct methods scrunch the 2-step process, finding the camera poses and
depth maps that align images directly without feature extraction.
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LSD SLAM
Notation and representation of poses

Camera must be calibrated. All points are converted to normalized camera
coordinates (undistorting and multiplying by K−1).

Camera poses, which are normally represented by a rotation matrix and
translation vector packed into a 4×4 homography matrix, are instead
represented by elements of the Lie algebra se(3), written as 6-element
vectors.

Similarity transformations, normally represented by a scalar scale factor, a
rotation matrix, and a translation vector, are instead represented by
elements of sim(3), written as 7-element vectors.
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LSD SLAM
Image alignment

Images are aligned by minimization of photometric error

E (ξ) =
∑
i

(Iref(pi − I (ω(pi ,Dref(pi ), ξ))2

where

ξ is a possible transformation between the cameras imaging Iref and I ,

ω(p, d , ξ) projects point p with inverse depth d in the reference
camera’s frame into the transformed camera frame,

Dref(p) is the inverse depth of 2D point p.

The parameters of ξ can be estimated using an initial guess and
Gauss-Newton minimization.
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LSD SLAM
Outlier handling

Occlusions, reflections, and moving objects would introduce outliers.

Rather than remove outliers explicitly, we re-weight each point pi on each
iteration, down-weighting large residual errors:

E (ξ) =
∑
i

wi (ξ)(Iref(pi − I (ω(pi ,Dref(pi ), ξ))2.

Defining ri (ξ) to be the residual Iref(pi − I (ω(pi ,Dref(pi ), ξ), the
Gauss-Newton update becomes

δξ(n) = −(JTWJ)−1JTWr(ξ(n)),

where J is the Jacobian of the residuals ri with respect to the changes in ξ.
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LSD SLAM
Overview

Overview of the processing pipeline:

Overall LSD-SLAM flow (Engel, Schöps, and Cremers, 2014)
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LSD SLAM
Initialization

We begin with an initial keyframe with a random depth map and a large
variance.

Early translations of the camera enable covergence to a nearly correct
depth map.
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LSD SLAM
Map

The map is a pose graph of keyframes.

Keyframe Ki :

Image Ii : Ωi → R
Inverse depth map Di : ΩDi

→ R+

Variance of the inverse depth Vi : ΩDi
→ R+

The depth map and variance are only defined for a subset of all pixels
ΩDi
⊂ Ωi that have sufficient intensity gradient.

Edges ξji :

Similarity transform ξji ∈ sim(3)

Covariance Σji over ξji
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LSD SLAM
Depth estimation

Initial D starts out undefined for points with small gradient (purple color)
and random with high variance for points with sufficient gradient.

Camera rotation gives no additional depth information; translation
increases confidence/decreases variance for points with parallax under the
translation.

Inverse depth map over camera tranformations (Engel, Schöps, and Cremers, 2014).
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LSD SLAM
Short-term tracking

From each keyframe, we perform short-term tracking, finding the relative
pose ξji ∈ se(3) minimizing the robust normalized photometric resiudual

Ep(ξji ) =
∑

p∈ΩDi

∥∥∥∥∥ r2
p (p, ξji )

σ2
rp(p,ξji )

∥∥∥∥∥
δ

where ‖ · ‖δ is a robust norm and σ2
rp(p,ξji )

is an estimate of residual

uncertainty based on depth map uncertainty Vi (p) and assumed constant
image intensity noise σI .
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LSD SLAM
New keyframes

A new keyframe is created from the most recent tracked image when the
local motion ξji exceeds a threshold.

Since actual depths are unknown, the depth map for each keyframe is
scaled so that the mean inverse depth is 1.

The inverse depth map for the current keyframe is updated using the
motion for each new tracking frame.

Each new keyframe is aligned with the previous keyframe to minimize both
photometric residual and depth residual using image alignment over sim(3)
— we explicitly calculate the relative depth between keyframes.
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LSD SLAM
Keyframe alignment

Direct keyframe alignment on sim(3) (Engel, Schöps, and Cremers, 2014)
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LSD SLAM
Loop closure

Each time a new keyframe is selected, we compare with the nearest 10
keyframes looking for a loop closure: a previous keyframe close enough to
the current frame to create a new edge in the pose graph.

Drift in a large loop might mean the new keyframe is too different from
the best old keyframe for convergence.

There are a few tricks that help in convergence, but one of the best is a
course-to-fine approach starting with downscaled 20×15 images.

Pose graph optimization runs continuously in the background.

Matthew Dailey (ICT-AIT) Machine Vision 65 / 116



LSD SLAM
Loop closure

Loop closureMatthew Dailey (ICT-AIT) Machine Vision 66 / 116



3D modeling
LSD SLAM

LSD-SLAM runs in real time on smartphones in odometry-only
configurations (no large-scale map).

The full LSD-SLAM runs in real time on moderate CPUs (not requiring a
GPU).

ORB-SLAM runs faster than LSD-SLAM and gives more accurate
trajectories. But the resulting point clouds are sparse.

The near-term open problem is fast, accurate, dense 3D modeling from
monocular cameras.
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ORB-SLAM
Introduction

ORB-SLAM is a visual SLAM method

In 2016, ORB-SLAM was introduced as one of the most versatile and
accurate monocular SLAM methods to date.

ORB-SLAM is based on the main ideas of

Parallel tracking and mapping (PTAM) by Klein and Murray
Place recognition by Gálvez-López and Tardós
Scale-aware loop closing by Strasdat et. al
Covisibility information by Strasdat et. al
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ORB-SLAM
Introduction

ORB-SLAM’s aims:

More efficient, simple and reliable system than existing visual SLAM
methods.

Real-time operation in large-environments.

Real-time loop closing based on optimization.

Real-time relocalization with significant invariance to viewpoint and
illumination.

Improving tracking robustness and enhance lifelong operation.

Matthew Dailey (ICT-AIT) Machine Vision 70 / 116



ORB-SLAM
Introduction

Similar to other visual SLAM methods, ORB-SLAM needs a feature
detector and descriptor to extract and match feature points from
sequence of images.

ORB-SLAM needs a feature detector and descriptor that can be used
in mapping, tracking, and place recognition processes at real time.

ORB detector and descriptor are fast enough to compute and match
features while having good invariance to viewpoint.

Therefore, ORB detector and descriptor are chosen for ORB-SLAM
method.
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ORB-SLAM
Introduction

ORB-SLAM consists of three threads working in parallel.

Tracking thread
Mapping thread
Loop closing thread

Bag of words place recognition is also an essential feature.

The feature creates visual vocabulary from the keyframe it has been
seen and stores in the database. If there are changes done to
keyframes, the database is updated according to the changes.

DBoW2 module is integrated to ORB-SLAM method for loop
detection, relocalization, and keyframe culling.
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ORB-SLAM
Introduction

Figure: ORB-SLAM system overview
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ORB-SLAM
Introduction

Covisibility graph is an undirected weighted graph. Each node is a
keyframe and an edge between two keyframes exists if they share
observations of the same map points.

Covisibility graph is too dense and error prone for loop closing
operation. An idea of essential graph is proposed in ORB-SLAM
method.

Essential graph is a subset of covisibility graph that retains all nodes
but less edges, still preserving a strong network that yields accurate
results.

Essential graph contsins spanning trees, subsets of edges from the
covisibility graph with high covisibility, and the loop closure edges,
resulting in a strong network of cameras.
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ORB-SLAM
Introduction

Figure: Graphs in ORB-SLAM method. a) A covisibility graph. b) A spanning
tree. c) An essential graph.
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ORB-SLAM
Tracking thread

Tracking thread is responsible for the following tasks

Tracking
Map initialization
Relocalization when tracking is lost
Track local map
New keyframe decision

Figure: Tracking thread overview
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ORB-SLAM
Tracking thread

Tracking thread is a process that track a set of points through
successive camera frames, and using these tracks to triangulate their
3D position.

Camera pose of each frame is estimated from the relative pose of
feature points between the current frame and previous frame.

In ORB-SLAM, tracking thread extracts and uses ORB features from
every images in the video sequence.
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ORB-SLAM
Tracking thread

Figure: Point triangulation. from http://www.theia-sfm.org/sfm.html
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ORB-SLAM
Tracking thread: Map initialization

Map initialization is the first task of the tracking thread. It
triangulates initial 3D correspondences with acceptable accuracy from
initial image sequences.

Matched features xc ↔ xr between the current frame fc and the
reference frame fr are searched to generate initial correspondences.

Reset reference frame if not enough matches are found.
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ORB-SLAM
Tracking thread: Map initialization

Homography matrix Hcr and fundamental matrix Fcr are calculated.
Tracking thread uses one of these matrices in map initialization
process.

Homography matrix is used if the scene is planar. Fundamental
matrix is selected if the scene is nonplanar.

The map is initialized if the selected matrix passes motion hypotheses
tests and gives low reprojection error.

Bundle adjustment is performed to refine initial correspondences and
camera poses.
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ORB-SLAM
Tracking thread: Map initialization

Figure: Planar scene. from
https://www.researchgate.net/figure/259128816 fig2 Fig-7-Digital-images-of-a-
planar-scene-Top-prior-to-projective-frame-registration
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ORB-SLAM
Tracking thread: Map initialization

Figure: Non planar scene. from
https://www.researchgate.net/figure/243459165 fig15 Figure-15-Frontal-view-
onto-a-non-planar-scene-left-and-a-view-clearly-showing-the
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ORB-SLAM
Tracking thread: Tracking

Tracking continues the process from map initialization.

If tracking was successful for last frame, camera pose in current frame
is predicted with constant velocity motion model.

If not enough matches were found, tracking thread performs wider
search of the map points around their position in the last frame.

The pose is optimized with the found correspondences.
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ORB-SLAM
Tracking thread: Relocalization

If tracking is lost, the frame is convert into bag of words and query
recognition database for keyframe candidate for global relocalization.

Correspondences with ORB associated to map points in each key
frame are computed. RANSAC iterations are performed for each
keyframe to find camera pose with PnP algorithm.

If camera pose is found with enough inliers, guided search are
performed to find more matches.

The pose is then optimized and tracking procedure continues.
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ORB-SLAM
Tracking thread: Track local map

Once estimated camera pose and an initial set of feature matches are
obtained, the map into is projected to the frame and search more
map point correspondences.

The local map contains the set of keyframes K1, that share map
points with the current frame, and a set K2 with neighbors to the
keyframes K1 in the covisibility graph.

Map points seen in K1 and K2 are searched in the current frame. If
found, these map points are added into the current frame and
optimized.
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ORB-SLAM
Tracking thread: New keyframe decision

The current frame is verified as a keyframe if it meets the conditions

The keyframe decided by the tracking tread is sent to the mapping
thread to add into the map.

Keyframes are inserted as fast as possible as it makes the tracking
more robust to change in camera movements and rotations.

Redundant keyframes will be culled in the mapping thread.
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ORB-SLAM
Mapping thread

Mapping tread is responsible for the following tasks

Keyframe insertion
Map point culling
New map point creation
Local bundle adjustment
Local keyframe culling
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ORB-SLAM
Mapping thread: Keyframe insertion

New keyframes decided by the tracking thread are added into the
map.

Nodes and edges in the covisibiilty graph are updated.

Spanning tree and bag of word representation are updated.
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ORB-SLAM
Mapping thread: Map points culling

Map points must pass a restrictive test to ensure that they are
trackable and not mistakenly triangulated.

The tracking must find the point in more than the 25 percent of the
frames in which it is predicted to be visible.
If more than one keyframe has passed from map point creation, it must
be observed from at least three keyframes.
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ORB-SLAM
Mapping thread: New map point creation

For each unmatched ORB in an individual frame, unmatched
correspondences are searched with other unmatched point in other
keyframes.

Newly matched map points are accepted as the new points if they
pass the following tests

Positive depth test in both cameras.
Parallax test.
Reprojection error test.
Scale consistency test.
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ORB-SLAM
Mapping thread: Local bundle adjustment

Local BA optimizes the currently processed keyframe (Ki ), all
keyframes connected to Ki in the covisibility graph (Kc), and all map
points seen by Ki and Kc .

Keyframes that see map points as Ki and Kc see are included in the
optimization but remain fixed.

Outlier are discarded in this process.
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ORB-SLAM
Mapping thread: Keyframe culling

As the complexity of bundle adjustment grows with the number of
keyframes, deleting redundant keyframes benefits the system in
lifelong operation.

Keyframes that has 90 percent similar map points to its three
previous keyframes are removed from the map.
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ORB-SLAM
Loop closing

Loop closing takes the last keyframe processed by the mapping thread
to detect and close the loop.

Loop closing performs the following tasks

Loop candidates detection.
Similarity transformation estimation.
Loop fusion.
Essential graph optimization.

Figure: Loop closing overview.
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ORB-SLAM
Loop closing thread: Loop candidates detection

Similarity score is computed between the bag of word vector of the
last keyframe Ki with all of its neighbors in the covisibility graph. The
lowest score smin is obtained.

Recognition database is queried, keyframe whose score is lower than
smin are not considered as loop candidates.

All keyframes whose are directly connected to Ki are also not
considered as loop candidates.
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ORB-SLAM
Loop closing thread: Similarity transformation estimation

ORB-associated correspondences between the current keyframe and
the loop candidate keyframes are calculated.

RANSAC iterations are performed with each candidate to find a
similarity transformation.

If the similarity is found with enough inliers, the transformation is
optimized and more correspondences are searched.

After adding more correspondences, the transformation is optimized
again. If the transformation is supported by enough inliers, that loop
candidate is accepted.
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ORB-SLAM
Loop closing thread: Loop fusion

Once loop closing is detected and verified, two keyframes are merged
together.

The correction for this action must be done and propagated to their
neighbor keyframes in covisibility graph so they can update their
proterties(i.e. recalculate transformation matrix, concatenated edges
in covisibility graph).
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ORB-SLAM
Loop closing thread: Essential graph optimization

Pose graph optimization over the Essential graph is performed to
effectively close the loop.

Scale drift is corrected, each map point is transformed according to
the correction.

Figure: Scale drift.
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ORB-SLAM
Example

Figure: ORB-SLAM example: tracking.
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ORB-SLAM
Example

Figure: ORB-SLAM example: mapping.
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ORB-SLAM
Example

Figure: ORB-SLAM example: loop closing.
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VI-ORB SLAM
Introduction

In 2017, the authors of ORB-SLAM (Raúl Mur-Artal and Juan D. Tardós)
introduced “Visual-Inertial Monocular SLAM with Map Reuse.”

We know that all monocular SLAM methods have the limitation of scale
ambiguity.

By adding information from GPS or an IMU, we can resolve that
ambiguity.

Existing work:

IMU preintegration by Lupton and Sukkarieh (2012)

IMU preintegration mapped to SO(3) by Forster et al. (2016)

Factor graph representation by Indelman et al. (2013)

ORB SLAM (2016)
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VI-ORB SLAM
Overview

Mur-Artal and Tardós (2017), Fig. 1

ORB SLAM performs tracking
for the current frame using a
fixed map.

On the back end, local Bundle
Adjustment (BA) optimizes a
local window of keyframes.

Large loops are detected using
place recognition then
corrected using lightweight
pose graph optimization
followed by full BA.

Sample result on left.
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VI-ORB SLAM
Avoiding biased partial solutions

Each step (tracking and local BA) fixes some states in their optimization.

This could bias the final solution, so it is important to get a good start.

To reduce any such bias, the authors implement a VI full BA that
optimizes structure, camera poses, scale, velocities, gravity, and gyroscope
and accelerometer biases.

But BA always needs an initial guess. The authors propose a
piece-by-piece approach to obtain this solution (next slide).

Matthew Dailey (ICT-AIT) Machine Vision 104 / 116



VI-ORB SLAM
Avoiding biased partial solutions

Idea of initialization:

Process a few seconds of video with regular ORB SLAM. This gives
an initial solution for structure and some keyframe poses up to
unknown scale.

Compute bias of the gyroscope based on known orientation of the
keyframes.

Solve for scale and gravity without accelerometer bias.

Using knowledge of the magnitude of gravity, solve for accelerometer
bias, refining scale and gravity direction.

Extract velocity for each keyframe.

The main requirement is that the sensor should be moved in such a way as
to make all variables observable.
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VI-ORB SLAM
Visual-inertial odometry

The VI odometry method is based on a few key aspects.

We assume a pinhole camera. Keypoints are extracted on original image,
but coordinates are undistorted before being used.

There is an IMU that works as follows:

Acceleration akb at time k in the IMU frame b.

Angular velocity ωk
b at time k in the IMU frame b.

Update frequency is on the order of 100 Hz.

Accelerometer modeled as having slowly varying biases bka and bkg for
the accelerometer and gyroscope.

Accelerometer is subject to gravity gw , which must be subtracted in
order to compute motion.
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VI-ORB SLAM
Visual-inertial odometry

Goal of the system: estimate state parameters and 3D points over time.

Rkwb is the rotation of the IMU in the world frame at time k .

wvkb is the velocity in the world frame at time k .

wpkb is the position of the IMU in the world frame at time k.

Model is as follows:

Rk+1
wb = Rkwb exp

(
(ωk

b − bkg )∆t

)
wv

k+1
b = wv

k
b + gw∆t + Rkwb(akb − bka)∆t

wp
k+1
b = wp

k
b + wv

k
b∆t +

1

2
gw∆2

t +
1

2
Rkwb(akb − bka)∆2

t

.
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VI-ORB SLAM
Visual-inertial odometry

exp(·) is “exponential map” of rotations, a function mapping a twist
vector v ∈ R3 (denoting a rotation of ‖v‖ about the unit vector v/‖v‖) to
a rotation matrix.

IMU measurements between two keyframes are preintegrated based on the
work of Forster et al. (2016):

Ri+1
wb = Riwb∆Ri,i+1 exp(Jg∆Rb

i
g )

wv
i+1
b =w vib + gw∆ti,i+1 + Riwb(∆vi,i+1 + J

g
∆v

big + Ja∆v
bia)

wp
i+1
b =w pib + vib∆ti,i+1 +

1

2
gw∆2

ti,i+1
+ Riwb

(
∆pi,i+1

+ J
g
∆p

big + Ja∆p
bia

)
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VI-ORB SLAM
Visual-inertial odometry

The idea is to separate the effect of the bias from the pre-integrated IMU
measurements with a linear approximation.

The values ∆Ri,i+1 , ∆vi,i+1 , and ∆pi,i+1
are the simple

integration/concatenation of the transformations given by the IMU over
the period between keyframe i and i + 1.
The preintegrations and Jacobians are computed iteratively as the IMU
measurements arrive.

Matthew Dailey (ICT-AIT) Machine Vision 109 / 116



VI-ORB SLAM
Visual-inertial odometry

Finally, the camera and IMU are considered rigidly attached with
transformation

Tcb =
[
Rcb | cpb

]
between their frames.

The transformation is estimated from the calibration method of Furgale et
al. (2013) implemented in the open-source Kalibr tool.
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VI-ORB SLAM
Modifying ORB-SLAM for VI odometry

As before, ORB-SLAM has 3 parallel threads: tracking, local mapping,
and loop closing.
For the tracking thread:

At each new frame, camera pose is predicted based on the IMU and
the estimated pose from the previous frame.

Visible keypoints are projected to the new frame then matched.

Then the new frame’s pose is optimized considering the matches and
the IMU error.
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VI-ORB SLAM
Modifying ORB-SLAM for VI odometry

Main idea for tracking thread:

Mur-Artal and Tardós (2017), Fig. 2.

As long as we are tracking successfully and the local mapping thread does
not update 3D point locations, we continue to incrementally update the
pose relative to the previous keyframe.

When the mapping thread updates the keyframe pose, we reset the current
frame’s pose relative to the keyframe that changed, then resume
incremental updates.
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VI-ORB SLAM
Modifying ORB-SLAM for VI odometry

[More on tracking thread]

The frame-changed optimization uses the parameter vector

θ =
{
R
j
wb,w pjb,w vjb,b

j
g ,b

j
a

}

θ∗ = argmin
θ

(∑
k

Eproj(k , j) + EIMU(i , j)

)
This is the sum of the reprojection error for all visible 3D points k and the
IMU error from keyframe i to new frame j .

The frame-unchanged optimization uses a joint optimization of parameters
for frame j and frame j + 1.
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VI-ORB SLAM
Modifying ORB-SLAM for VI odometry

The local mapping thread
performs a local BA every time a
new keyframe is inserted.

An N keyframe window is
optimized with all of the points
observed over those keyframes
(see right).

ORB-SLAM merely optimizes the
poses and 3D points with
reprojection error as the objective,
whereas VI-ORB SLAM
additionally adds IMU error terms
for velocity and biases. Mur-Artal and Tardoós (2017), Fig. 3
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VI-ORB SLAM
Modifying ORB-SLAM for VI odometry

The loop closing thread tries to reduce drift when returning to an
already-mapped area.

The place recognition module matches recent keyframes with past
keyframes.

If a rigid-body transformation can be found, then an optimization is
carried out over the whole trajectory.

First is a pose-graph optmization that ignores IMU data, followed by a full
BA that optimizes all velocities, biases, positions, and so on.
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VI-ORB SLAM
Conclusion

Result: accurate, real time, sparse solution to the SLAM problem.

We learn that a monocular camera with IMU (and some sophisticated
processing software) is sufficient for accurate localization and sparse point
cloud mapping in real time.

No need for lasers, ultrasonic sensors, etc.!

See https://www.youtube.com/watch?v=rdR5OR8egGI and other
examples.

See https://github.com/jingpang/LearnVIORB for community
implementation based on the authors’ ORB-SLAM 2 implementation.

Interesting project: get VI-ORB SLAM running on Android, using the
smartphone IMU!

Another: compare VI-ORB-SLAM with OKVIS and SVO-2
(https://www.youtube.com/watch?v=hR8uq1RTUfA&t=33s).
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