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Readings

Readings for these lecture notes:

- Hartley, R., and Zisserman, A. Multiple View Geometry in Computer
Vision, Cambridge University Press, 2004, Chapter 9–12, 18.

- Lowe, D.G. Distinctive image features from scale-invariant keypoints.
International Journal of Computer Vision 2(60): 91–110, 2004.

These notes contain material c© Hartley and Zisserman (2004) and Lowe
(2004).
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Introduction
The geometry of 2 views

In this part we consider three problems:

Given a point x in one view of a scene, how is the position of the
corresponding point xi in a second view constrained?

Given a set of corresponding points in two images, what are the
cameras P and P′?

Given corresponding points in two images and the cameras P and P′,
what are the points’ positions in 3 space?
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Epipolar geometry and the fundamental matrix
Introduction to epipolar geometry

The epipolar geometry is the projective geometry between two views. It
only depends on the cameras’ internal parameters and the relative pose of
the two cameras.

The fundamental matrix is a 3× 3 rank 2 matrix F capturing this geometry.

We will see that for any point X ∈ R3, if X is imaged as x in view 1 and x′

in view 2, the image points will satisfy x′TFx = 0.

Why do we care about F?

Given point correspondences, we can compute F in a manner similar
to computing H.

Given F, we can recover the cameras P and P′, up to a projectivity.

If we know K and K′, we can also retrieve the Euclidean motion of the
camera between the views, with ambiguity about the scale and
absolute reference frame.
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Epipolar geometry and the fundamental matrix
Epipolar planes

The baseline is the line joining two camera centers.

The baseline is the axis for a pencil of planes called epipolar planes.

When we have a point X in R3 imaged as x and x′ in two views, we can
see that X, x, x′, and the camera centers all lie on the same plane.
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epipolar plane  

/

Hartley and Zisserman (2004), Fig. 9.1a
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Epipolar geometry and the fundamental matrix
Epipolar lines

We see that the image of the backprojection of x in view 2 forms a line l′.
This line is called the epipolar line corresponding to x.

x

e

X ?

X

X ?

l

e

epipolar line
for x

/

/

Hartley and Zisserman (2004), Fig. 9.1b

When attempting stereo correspondence, we see immediately that if the
epipolar geometry is known, we don’t have to search the entire image for a
corresponding point — we only have to search along the epipolar line.
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Epipolar geometry and the fundamental matrix
Epipoles

The epipoles are the intersections of the baseline with the image planes:
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The baseline intersects the image
planes at epipoles e and e′

e e

baseline

/

X

As we move a point X in R3, the epipo-
lar planes rotate around the baseline
and always intersect the epipoles.

Hartley and Zisserman, Fig. 9.2
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Epipolar geometry and the fundamental matrix
Epipolar lines

To summarize the main terms in epipolar geometry:

The epipole is the point of intersection of the baseline with the image
plane.

An epipolar plane is a plane containing the baseline.

An epipolar line is the intersection of an epipolar plane with the
image plane. All epipolar lines intersect at the epipole.
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Epipolar geometry and the fundamental matrix
Example 1

e /e

Example camera setup with
converging cameras

Left image, with points and
epipolar lines

Right image, with corre-
sponding points/lines

Hartley and Zisserman (2004), Fig. 9.3

The two cameras are related by translation plus rotation. The epipoles are
finite (but outside the image).
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Epipolar geometry and the fundamental matrix
Example 2

e  at

infinity

e  at/

infinity

Example camera setup with parallel cameras

Left image, with some sample epipolar
lines

Right image, with corresponding epipo-
lar lines

Hartley and Zisserman (2004), Fig. 9.4

The two image planes are nearly parallel. The motion is a translation with
a small rotation around the z axis. The epipoles are points at infinity.
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Epipolar geometry and the fundamental matrix
The fundamental matrix

The fundamental matrix is the “algebraic representation of epipolar
geometry” (Hartley and Zisserman, 2004, p. 241).

As we know now, a point x′ in image 2 correspoding to point x in image 1
must lie on the epipolar line l′. We need a map from points in one image
to epipolar lines in the other image, i.e., x 7→ l′.

Recall that a homography is a 3× 3 rank 3 matrix mapping a point in one
image to a point in the other image.

The fundamental matrix F is a 3× 3 rank 2 matrix mapping a point in
image 1 to the corresponding line l′ in image 2, i.e., l′ = Fx.

Since the point x′ corresponding to x necessarily lies on l′, we know that
x′T l′ = 0 and therefore, x′TFx = 0.

This allows us to compute F from a set of point correspondences
{xi ↔ x′i}.
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Epipolar geometry and the fundamental matrix
The fundamental matrix

Definition

If we have two images acquired by (linear) cameras with non-coincident
centers, the fundamental matrix F is the unique 3× 3 rank 2 homogeneous
matrix satisfying

x′TFx = 0

for all corresponding points x↔ x′.
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Epipolar geometry and the fundamental matrix
The fundamental matrix

Properties of F

(i) Transpose: If F is the fundamental matrix for cameras (P, P′), then
FT is the fundamental matrix for (P′, P).

(ii) Epipolar lines: For any point x in image 1, the epipolar line is
l′ = Fx, and for any point x′ in image 2, the epipolar line is l = FTx′.

(iii) The epipole: for any point x except e, the epipolar line l′ = Fx
contains the epipole e′. Therefore e′T (Fx) = (e′TF)x = 0, so
e′TF = 0, i.e., e′ is the left null-vector of F and e is the right
null-vector of F.

(iv) F has 7 degrees of freedom: 8 for a 3× 3 homogeneous matrix minus
one for the constraint that det F = 0.

(v) F is known as a correlation, which is a projective map taking a point
to a line. If l and l′ are corresponding epipolar lines, any point x on l
is mapped to the same epipolar line l′.
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Epipolar geometry and the fundamental matrix
Epipolar lines correspond

All points on an epipolar line l in image 1 correspond to the same epipolar
line l′ in image 2.
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Hartley and Zisserman (2004), Fig. 9.6a
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Epipolar geometry and the fundamental matrix
Computing F for calibrated cameras

Suppose we know know P = K[I | 0] and P′ = K′[R | t] (we have calibrated
cameras).

This occurs, for example, in the case of a fixed stereo head.

F can be computed directly in this case as F =
[
e′
]
× K
′RK−1.1

[Verify this is true by seeing how F constructed this way transforms point x
in camera 1 (P), and recall that in P2, the cross product of two points
gives the line containing them.]

1Remember that [
a
]
× =

 0 −a3 a2
a3 0 −a1
−a2 a1 0


is a skew-symmetric matrix having a as its null space and can be used to convert
the cross product operation into a matrix multiplication: a× b =

[
a
]
× b.
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Epipolar geometry and the fundamental matrix
Special motion: translation

Special motions occur when particular relationships between the rotation
and translation in a rigid motion hold.

Under the special motion of
pure translation of the world
−t, the points move on
straight lines parallel to t.

The 3D points slide along
parallel rails under pure
translation.

camera
centre

parallel
lines

point
vanishing

image

e

Hartley and Zisserman (2004), Fig. 9.7
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Epipolar geometry and the fundamental matrix
Special motion: translation

(a)

(b) (c)
Hartley and Zisserman (2004), Fig. 9.8
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Epipolar geometry and the fundamental matrix
Special motion: translation

Under pure translation, the epipole, called the focus of expansion, is the
same in both images (we say the images are auto-epipolar).

Since we have no rotation and the cameras are the same, we can write
F =

[
e′
]
× KK

−1 =
[
e′
]
×.

As an example, consider translation in the direction of the x axis. The
epipole will be (1, 0, 0)T so we want

F =

0 0 0
0 0 −1
0 1 0

 ,
then x = (x1, y1, 1)T gets mapped to l′ = (0,−1, y1)T (i.e. y2 = y1).2

2Transforming images so that this is true is called rectification.
Matthew Dailey (CSIM-AIT) Machine Vision 20 / 109



Epipolar geometry and the fundamental matrix
General motion

A general motion can always be decomposed as follows:

Rotate the camera

Correct the calibration matrix

Translate the camera.

We know the rotation and calibration change is governed by a homography
H.

We now know that the pure translation is governed by F̂ =
[
e′
]
×.

Putting these together, we obtain x′F̂x̂ = 0 where x̂ = Hx, so
x′T
[
e′
]
× Hx = 0, and the final fundamental matrix is

F =
[
e′
]
× H.

The effects of rotation and translation compose.
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Epipolar geometry and the fundamental matrix
General motion

/e

/e

H

C C

Hartley and Zisserman (2004), Fig. 9.9
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Epipolar geometry and the fundamental matrix
Retrieving P, P′ from F

Epipolar geometry does not depend on Euclidean measurements such as
angles between rays.

F only depends on relationships between image points.

This means that F does not change under projective transformations on
the world.

Put another way, the fundamental matrix for (P, P′) is the same as the
fundamental matrix for (PH, P′H).

A pair of camera matrices uniquely determines a fundamental matrix, but
the converse is not true.
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Epipolar geometry and the fundamental matrix
Retrieving P, P′ from F

Since P and P′ are not uniquely determined by F, we will typically assume a
canonical form where P = [I | 0].

Then we will try to find P′ = [M | m] consistent with P and F.

It turns out that for this definition of P, P′, we can write F =
[
m
]
× M.

(See text for proof, and see the definition of F for known P, P′.)
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Epipolar geometry and the fundamental matrix
Retrieving P, P′ from F

Let’s consider the ambiguous relationship between F and P′.

We just saw that F is invariant under projective transformations of 3-space.

It is also true that this is the only amgbiguity, i.e., F determines P and P′

up to a projective transformation:

Projective ambiguity

If F is the fundamental matrix for both (P, P′) and (P̃, P̃′), then there exists
a homography H such that P̃ = PH and P̃′ = P′H.
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Epipolar geometry and the fundamental matrix
Retrieving P, P′ from F

The ambiguity in P and P′ explained by F can also be understood through
a degrees-of-freedom argument:

The two cameras are 12-element homogeneous matrices with 11
degrees of freedom, for a total of 22 degrees of freedom.

A homography has 15 degrees of freedom

The fundamental matrix has 7 degrees of freedom.

Once we know F and the homography H transforming the scene, all 22
degrees of freedom in P, P′ are fixed.
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Epipolar geometry and the fundamental matrix
Retrieving P, P′ from F

Now we are ready to calculate the canonical camera matrices from F.

Given F, we define P = [I | 0] and P′ = [SF | e′], where e′ is the epipole of
image 2 (i.e. e′TF = 0) and S =

[
s
]
× is any skew-symmetric matrix.

F will be the fundamental matrix for (P, P′). A good choice for S is
[
e′
]
×.

The most general solution making the ambiguity of P′ explicit is

P = [I | 0] P′ = [
[
e′
]
× F + e′vT | λe′]

where v is any 3-vector and λ is a non-zero scalar.

So if we know F, the cameras P = [I | 0] and P′ = [
[
e′
]
× F | e

′] are fine
choices for obtaining a projective reconstruction of the scene points.

Now we’ll see that a metric reconstruction can be had if we know K and K′.
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Epipolar geometry and the fundamental matrix
The essential matrix E

The essential matrix is a specialization of the fundamental matrix to the
case of normalized image coordinates.

If we know K and K′, let x̂ = K−1x and let x̂′ = K′−1x′.

Then the essential matrix is the matrix E satisfying

x̂′TEx̂ = 0

This leads to the relationship between the fundamental and essential
matrices:

E = K′TFK.
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Epipolar geometry and the fundamental matrix
Recovering P, P′ from E

The camera matrices P and P′ can be extracted from E up to scale and a
four-fold ambiguity.

First, assume P = [I | 0] and take the SVD U · diag(1, 1, 0) · VT of
normalized E.

There will be four consistent choices for P′:

P′ = [UWVT | +u3] or [UWVT | −u3] or [UWTVT | +u3] or [UWTVT | −u3].

where

W =

0 −1 0
1 0 0
0 0 1

 .
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Epipolar geometry and the fundamental matrix
Recovering P, P′ from E

Once we have the four possible solutions, we choose the one in which the
reconstruction of some point X is visible in both images:

AB

AB /A B /

A B

(a) (b)

(c) (d)

Hartley and Zisserman (2004), Fig. 9.12

The scale of the scene cannot be recovered, unless some metric property
such as the baseline or the distance between two world points is known.
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3D reconstruction overview
Introduction

How can we reconstruct the 3D scene from a pair of 2D images?

Here is a general framework:

Compute F from point correspondences, as described in Chapter 11.

Compute P, P′ from F, using the formula from the previous section.

For each point correspondence xi ↔ x′i , triangulate to compute the
point in space projecting to these two image points, as described in
Chapter 12.

The result will be a projective reconstruction of the 3D scene points
Xi .

There are many variations. For example, if K and K′ are known we can
compute E instead of F and obtain a metric reconstruction.
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3D reconstruction overview
Reconstruction ambiguity

Normally we will assume that the
scene is determined at best up to a
Euclidean transformation with
respect to the world frame.

I.e., we won’t try to get latitude
and longitude out of images!

The second ambiguity that we
can’t resolve from images alone is
the size or scale of the scene.

In this case we say our
reconstruction is up to a similarity
transformation.

Similarity

Hartley and Zisserman (2004), Fig. 10.2(a)
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3D reconstruction overview
Reconstruction ambiguity

If we don’t know the internal
calibration of our cameras, we also
have a projective ambiguity.

The projective reconstruction theorem
states that this is the only ambiguity:
if a set of point correspondences in two
views determines F uniquely, the scene
can be reconstructed, and any two
such reconstructions are projectively
equivalent.

See text for proof. This is an
important fact.

Similarity

Hartley and Zisserman (2004), Fig. 10.2(a)
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3D reconstruction overview
Projective reconstruction ambiguity

Example of possible projective reconstructions from two views:

Hartley and Zisserman (2004), Fig. 10.3
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3D reconstruction overview
Various ways to upgrade a projective reconstruction

What can we do to turn a 2-view projective reconstruction into a more
accurate reconstruction? We can look for scene constraints or apply some
prior information.

If the motion is pure translation, we can find the epipole (the convergence
of the motion of the points) and obtain the cameras directly as P = [I | 0]
and P′ = [I | e′].

If three sets of parallel lines can be identified, the plane defined by their
three points of intersection is the plane at infinity π∞.

If we can find π∞, a homography mapping the observed plane at infinity
to its canonical position (0, 0, 0, 1) in the affine frame will give us an affine
reconstruction, correct up to an affine transformation.
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3D reconstruction overview
Affine reconstruction ambiguity

Example affine reconstructions after mapping the plane at infinity:

Hartley and Zisserman (2004), Fig. 10.4
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3D reconstruction overview
Affine reconstruction ambiguity

Once an affine reconstruction is had, if the absolute conic can be identified,
it can be mapped to its canonical position on the plane at infinity.

This gives a metric reconstruction, correct up to a similarity.

The absolute conic can be determined, for example, by finding orthogonal
lines and planes in the scene.
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3D reconstruction overview
Metric reconstruction ambiguity

Hartley and Zisserman (2004), Fig. 10.5
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3D reconstruction overview
Metric reconstruction summary

Other methods include using known camera parameters or some
knowledge of some ground truth relationships.

Among the most robust approaches to obtaining a metric reconstruction
involves estimating the absolute dual quadric. We’ll see this method in
some detail later.

But all of these techniques require, to begin with,

Finding good correspondences which is closely related to robust
estimation of F, and

Triangulation.

These are the next two topics.
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Computation of F
Introduction

As we saw before, if we know F we can perform projective reconstruction
from two views.

Another important use of F is in image rectification, in which we want to
align the epipolar lines in two images in order to make the search for dense
stereo correspondences simple.

We will obtain a set of point correspondences and use our now-familiar
estimation tools to get F.

As before, we’ll start with correspondences xi ↔ x′i and define a linear
minimization of algebraic error.

Then we’ll perform nonlinear estimation to obtain a ML (Gold Standard)
estimate minimizing geometric error.

We’ll finally look at robust estimation towards eliminating the bad
correspondences (outliers) from the set of putative correspondences.
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Computation of F
Estimating F by linear minimization of algebraic error

From the relationship
x′TFx = 0

we write x = (x , y , 1)T and x′ = (x ′, y ′, 1)T and expand the matrix
equation in terms of the scalar elements.

We obtain

x ′xf11 + x ′yf12 + x ′f13 + y ′xf21 + y ′yf22 + y ′f23 + xf31 + yf32 + f33 = 0.

Writing F as a vector f in row-major order, we obtain the inner product

(x ′x , x ′y , x ′, y ′x , y ′y , y ′, x , y , 1)f = 0.

and for n points we obtain the linear system

Af =

x
′
1x1 x ′1y1 x ′1 y ′1x1 y ′1y1 y ′1 x1 y1 1
...

...
...

...
...

...
...

...
x ′nxn x ′nyn x ′n y ′nxn y ′nyn y ′n xn yn 1

 f = 0.
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Computation of F
Estimating F by linear minimization of algebraic error: singularity constraint

We can obtain an exact solution with 8
points in a non-degenerate
configuration as the right null space of
A.

In the overdetermined case we choose
the last right singular vector of A.

One problem is that there is a
singularity constraint on F — it should
be rank 2.

The linear estimate will not necessarily
meet that constraint, and this could
have consequences (picture on right).

Hartley and Zisserman (2004), Fig. 11.1(a)
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Computation of F
Estimating F by linear minimization of algebraic error: enforcing the singularity constraint

We saw how SVD can be used to
enforce orthonormal constraints on R.

We use the SVD to force the linear
estimate of F to the nearest rank 2
matrix.

Obtain UDVT = F, then replace F with
F′ = U diag(σ1, σ2, 0)VT where σ1 and
σ2 are the first two singular values in D.

The result is guaranteed to be the rank
2 matrix closest to F in terms of
Frobenius norm.

Hartley and Zisserman (2004), Fig. 11.1(b)
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Computation of F
8 points vs. 7 points

This algorithm, invented in 1981 by Longuet-Higgins, is called the 8-point
algorithm for F, as it requires 8 correspondences.

In fact, more correspondences can be used for an overdetermined solution.

Since F has 7 degrees of freedom (one is lost to homogeneity and one is
lost to singularity), it is also possible to estimate F from 7 correspondences
by using the singularity constraint and the 2-dimensional null space of the
design matrix. This is called the 7-point algorithm for F.
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Computation of F
Normalized 8-point algorithm

As with previous DLT algorithms, the 8-point algorithm can perform
poorly with arbitrary data, so prenormalization is required. We use the
same isotropic scaling as for estimation of H.

Normalized 8-point algorithm for F: Objective

Given n ≥ 8 image point correspondences {xi ↔ x′i}, determine the
fundamental matrix F such that x′Ti Fxi = 0.
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Computation of F
Normalized 8-point algorithm

Normalized 8-point algorithm for F: Algorithm

(i) Normalization: Transform x̂i = Txi and x̂′i = T′x′i with isotropic
scaling matrices T and T′.

(ii) Find F̂′ for x̂i ↔ x̂′i :
(a) Linear solution: Calculate Â from the correspondences and obtain F̂

from its SVD.
(b) Singularity enforcement: Replace F̂ by F̂′ such that det F̂′ = 0 using

the SVD.

(iii) Denormalization: Return F = T′T F̂′T.
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Computation of F
Gold Standard method

The Gold Standard method tries to obtain the ML estimate of F under the
assumption of Gaussian error. It minimizes the reprojection error∑

i

d(xi , x̂i )
2 + d(x′i , x̂

′
i )
2

where xi ↔ x′i are the measured correspondences and x̂i ↔ x̂′i are
estimated true correspondences exactly satisfying x̂′Ti Fx̂i = 0.

To perform the minimization, we posit camera matrices P = [I | 0] and
P′ = [M | t] as well as 3D points Xi .

Then we let x̂i = PXi and x̂′i = P′Xi then we vary P′ and Xi to minimize
the error expression using Levenberg-Marquardt.

Finally we obtain F =
[
t
]
× M, which will satisfy x̂′Ti Fx̂i = 0.
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Computation of F
Sampson approximation to reprojection error

The Gold Standard method is a bit complex to implement, so we normally
use simpler cost functions such as the Sampson distance

∑
i

(x′Ti Fxi )
2

(Fxi )21 + (Fxi )22 + (FTx′i )
2
1 + (FTx′i )

2
2

that do not involve subsidiary variables like Xi and P′ in the Gold Standard
method.

In practice Sampson performs about as well as MLE but the parameter
vector is much smaller.
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Computation of F
Experimental evaluation

See Section 11.5 of the text for an experimental evaluation of three
algorithms (normalized 8-point, Gold Standard, and an iterative linear
algorithm).

House images, Hartley and Zisserman (2004), Fig. 11.2

Matthew Dailey (CSIM-AIT) Machine Vision 51 / 109



Computation of F
Experimental evaluation

Statue images, Hartley and Zisserman (2004), Fig. 11.2
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Computation of F
Experimental evaluation

Grenoble Museum, Hartley and Zisserman (2004), Fig. 11.2

Matthew Dailey (CSIM-AIT) Machine Vision 53 / 109



Computation of F
Experimental evaluation

Corridor scene, Hartley and Zisserman (2004), Fig. 11.2
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Computation of F
Experimental evaluation

Calibration rig, Hartley and Zisserman (2004), Fig. 11.2
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Computation of F
Experimental evaluation

Results: solid = normalized 8-point, long dashed = Gold Standard, dotted
= iterative. Note low error for “calibration.”

Hartley and Zisserman (2004), Fig. 11.3
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Computation of F
Automatic computation of F

As in the case of homography estimation, if we’re extracting
correspondences automatically, we will have many outliers.

The idea is to use RANSAC to eliminate outliers.

In this case we use the 7-point algorithm because it takes fewer random
samples to ensure an inlier set.

The disadvantage is that the 7-point algorithm has 3 solutions, all of
which need to be tried for support.

For the distance measure d⊥ any geometric error measure can be used but
it should be used consistently.

The Sampson approximation to geometric error previously described is a
good candidate.

Automatic F estimation: Objective

Compute the fundamental matrix between two images.
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Computation of F
Automatic computation of F

Automatic F estimation: Algorithm

(i) Interest points: Get a set of interest points in each image

(ii) Putative correspondences: Compute an initial set of
correspondence using proximity and similarity

(iii) RANSAC robust estimation: Repeat for N samples

(a) Select 7 correspondences randomly and compute F

(b) Calculate the distance d⊥ for each correspondence
(c) Compute the number of inliers for F (d⊥ < t)
(d) Repeat for each of the possible solutions from the 7-point algorithm

Choose the F highest support.

(iv) Nonlinear estimation: Reestimate F from all inliers minimizing
geometric error with Levenberg-Marquardt

(v) Guided matching: Determine additional correspondences within
search strips around epipolar lines.
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Computation of F
Automatic computation of F: Experiment

Here are results of Hartley and Zisserman’s experimental evaluation of the
automatic F estimation algorithm for a translation motion:

Original image pair, Hartley and Zisserman (2004), Fig. 11.4
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Computation of F
Automatic computation of F: Experiment

Detected corners, Hartley and Zisserman (2004), Fig. 11.4
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Computation of F
Automatic computation of F: Experiment

188 putative matches Outliers according to RANSAC (89/188)

Hartley and Zisserman (2004), Fig. 11.4
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Computation of F
Automatic computation of F: Experiment

Inliers according to RANSAC (99/188) Final set of 157 matches from guided matching

Hartley and Zisserman (2004), Fig. 11.4

Notice there is at least one error in the guided match set.
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Sparse correspondence with SIFT
Introduction

Notice that many of the techniques we’ve looked at thus far require a set
of point correspondences xi ↔ x′i .

See the Torr toolbox for a practical implementation using Harris corners
with the robust RANSAC-based method for F.

The methods generally rely on minimal camera motion in which case local
image similarity techniques work well.

However, when there is significant motion between two images, a rich
feature detector with invariance to rotation and scale is desirable.

Lowe’s (2004) Scale Invariant Feature Transform (SIFT) extracts feature
points with a vector of attributes that is invariant to scale and rotation in
the plane and robust to moderate amounts of various kinds of affine
distortion and noise.
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Sparse correspondence with SIFT
SIFT steps

SIFT (Lowe, 2004) performs four basic steps:

Scale-space extrema detection: A difference-of-Gaussian filter is
run at several scales to find points that are local maxima or minima in
space and scale.

Keypoint localization: For each candidate location, the scale and
location is determined, and unstable locations are discarded.

Orientation assignment: Orientations are assigned to keypoint
locations.

Keypoint descriptor: A descriptor of the image intensities around
the keypoint location is computed. The descriptors are obtained
relative to the keypoint’s location, orientation, and scale, so that the
descriptor is invariant to scales, rotations (in the image plane), and
translations.
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Sparse correspondence with SIFT
SIFT scale space

The scale space is obtained by convolving Gaussians of various sizes with
the input image:

L(x , y , σ) = G (x , y , σ) ∗ I (x , y)

where ∗ is convolution and the 2D Gaussian is defined by

G (x , y , σ) =
1

2πσ2
e−(x

2+y2)/(2σ2).

Stable keypoints are identified using the difference of Gaussian function:

D(x , y , σ) = (G (x , y , kσ)− G (x , y , σ)) ∗ I (x , y)

= L(x , y , kσ)− L(x , y , σ)
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Sparse correspondence with SIFT
SIFT scale space

Lowe (2004), Fig. 1
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Sparse correspondence with SIFT
SIFT scale space

Candidate keypoint locations are maxima and minima of the
difference-of-Gaussian scale space in x , y , and scale:

Lowe (2004), Fig. 2
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Sparse correspondence with SIFT
SIFT keypoint localization

For the localization step, we could just take the location and scale at
which the point was detected.

Instead, Lowe fits a quadratic function to the local values of D(x , y , σ)
then obtains a sub-pixel estimate of the location of the extremum, x̂.

Low-contrast extrema are immediately discarded.

Then, the eigenvalues of the 2× 2 Hessian matrix around x̂ are examined
to determine whether the extremum reflects a simple edge or a more
complex corner-like region.

Simple edge-like candidate keypoints are discarded.
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Sparse correspondence with SIFT
SIFT orientation assignment

Using the Gaussian smoothed image at the scale closest to the detected
difference of Gaussian extremum, we collect a histogram of image
gradients in 36 directions in the region around the point.

For the highest peak in the orientation histogram and any other strong
peaks in the orientation histogram, SIFT creates a keypoint descriptor
with that orientation.

This means we can get multiple keypoints for the same location (x , y , σ),
but this only happens approximately 15% of the time.
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Sparse correspondence with SIFT
SIFT keypoint descriptor

Finally, we compute a set of local histograms of gradient directions,
relative to the dominant orientation.

Lowe (2004), Fig. 7

This is a 2x2 grid from a 16× 16 sample array, but the standard
implementations use 4× 4 descriptor grid from a 16× 16 sample array, to
obtain a 128-element descriptor.

The blue circle is a Gaussian weighting window.
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Sparse correspondence with SIFT
SIFT

Lowe’s main goal was to perform object recognition in cluttered
environments, but several computer vision and robotics groups have found
SIFT useful for wide baseline matching to get correspondences for other
algorithms.

Next we look at an example from a possible application in robotics.
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Sparse correspondence with SIFT
Experiment

Akash Dev Nakarmi collected a series of 21 pictures at the AIT golf course:

The camera, a Sony DSC-200, was approximately 50cm from the
ground.

Between each image, the camera was moved forward about 25cm.

Small random fluctuations in rotation were allowed.
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Sparse correspondence with SIFT
Experiment

I ran the images through Rob Hess’ SIFT implementation siftfeat,
which is based on OpenCV.

Go to http://web.engr.oregonstate.edu/~hess/ to download this
excellent open source software.

The output is an array of structs or a text file containing the number of
detected features, the number of attributes per feature, and the data:

3062 128
228.141322 455.408286 43.929582 1.980753
22 0 0 0 0 0 0 26 42 2 0 1 2 4 8 68 35 6 0 0
10 28 64 81 92 84 1 0 7 11 41 94 87 2 0 4 2 0 0 55
89 31 10 66 41 1 4 47 145 49 5 8 32 87 23 43 26 116 3 1
57 130 10 4 61 2 1 18 25 2 3 64 123 8 4 92 73 2 1 35
145 27 1 4 24 32 6 43 21 6 0 0 84 107 5 3 1 0 0 3
10 0 1 6 52 0 0 6 18 0 0 31 145 7 0 0 0 3 4 82
9 3 0 0 1 9 4 7
. . .
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Sparse correspondence with SIFT
Experiment

AIT golf course image 0 with 3062 SIFT features detected.
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Sparse correspondence with SIFT
Experiment

AIT golf course image 1 with 2993 SIFT features detected.
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Sparse correspondence with SIFT
Experiment

AIT golf course image 2 with 3042 SIFT features detected.
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Sparse correspondence with SIFT
Experiment

To obtain initial sets of putative correspondences I ran the SIFT features
through Hess’ implementation of the k-D tree-based best bin first (BBF)
approximate nearest neighbor search (Beis and Lowe, 1997).

Using a distance ratio threshold of 0.49 I obtained 555 matches for image
pair (0, 1) and 467 matches for pair (1, 2).

The nearest neighbor search is one-way and does not remove duplicate
matches. I removed duplicate matches as a post-process.

After de-duping I had 547 and 449 unique putative matches for image pair
(0, 1) and (1, 2), respectively.

I ran the resulting putative matches through OpenCV’s implementation of
RANSAC-based fundamental matrix estimation with a d⊥ threshold of 0.5
pixels and a 99% confidence interval for the number of samples to attempt.

The result was 284 inliers for pair (0, 1) and 256 inliers for pair (1, 2).
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Sparse correspondence with SIFT
Experiment

Inliers for pair (0, 1):

Image 0 matches to image 1 Image 1 matches from image 0

Matthew Dailey (CSIM-AIT) Machine Vision 79 / 109



Sparse correspondence with SIFT
Experiment

Inliers for pair (1, 2):

Image 1 matches to image 2 Image 2 matches from image 1
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Rectification
Introduction

In dense correspondence estimation, we like to have our image pairs
aligned so that the epipolar lines are aligned with the rows of the images.

We will use the fundamental matrix to obtain a pair of 2D homographies
matching the epipolar lines with the image rows and arranging things so
that corresponding points have similar x coordinates.

The resulting images can be used for dense stereo matching.

The homography technique only works when the epipoles are not inside
the image.

When the epipoles are inside the image we require more sophisticated
methods such as polar rectification (Pollefeys, ICCV 1999).
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Rectification
Mapping e to infinity

A main part of the method is to find homography H mapping the epipole
to a point at infinity.

In particular, for the epipolar lines to be aligned with the x axis, the
epipole should be at (1, 0, 0).

(Recall that for a pure translation the epipoles will be the same point in
both images.)

The constraint that He = (1, 0, 0) will leave us 4 degrees of freedom for
selecting H.

We will use the remaining degrees of freedom to ensure that the original
image looks similar to the original image.
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Rectification
Mapping e to infinity

Suppose x0 be the origin and e = (f , 0, 1)T is on the x axis already. Then
the transformation

G =

 1 0 0
0 1 0
−1/f 0 1


will take e to (f , 0, 0)T as we would like, and an arbitrary point (x , y , 1)T

is mapped to (x̂ , ŷ , 1)T = (x , y , 1− x/f )T .

For the points “inside” the epipole, i.e., |x/f | < 1, we can write the
approximation3

(x̂ , ŷ , 1)T = (x , y , 1−x/f )T = (x(1+x/f + . . .), y(1+x/f + . . .), 1)T (1)

3The Taylor expansion of f (x) about a point a is

f (a) + f ′(a)(x − a) + f ′′(a)/2
(x−a)2

+ · · · so the second-order approximation of x
1−x/f

around x = 0 is x + x2/f .
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Rectification
Mapping e to infinity

To understand what G is doing, we find the Jacobian of the mapping:

∂(x̂ , ŷ)

∂(x , y)
=

[
1 + 2x/f 0

y/f 1 + x/f

]
.

This means that near the origin, where x = y = 0, we have an identity
map.

We can say, then, that G maps, to first order, points around the origin to
the same points in the transformed image.

If we use G, then, we want to adjust the origin to be the image point where
we want minimal projective distortion (usually the center of the image).

For the desired origin x0 and epipole e, then, we want a transformation
H = GRT where T takes x0 to the origin, R rotates e to (f , 0, 1)T , and G

takes (f , 0, 1)T to infinity.
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Rectification
Matched transformation

To perform a corresponding rectifying transform on a second image,
consider that we have two images J and J ′.

We need to perform on J a transformation H and on J ′ a transformation H′

so that

the epipolar lines are matched,

the center of the image is minimally distorted, and

the disparity (motion along the x direction) is minimized.

To match the epipolar lines, recalling that H−T is the line map
corresponding to a point map H, we want to enforce H−T l = H′−T l′.

To minimize disparity, we’ll first pick H′ then try to find a H minimizing∑
i

d(Hxi , H
′x′i )

2.
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Rectification
Matched transformation

Hartley and Zisserman prove that any H and H′ minimizing this cost
function, for fundamental matrix F =

[
e′
]
× M, must obey

H = (I + H′e′aT )H′M

for some vector a.

In our case we further impose that H′ should map e′ to (1, 0, 0)T , so
I + H′e′aT = I + (1, 0, 0)TaT turns out to be

HA =

a b c
0 1 0
0 0 1


which is an affine transformation.

Now we know that given H′ we must let H = HAH0 where H0 = H′M.
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Rectification
Matched transformation

OK! So given H′ mapping e′ to infinity, we write x̂′i = H′x′i and x̂i = H0xi
then find HA minimizing ∑

i

d(HAx̂i , x̂
′
i )
2

To solve this problem, we write x̂i = (x̂i , ŷi , 1)T and x̂′i = (x̂ ′i , ŷ
′
i , 1)T using

matched points xi ↔ x′i . Then the cost function can be written∑
i

(ax̂i + bŷi + c − x ′i )
2 + (ŷi − ŷ ′i )

2

but since ŷi − ŷ ′i is constant (the epipolar lines are parallel), we just
minimize ∑

i

(ax̂i + bŷi + c − x ′i )
2

using standard least-squares estimation.
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Rectification
The algorithm

Here’s the algorithm summary:

Rectification: Objective

Given images J and J ′, return a resampled pair of images in which the
epipolar lines are parallel to the x axis and matched, and the disparity
between corresponding points in the resampled images is minimized.
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Rectification
The algorithm

Rectification: Algorithm

(i) Identify corresponding points xi ← x′i .

(ii) Compute F and extract e, e′.

(iii) Select H′ mapping e′ to (1, 0, 0)T .

(iv) Find H minimizing ∑
i

d(Hxi , H
′x′i )

2

(v) Resample J according to H and J ′ according to H′.
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Rectification
Example rectification

Image J

J resampled by H

Image J′

J′ resampled by H′

Hartley and Zisserman (2004), Fig. 11.11
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Rectification
Example rectification

Here is another example from, my desk:
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Rectification
Example rectification

First I ran Rob Hess’ SIFT code to get 1106 and 999 features in image 1
and 2, respectively:
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Rectification
Example rectification

Then I used Rob Hess’ implementation of Beis and Lowe’s Best Bin First
approximate nearest neighbor matching and OpenCV’s
cvFindFundamentalMat() with option CV FM RANSAC to estimate F and
obtain correspondences:
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Rectification
Example rectification

Then I used Hartley’s minimum-distortion homography technique to obtain
rectifying homographies and applied them to the images:

These images are now ready for dense stereo matching.
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Structure computation
Introduction

How can we compute the position of a point in 3 space given two views?

We’ll assume we have a perfect estimate of F (and therefore P and P′, up
to some ambiguity).

We will

Derive a simple linear solution

Consider some limitations of the linear solution

Define a cost function for an optimal reconstruction

Discuss algorithms for minimizing that cost function
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Structure computation
The point reconstruction problem

Backprojection for two corresponding points x↔ x′ doesn’t work because
with image measurement error, the backprojected rays will be skew:

x

/

x /

C C

Hartley and Zisserman (2004), Fig. 12.1a
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Structure computation
The point reconstruction problem

Skew is due to the fact that in general, corresponding points x and x′ will
not exactly satisfy the epipolar constraint x′TFx = 0:

x
x

e

/

e /

l = F /x /l = F x

image 1 image 2

Hartley and Zisserman (2004), Fig. 12.1b
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Structure computation
Invariance of the solution

What properties would we like our reconstruction to have?

Let’s call our triangulation method τ :

X = τ(x, x′, P, P′).

We would like τ to be invariant under projective transformations H:

τ(x, x′, P, P′) = H−1τ(x, x′, PH−1, P′H−1)

If we adopt this goal, minimizing error in P3 will not work because
distance and perpendicularity relationships are not invariant in P3.
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Structure computation
Maximum likelihood solution

Instead of minimizing error in P3, we would like instead to estimate a 3D
point X̂ exactly satisfying

x̂ = PX̂ x̂′ = P′X̂

and maximizing the likelihood of the measurements under Gaussian error.

As usual, the maximum likelihood estimate under Gaussian errors
minimizes reprojection error.

Since reprojection error only measures distance in the image, the ML
estimate will be invariant under projective transformations of 3-space.
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Structure computation
DLT-style linear solution

First we’ll consider a simple linear estimate minimizing algebraic error
similar to the DLT that is not optimal.

We use the cross product to eliminate the homogeneous scale factor. For
each image we have x× (PX) = 0 giving

x× (PX) =

 x(p3TX)− (p1TX)
y(p3TX)− (p2TX)
x(p2TX)− y(p1TX)

 = 0.

Taking two linearly independent equations from each camera we obtain the
system AX = 0 with

A =


xp3T − p1T

yp3T − p2T

x ′p′3T − p′1T

y ′p′3T − p′2T


We have 4 equations in 4 homogeneous unknowns.
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Structure computation
DLT-style linear solution

As always, the solution to the homogeneous linear system is the last right
singular vector of A.

If X is known not to be close to the principal plane, we can force the last
element of X to 1, obtaining an inhomogeneous linear system with 4
equations in 3 unknowns that can be solved using the pseudoinverse of A.

In terms of invariance, neither method is invariant under arbitrary
projective transformations.

The inhomogeneous method but not the homogeneous method is invariant
under affine transformations.

Nevertheless, in many cases the homogeneous method works just fine, and
importantly, it generalizes to the situation where there are more than two
views.
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Structure computation
Maximum likelihood estimate

Under a Gaussian error assumption, the maximum likelihood estimate X̂ of
X minimizes the reprojection error

C(x, x′) = d(x, x̂)2 + d(x′, x̂′)2 subject to x̂′TFx̂ = 0.

/x

/

X

e e /

x x /

/

C C

x
d d

Hartley and Zisserman (2004), Fig. 11.2
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Structure computation
Maximum likelihood estimate

To find X̂, we could use Levenberg-Marquardt beginning from the DLT
estimate of X.

We could also minimize Sampson error, which is a first-order
approximation to reprojection error, or obtain an optimal estimate using a
fairly complex but analytical algorithm. See the text.
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Structure computation
Estimation error

Intuitively, as noise in the image measurements increases, so does the
expected error in the reconstruction:

Hartley and Zisserman, Fig. 12.6

An estimate of the expected error covariance for a reconstructed point can
be obtained using the methods of Hartley and Zisserman, Chapter 5.
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Structure computation
Line estimation

Lines can also be reconstructed from two views except for the degeneracy
involved when they intersect or nearly intersect the epipoles, i.e., lie on an
epipolar plane.

ee

L

l l /

π π /

epipolar
plane

C C/ /

Hartley and Zisserman, Fig. 12.7
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Conclusion
Three views

We looked at two-view reconstruction in some detail.

With three views, there are some benefits:

Given point correspondences in two images, the image of the point in
the third is determined exactly

The same holds for lines. Additionally, three views of a line give us an
overdetermined solution allowing us to minimize over measurement
errors.

There is a 3-view generalization of the fundamental matrix called the
trifocoal tensor.

Next we’ll cover 3-view geometry then N-view reconstruction.
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