
Applied Machine Vision
Estimation

Matthew Dailey

Information and Communication Technologies
Asian Institute of Technology

Matthew Dailey (ICT-AIT) Machine Vision 1 / 72



Readings

Readings for these lecture notes:

- Hartley, R., and Zisserman, A. Multiple View Geometry in Computer
Vision, Cambridge University Press, 2004, Chapter 4.

- Tomasi, C. Mathematical Modeling of Continuous Systems, online
lecture notes from Duke University, 2004.

If you are unfamiliar with the mathematics used in these lecture notes,
study Carlo Tomasi’s beautiful lecture notes. You’ll find the notes on the
course Web site under “Readings.”

These notes contain material c© Hartley and Zisserman (2004) and Tomasi
(2004).
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Introduction
Estimation Problems

In vision, we are frequently confronted with estimation problems in which
parameters of some function must be estimated from measurements.

Some examples of important estimation problems:

2D homography: Given a set of points xi in P2 and corresponding
points x′i in P2, find a homography taking each xi to x′i .

3D to 2D camera projection: Given a set of points Xi in 3D space
and corresponding points xi in an image, find the 3D to 2D projective
mapping taking each Xi to xi .

Fundamental matrix computation: Given a set of points xi in one
image and a set of corresponding points x′i in another image, find the
fundamental matrix F relating the two images.

Trifocal tensor computation: Given a set of point correspondences
xi ↔ x′i ↔ x′′i across three images, compute the trifocal tensor T jk

i

relating points or lines in three views.
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Introduction
Homography estimation

First we’ll consider homography estimation.

We have a set of points xi and corresponding points x′i . We want to
compute H such that ∀i , Hxi = x′i .

How many points do we need?

We already saw that each point correspondence gives us 2 constraints
(equations), one for the x component and one for the y component.

Since H has 8 degrees of freedom we need at least 4 correspondences.
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Introduction
Cost functions

We know that 4 correspondences yields an exact solution.

Due to measurement error and correspondence error we should get more
than 4 correspondences then find the homography H minimizing some cost
function.

Gold Standard algorithm (Hartley and Zisserman, 2004)

An estimation algorithm minimizing the cost function that is the best
possible cost function under certain assumptions.

All algorithms should be evaluated with respect to the Gold Standard.
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Direct Linear Transform (DLT)
Another view of the homography estimation problem

Now we’ll look at another way to derive the exact linear estimate of H
from 4 points.

For corresponding points xi ↔ x′i we want x′i = kiHxi for some nonzero
scaling factor k .

Thus we can say that x′i and Hxi must be collinear.

Recall that the cross product of two collinear vectors is the 0 vector.

This means we can write this constraint in the form x′i × Hxi = 0.
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Direct Linear Transform (DLT)
Deriving the linear system

Let’s use hj to denote the j-th row of H written as a vector. Then we have

Hxi =

h1Txi
h2Txi
h3Txi

 .

Now if x′i = (x ′i , y
′
i ,w

′
i )

T , the cross product can be written

x′i × Hxi =

y ′i h
3Txi − w ′i h

2Txi
w ′i h

1Txi − x ′ih
3Txi

x ′ih
2Txi − y ′i h

1Txi

 .
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Direct Linear Transform (DLT)
Deriving the linear system

Since we want the cross product to be the zero vector, we can write the
linear system  0T −w ′i xTi y ′i x

T
i

w ′i x
T
i 0T −x ′i xTi

−y ′i xTi x ′i x
T
i 0T

h1

h2

h3

 = 0.

We have three linear equations in 9 unknowns. The third equation is
actually a linear combination of the first two.1 So we can drop it (see next
slide)...

1To convince yourself of this, use the factor −x ′
i /w

′
i for the first equation and

−y ′
i /w

′
i for the second equation.
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Direct Linear Transform (DLT)
Deriving the linear system

Dropping the redundant third equation in the parameters of H, we have:

Aih =

[
0T −w ′i xTi y ′i x

T
i

w ′i x
T
i 0T −x ′i xTi

]h1

h2

h3

 = 0. (1)

However, if w ′i = 0 we have an ideal point, and the first two equations
become linearly dependent. In this case we should use the third equation
and the first or second equation, or just use all three equations all the time.
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Direct Linear Transform (DLT)
Deriving the linear system

With 8 equations in 9 unknowns, A is 8× 9 and has rank 8. It has a
one-dimensional null space and we obtain h = N (A).

If we have more than 4 correspondences the system Ah = 0 will be
over-determined:

With perfect measurement, the rank of A would still be 8 and it would
still have a one-dimensional null space.

But measurement noise means no exact solution.

So we try to find the vector h minimizing some cost function.

Since we want Ah to be as close as possible to 0, a sensible cost function
is the norm of Ah, i.e., ‖Ah‖.

However we must avoid the trivial solution h = 0, so we impose a
constraint ‖h‖ = 1. This is OK since H is homogeneous.
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Direct Linear Transform (DLT)
Solving the linear system

So now we have the minimization problem

ĥ = argmin
h
‖Ah‖, subject to ‖h‖ = 1.

whose solution is to let h be the unit eigenvector of ATA with the smallest
eigenvalue, or the unit singular vector of A corresponding to the smallest
singular value of A.

This is important to remember: to solve an overconstrained homogeneous
linear system Ax = 0 by minimizing ‖Ah‖ subject to ‖h‖ = 1, we perform
SVD on A (see next section) or compute the eigenvector corresponding to
the smallest eigenvalue of ATA.
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Direct Linear Transform (DLT)
The basic DLT for H

DLT: Objective

Given n ≥ 4 2D to 2D point correspondences {xi ↔ x′i}, determine the 2D
homography matrix H such that x′i = Hxi .

DLT: Algorithm

(i) For each correspondence xi ↔ x′i , compute the matrix Ai as in
equation (1). When w ′i = 0, use different rows.

(ii) Assemble the n 2× 9 matrices Ai into a single 2n × 9 matrix A.

(iii) Obtain the SVD A = UDVT . The unit singular vector (column of V)
corresponding to the smallest singular value (diagonal element of D) is
the desired h.

(iv) Rearrange h to obtain H.
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Direct Linear Transform (DLT)
Similar approaches

Other methods: we can select one element of h to be equal to 1 (or any
other arbitrary value) to obtain an inhomogeneous linear system which can
be solved by the usual least squares methods (see text).

We can also compute H in the same way using line correspondences or
conic correspondences. The derivations are quite similar.
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Direct Linear Transform (DLT)
Example code

For example code for the DLT in Octave, see dlt demo.m on the course
Web site.
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Singular value decomposition (SVD)
Definition

The SVD is an incredibly useful factorization, particularly for the kinds of
estimation problems that come up in computer vision.

Singular Value Decomposition

Given an m × n matrix A, the singular value decomposition of A is

A = UDVT

where the columns of U ∈ Rm×m and V ∈ Rn×n are orthogonal unit vectors
and D ∈ Rm×n is a diagonal matrix whose elements σi , with
σ1 ≥ · · · ≥ σp ≥ 0, (p = min(m, n)), are called the singular values of A.
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Singular value decomposition (SVD)
Geometric interpretation

Writing A = UDVT models the transformation y = Ax as a rotation, a
“stretch” of the unit hypershpere into a hyperellipse, and a rotation of the
hyperellipse. Example:

A =
1√
2

√3
√

3
−3 3
1 1



Example from Tomasi (2004), Section 3.
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Singular value decomposition (SVD)
Properties of the SVD

The SVD has many useful properties:

If m = n and σi 6= 0,∀i , then A is invertible. The ratio C = σ1/σn is
called the condition number of A and tells us how close A is to
singularity. When 1/C is close to numerical precision, we say A is
ill-conditioned and should be considered singular.

The number of nonzero σi is the rank of A. Numerically, we must
specify a tolerance, e.g. ε = 10−6, and say the number of singular
values greater than ε is the rank of A.

We can get the inverse or pseudoinverse of A using the SVD:
A−1 = VD−1UT or A+ = VD−1

0 UT , where D−1
0 is D−1 for the nonzero

singular values and 0 otherwise.
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Singular value decomposition (SVD)
Properties of the SVD

More properties:

The columns of U corresponding to the nonzero σi span the range of
A. The columns of V corresponding to the zero singular values span
the null space of A.

The squares of the nonzero singular values of A are the nonzero
eigenvalues of ATA and AAT . The columns of U are the eigenvectors
of AAT and the columns of V are the eigenvectors of ATA.
Additionally, we can write Auk = σkvk and ATvk = σkuk where vk is
the kth column of V and uk is the kth column of U.

The singular values of A are related to the Frobenius norm of A:

‖A‖2
F =

∑
i ,j

a2
i ,j =

∑
i

σ2
i .
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Singular value decomposition (SVD)
Applications

Here are some of the SVD’s many uses:

In inhomogeneous linear least squares problems (Ax = b), we use the
SVD to obtain the pseudoinverse of A and let x = A+b.

In homogeneous least squares problems, when we want to minimize
‖Ax‖ subject to ‖x‖ = 1, we obtain the SVD and let x be the last
column of V (since it is also the least eigenvector of ATA).

In some cases we can use the SVD to enforce constraints on an
estimated matrix. For example, if we obtain an estimate R of a
rotation matrix that is not quite orthogonal, we can compute the
orthogonal matrix R̂ = UIVT that is closest to R measured by the
Frobenius norm. We can use a similar approach for rank constraints.
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Cost functions
Algebraic distance

DLT minimizes ‖Ah‖. The vector ε = Ah is called the residual vector.
Each of the components of ε comes from one of the individual
correspondences generating a row of A.

The part of the vector εi contributed by one correspondence xi ↔ x′i is
called the algebraic error for correspondence i and homography H. The
norm of εi is called the algebraic distance between x′i and Hxi .

The algebraic distance is a convenient cost function because it leads to a
straightforward linear solution, but it is not geometrically or statistically
meaningful!

We will find that normalization is crucial to obtaining good results from
algorithms minimizing algebraic error.

We will also look at algorithms that use DLT and similar linear algebraic
error-minimizing routines to obtain an initial solution, then minimize a
statistical or geometrical cost function from there.
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Cost functions
Geometric error

Here we’ll use x to represent a measured image point, x̂ to denote an
estimated point, and x̄ to represent the true value of a point.

As a starting point, imagine we have perfect measurements in the first
image and error in the second image.

Let d(x, y) be the Euclidean distance between the inhomogeneous
representations of points x and y.

We call the transfer error for the set of correspondences∑
i

d(x′i , Hx̄i )
2.

We can estimate the homography Ĥ minimizing the transfer error.
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Cost functions
Geometric error

In most practical situations, we don’t actually know the true position x̄i of
the point xi . Then it makes sense to measure the symmetric transfer error,
i.e., the transfer error in both directions:∑

i

d(xi , H
−1x′i )

2 + d(x′i , Hxi )
2.

We can estimate the homography Ĥ minimizing the symmetric transfer
error.
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Cost functions
Reprojection error

Another approach is to come up with not only an estimate Ĥ, but also
estimates x̂i and x̂′i of the true points x̄i and x̄′i , ensuring that Ĥx̂i = x̂′i .

In this case we want to minimize the reprojection error∑
i

d(xi , x̂i )
2 + d(x′i , x̂

′
i )

2, subject to x̂′i = Ĥx̂i , ∀i .

Reprojection error will be the natural cost function when we are estimating
3D world points Xi projecting to xi and x′i .
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Cost functions
Comparison of transfer error and reprojection error

Here is a comparison of symmetric transfer error and reprojection error:

x
/x

H-1

H-1

x /

image 1 image 2

x
H

x /

image 1 image 2

H

x

d d/

d /d

Hartley and Zisserman (2004), Fig. 4.2

Matthew Dailey (ICT-AIT) Machine Vision 28 / 72



Cost functions
Comparison of algebraic and geometric distance

The algebraic and geometric methods turn out to be equivalent whenever
ŵ ′i = w ′i = 1,∀i .

This is always true in the case that H is an affinity, and the DLT specializes
to affinities without any problem (just set h7 = h8 = 0 in Equation (1)).
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Cost functions
Other cost functions

There are other cost functions that attempt to model the simplicity of
algebraic error while approximating geometric error as closely as possible.

One is the Sampson error. See text for details.
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Cost functions
Maximum likelihood estimation

If we assume spherical Gaussian measurement errors in one image, the
maximum likelihood estimate of H is the one minimizing the transfer error∑

i

d(x′i , Hx̄i )
2.

If we assume spherical Gaussian measurement errors in both images, the
maximum likelihood estimate of H turns out to be the one minimizing the
reprojection error ∑

i

d(xi , x̂i )
2 + d(x′i , x̂

′
i )

2.

See text for the derivations. Notice that maximum likelihood with a
Gaussian noise model often leads to least-squares methods.
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Cost functions
Maximum likelihood estimation

That geometric error cost functions arise from maximum likelihood means
they have good theoretical justification: they are statistically optimal
under certain assumptions.

Is the assumption of Gaussian measurement noise reasonable?

It is reasonable if care is taken to eliminate outliers prior to performing the
estimation.
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Normalization
Problem with the DLT

What happens with the DLT when we replace xi by Txi and replace x′i by
T′x′i for arbitrary homographies T and T′?

We would prefer the DLT to give us a transformed homography
H̃ = T′HT−1, where H is the homography we would obtain from the
DLT using the untransformed points.

If this were the case, we would get the same estimated homography
regardless of the image coordinate system, origin, etc.

However, it doesn’t turn out that way! The DLT is not
transformation invariant.

The DLT’s lack of transformation invariance is a big problem but can be
minimized through data normalization.

Geometric error minimization, on the other hand, is invariant to similarity
transformations.
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Normalization
Fixing the problem with the DLT

Hartley and Zisserman find it is possible to pre-normalize xi and x′i with
isotropic scaling to obtain reasonable solutions:

Isotropic scaling

Transform the coordinates in each image so their centroid is at the
origin.

Then scale the coordinates so that the average distance from the
origin along each dimension is 1. In 2D, this means the average
magnitude of (xi , yi )

T becomes
√

2.

With isotropic scaling, the DLT becomes invariant to similarity
transformations.

Data normalization is an essential step in the DLT algorithm. It must not
be considered optional (Hartley and Zisserman, 2004, p. 108).
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Normalization
The normalized DLT for H

Normalized DLT: Objective

Given n ≥ 4 2D to 2D point correspondences {xi ↔ x′i}, determine the 2D
homography matrix H such that x′i = Hxi .

Normalized DLT: Algorithm

(i) Compute a similarity transform T consisting of a translation and a
scale that takes xi to x̃i such that the centroid is (0, 0)T and the
average distance from the origin is

√
2.

(ii) Do the same for x′i , estimating a similarity T′ taking x′i to x̃′i .

(iii) Apply the basic DLT to obtain H̃ from x̃i and x̃′i .

(iv) Return H = T′−1H̃T.
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Iterative minimization
Motivation

We saw that the DLT is a simple algorithm that minimizes the algebraic
error.

However, we would prefer to minimize the geometric error, not the
algebraic error.

For some problems, geometric error can be minimized analytically, but
more often minimizing geometric error requires iterative methods such as
Gauss-Newton.

The advantage of iterative minimization methods are their power. But
they have many disadvantages compared to linear minimization techniques
like the DLT:

They are slower.

They generally need an initial estimate.

The might not always converge.

Finding the right stopping criterion can be difficult.
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Iterative minimization
Formulating the problem

Here are Hartley and Zisserman’s steps for implementing an iterative
minimization algorithm:

Decide on a cost function such as reprojection error.

Find a suitable parameterization of the entity to be estimated.
Over-parameterization is usually OK and even beneficial (see text).

Write a function specification expressing the cost as a function of the
parameters.

Use a linear method such as the DLT for initialization of the
parameters.

Starting from the initial solution, perform iteration to minimize the
cost function.

We will consider as an example the problem of minimizing reprojection
error for the homography estimation problem.
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Iterative minimization
Function specification

A large class of cost functions can be formulated in terms of Mahalanobis
distance between a measurement vector X ∈ RN and points on a model
submanifold S ⊂ RN .

We formulate the problem in terms of a parameter vector P ∈ RM and
write a function f : RM 7→ RN mapping P to an element of the
measurement space.

Then the cost function is the squared Mahalanobis distance

‖X− f(P)‖2
Σ = (X− f(P))TΣ−1(X− f(P)).

If f(P) is linear, we obtain a solution using a generalized
pseudoinverse.

If f(P) is nonlinear (it usually is in vision problems), we have a
nonlinear least squares problem that must be solved iteratively. The
most common algorithm is Levenberg-Marquardt.

Matthew Dailey (ICT-AIT) Machine Vision 40 / 72



Iterative minimization
Nonlinear least squares

Here is the basic iterative scheme:

Pick some initial solution P0 (hopefully close to the actual solution).

Let k = 0.

While Pk is not a minimum of ‖X− f(P)‖2
Σ, do:

Compute a step δP.
Let Pk+1 = Pk + δP.
Let k = k + 1.

To find the best step δP, we try to jump to the new point Pk + δP that
would be optimal under some simplified assumptions about f. One
technique is to linearize f around Pk .
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Iterative minimization
Linearizing f

For vector-valued function f(P) = (f1(P), . . . , fN(P))T , in the region of P,
we can approximate f by the first-order Taylor expansion

f(P) = f (P0 + (P− P0)) = f(P0 + δP) ≈ f(P0) + Jf(P0)δP,

where Jf(P0) is the Jacobian of f evaluated at P0:

Jf(P0) =

∇f
T

1 (P0)
...

∇f TN (P0)


and ∇fi (P0) is the gradient of fi evaluated at P0, i.e.,

∇fi (P0) =
(

∂fi
∂P1

(P0), . . . , ∂fi
∂PM

(P0)
)T

.
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Iterative minimization
Minimizing the linearized f

We’ve approximated f(P) by the linear function f(P0) + Jf(P0)(P− P0).

Let’s assume for the moment that we use the L2 norm (Σ = I) and that
X = 0. Then minimizing ‖X− f(P)‖2

Σ just means minimizing

E (P) =
N∑
i=1

f 2
i (P).

If P is a minimum of E (P), we know that

F(P) =
1

2
∇E (P) = 0.

Substituting the definition for E (P) and writing as a matrix equation, we
can obtain

F(P) = JTf (P)f(P) = 0.

Now we’ll use Newton’s method to find the zero of F.
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Iterative minimization
Minimizing the linearized f

Newton’s method for a vector valued fuction F is to solve

JF(Pk)δP = −F(Pk)

for δP then jump to Pk+1 = Pk + δP.

In our case it turns out that

JF(P) = JTf (P)Jf(P) +
N∑
i=1

fi (P)Hfi (P).

where Hfi (P) is the Hessian (matrix of second derivatives of fi ) evaluated
at P.
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Iterative minimization
Minimizing the linearized f

Finally, to apply Newton’s method we solve the linear system[
JTf (P)Jf(P) +

N∑
i=1

fi (P)Hfi (P)

]
δP = −JTf (P)f(P).

Crazy! Let’s do an example in one dimension to get the idea.
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Iterative minimization
Minimizing the linearized f (example)

Example in one dimension.

Let f (p) = p2 − 4p + 5. We know the minimum is at p = 2.

The “Jacobian” in one dimension is actually just the derivative:

Jf (p) =
[
f ′(p)

]
=
[
2p − 4

]
.

The error function is
E (p) = f 2(p),

so the function we want to find the zero of using Newton’s method is

F (p) =
1

2
∇E (p) = JTf (p)f (p) = (2p − 4)(p2 − 4p + 5).

Matthew Dailey (ICT-AIT) Machine Vision 46 / 72



Iterative minimization
Minimizing the linearized f (example)

Example in one dimension, continued.

To find the zero of F (p), we need

JF (p) = JTf (p)Jf (p) +
N∑
i=0

fi (p)Hfi (p)

= (2p − 4)2 + (p2 − 4p + 5) · 2
= 6p2 − 24p + 26.

then we solve the linear system

JF (p)δp = −F (p).
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Iterative minimization
Minimizing the linearized f

Suppose our initial guess for the parameter is p = 4.

-200

-100

0

100

200

300

400

500

-2 0 2 4 6 8

Newton's method for F(p) = (2p-4)(p2 - 4p + 5), p0 = 4

Verify that δp = −10/13 ≈ −0.76923.
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Iterative minimization
Minimizing the linearized f

Problem with Newton’s method: the Hessians
∂2fi
∂p2

1

∂2fi
∂p1∂p2

· · ·
...

...
...

∂2fi
∂pM∂p1

∂2fi
∂pM∂p2

· · ·


are tedious and expensive to calculate, especially if M, the dimensionality
of the parameter vector, is large.
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Iterative minimization
Minimizing the linearized f

Because of the difficulty of calculating Hessians we typically use
quick-and-dirty approximations rather than explicitly calculate them.

The Gauss-Newton algorithm drops the second-order terms entirely.

The Levenberg-Marquardt algorithm approximates the second order terms
by a scaled identity matrix:[

JTf (P)Jf(P) + µI
]
δP = −JTf (P)f(P).

where the parameter µ is adapted during optimization.

Lucky for us, Levenberg-Marquardt is implemented in many packages:
Matlab lsqnonlin(), Octave leasqr(), and Numerical Recipes in C
mrqmin().

See the text, Appendix 6, for information on adapting
Levenberg-Marquardt to very large problems.
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Iterative minimization
Iterative minimization applied to homography estimation

In the case of homography estimation, we have a set of 2D coordinates of
corresponding points xi and x′i , so the dimensionality of the measurement
space is N = 4n and the measurement is a vector X ∈ RN .

Suppose our parameterization was to choose a set of points x̂i in the first
image, then choose a homography H.

The corresponding points x̂′i = Ĥx̂i would then be fixed.

The parameter vector P ∈ RM , then, would contain the 2n
parameters of x̂i and the 9 parameters of Ĥ, so M = 2n + 9.

The resulting model (the set of measurements in RN that can be be
generated with our parameterization) is a 2n + 8 dimensional
submanifold S ⊂ RN .

[Analogy: think about a circle as a 1D submanifold of R2.]
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Iterative minimization
Iterative minimization applied to homography estimation

Given the model in the previous page, it is straightforward to write the
mapping

f : (h, x̂1, . . . , x̂n) 7→ (x̂1, x̂
′
1, . . . , x̂n, x̂

′
n)

where x̂′i = Hx̂i .

The reprojection error cost function becomes ‖X− f(P)‖2, which is just
the Mahalanobis cost function with Σ = I.

This means Levenberg-Marquardt applies. The resulting algorithm is
Hartley and Zisserman’s Gold Standard MLE algorithm for estimating H.
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Gold Standard algorithm
The idea

The Gold Standard algorithm for H tries to find

(Ĥ, x̂1, . . . , x̂n) = argmax
Ĥ,x̂1,...,x̂n

P(x1, x
′
1, . . . , xn, x

′
n | H, x̂1, . . . , x̂n)

We know that maximizing the likelihood in the equation, assuming
Gaussian measurement error, means minimizing the reprojection error∑

i

d(xi , x̂i )
2 + d(x′i , Ĥx̂i )

2

This is a nonlinear least squares problem, which Levenberg-Marquardt can
solve, but we need an initial solution, which we can obtain using the DLT.
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Gold Standard algorithm
The algorithm

Gold Standard for H: Objective

Given n > 4 image point correspondences {xi ↔ x′i}, determine the
maximum likelihood estimate Ĥ.

Gold Standard

(i) Compute an initial estimate of Ĥ using the normalized DLT.

(ii) Compute an initial estimate of the subsidiary variables {x̂i} using {xi}
(see text for a better way).

(iii) Minimize the cost ∑
i

d(xi , x̂i )
2 + d(x′i , Ĥx̂i )

2

over Ĥ, x̂1, . . . , x̂n, using Levenberg-Marquardt over 2n + 9 variables:
2n for the points {x̂i} and 9 for the homography matrix Ĥ.
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Gold Standard algorithm
Example code

For example code for the Gold Standard algorithm in Octave, see
gs demo.m on the course Web site.

Note that if you’re using Matlab you can use the Matlab port of the
Octave leasqr() function or use the Matlab Optimization Toolbox
function lsqnonlin(). But be careful as the two functions work a bit
differently.
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Robust estimation
Introduction

The Gold Standard algorithm is optimal if the measurement error for the
corresponding points xi ↔ x′i is actually Gaussian.

In practice, though, the points and their correspondences are obtained
through an automatic procedure which makes mistakes.

These mistakes, or outliers, will severely disrupt our estimates, so they
should be removed.

We seek to obtain a set of inliers that will be used for estimation and a set
of outliers that will be ignored.

This task is called robust estimation because we want the estimation
method to be robust to outliers following an unmodeled error distribution.
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Robust estimation
RANSAC motivation

Example: fitting a line x ′ = ax + b to a set of points.

Least squares fit is skewed by outliers.

b

d
a

c

RANSAC support for two candidate lines.

The RANSAC (Random Sample Consensus, Fischler and Bolles, 1981)
algorithm is one of the many robust methods to solve this problem.
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Robust estimation
RANSAC idea

The idea of RANSAC is that we only need two points to determine a line.

So to begin, we pick two points at random to define a line.

The support for this line is the number of points that lie within a distance
threshold t of that line.

We repeat for a while, and the line with the most support is deemed best.

The points within the threshold are called inliers and they are said to make
up the consensus set.

In the figure, we see that the line ab has a support of 10 but the line de
has a support of only 2. We would select ab as a better fit to the data
than de.
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Robust estimation
RANSAC algorithm

Hartley and Zisserman’s (2004) adaptation of Fischler and Bolles’ (1981)
RANSAC:

RANSAC: Objective

Robust fit of a model to a data set S which contains outliers

RANSAC: Algorithm

(i) Randomly select a sample s from S and instantiate the model from s.

(ii) Find the consensus set (inliers) Si within distance threshold t of the
model.

(iii) If |Si | ≥ T re-estimate the model using all of the points in Si and
terminate; otherwise repeat from (i).

(iv) After N trials, select the largest consensus set Si and re-estimate the
model using all of the points in Si .
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Robust estimation
RANSAC parameters

RANSAC has three free parameters:

t: the distance threshold,

T : the minimum number of inliers for early termination,

N: the number of samples.

t can be determined empirically, or, if the error distribution is known to be
Gaussian with standard deviation σ, a 95% or similar confidence interval
can be calculated.

See Table 4.2 in the text for reasonable values of t for various vision
problems.
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Robust estimation
RANSAC parameters

N can be determined empirically, or if the proportion w of inliers is
approximately known, we can choose N giving (e.g.) a 99% probability
that on some iteration we will choose a sample containing inliers only.

Example: in homography estimation our sample size would be 4. If we
assume a 50% outlier rate, we should select N = 72 samples to assure a
99% probability of sampling at least one set with 4 inliers.

See Table 4.3 in the text for some example values and how to calculate N
in general.

T , the acceptable consensus set size, should be approximately the number
of inliers thought to be in the data.

For example, in the case of homography estimation, if we have 100
correspondences and a 50% outlier rate, we should let T = 50.
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Robust estimation
Adaptive version of RANSAC for unknown w

One variant, when the percentage of inliers w is unknown, is adpative
RANSAC:

Initialize N =∞.

While running RANSAC, decrease N whenever you obtain a sample
with a bigger consensus set than previously seen.

Terminate after N iterations.

A bigger consensus set means w is bigger than previously thought, so N
need not be so large.
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Robust estimation
Robust maximum likelihood estimation

Note that step (iv) of RANSAC was to re-estimate the model from all of
the points in Si . We should use maximum likelihood in this case.

Problem: the set of inliers could change after we compute the new
maximum likelihood model.

We could just accept the estimate anyway.

Some approaches recompute the inliers after obtaining the maximum
likelihood model then repeat maximum likelihood model estimation until
the consensus set converges.

See text for detailed discussion and other alternative approaches.
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Robust estimation
Using RANSAC to estimate H

Automatic H estimation: Objective

Given two images, compute the homography.

Automatic H estimation: Algorithm

(i) Compute a set of interest points in each image.

(ii) Compute putative correspondences between the point sets.

(iii) RANSAC robust estimation: Repeat for N samples, where N is
determined adaptively as previously described:

(a) Select a random sample of 4 correspondences and compute H.
(b) Calculate the distance d⊥ for each putative correspondence.
(c) Find the number of inliers for which d⊥ < t =

√
5.99σ pixels.

(iv) Re-estimate H using the inliers and the Gold Standard algorithm

(v) (Optional) use the new H to recompute the matching set of interest
points and repeat from (iv) until convergence.
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Robust estimation
Using RANSAC to estimate H

There are two implementation details that need consideration: how to
measure the distance and how to select the samples.

For distance, the symmetric transfer error
d2

transfer = d(x, H−1x′)2 + d(x′, Hx)2 is appropriate since it is easy to
compute. Reprojection error is better but expensive.

Widespread distribution of the samples is good, to ensure good
interpolation in the rest of the image. The sampler can be biased to
pick points in different regions of the image rather than uniformly.
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Robust estimation
Example results

Example initial images (Hartley and Zisserman, 2004, Fig. 4.9):

Image 1 Image 2, related by rotation around cam-
era center
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Robust estimation
Example results

Detected corners, about 500 on each image.
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Robust estimation
Example results

Initial set of 268 correspondences obtained by SSD of image patches
around the corners:

268 putative correspondences, Hartley
and Zisserman (2004), Fig. 4.9(e)

117/268 outliers, Hartley and Zisserman
(2004), Fig. 4.9(f)
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Robust estimation
Example results

Final set of 262 correspondences after RANSAC, guided matching, and
MLE.

151 inliers consistent with H found by
RANSAC, Hartley and Zisserman (2004),
Fig. 4.9(g).

Final set of 262 correspondences af-
ter guided matching and MLE beginning
from the RANSAC solution, Hartley and
Zisserman (2004), Fig. 4.9(h).
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Robust estimation
Implementation

See the course Web site for a test using OpenCV, its built-in Shi-Tomasi
feature detector and its built-in RANSAC H estimation function.

See the Torr toolbox at
http://cms.brookes.ac.uk/staff/PhilipTorr/Code/master_code.htm for
a Matlab implementation using the Harris corner detector.

When there is significant rotation and/or scale in the image plane, the
SIFT (Scale Invariant Feature Transform) feature detector is much better
than Harris or Shi-Tomasi.

There is a large literature on feature detectors enabling correspondence
estimation over multiple views.

Transform invariance matching will be very important when we move to
multiple views of a general scene and estimate the fundamental matrix F

rather than a homography H.
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