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Readings

Readings for these lecture notes:

- Hartley, R., and Zisserman, A. Multiple View Geometry in Computer
Vision, Cambridge University Press, 2004, Chapters 1–3.

- Szeliski, R. Computer Vision: Algorithms and Applications, Springer,
2010.

These notes contain material c© Hartley and Zisserman (2004) and
Szeliski (2010).
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Introduction
Vision systems

Vision
System Information

Images

Geometry Learning TheoryPhysics

The kind of information we want is application specific:

3D models

Object categories

Object poses

Camera poses
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Introduction
Applications

Important applications include:

Mobile robot navigation

Industrial inspection and control

Military intelligence

Security

Human-computer interaction

Image retrieval from digital libraries

Medical image analysis

3D model capture for visualization and animation
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Introduction
Parts of the system

The “vision system” includes:

Image acquisition hardware

Analog camera plus digital frame grabber, -or-
Digital camera with a fast serial interface (Firewire, USB, etc.)

Image processing support software

Your computer vision algorithms
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Introduction
This summer

This semester we focus on algorithms for

3D reconstruction

Learning (object detection and recognition)

Sequential state estimation (e.g. tracking)

To understand modern 3D reconstruction techniques we need to
understand how cameras transduce the world into images.

This involves understanding projective geometry and camera models.

Then we can begin to figure out how to invert what the camera does, or
reconstruct the 3D scene.
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2D projective geometry
Introduction

We begin with 2D projective geometry because it’s simple, then we’ll
generalize to 3D.

In particular, we consider what happens when we perform projective
transformations of the plane.

Projective transformations model the distortions introduced by projective
cameras (more on cameras later).

In projective cameras, funny things happen. Although straight lines stay
straight, parallel lines are no longer parallel.

Projective geometry gives us the mathematics for these kinds of
transformations.
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2D projective geometry
The 2D projective plane: points in R2

A point in the plane can be represented as a pair (x , y) in R2.

We consider R2 as a vector space and we write the point (x , y) as a vector.

This makes it possible to write transformations of points as matrices.

Generally, we write transformations on the left and points on the right, so
we need to write points as column vectors, i.e. (x , y)T .

We will typically write column vectors using bold upright symbols, e.g.,
x = (x , y)T .
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2D projective geometry
The 2D projective plane: lines in R2

A line in the plane is normally represented by an equation like
ax + by + c = 0. The parameters a, b, and c give us different lines.

This means we can write a line in R2 as the vector (a, b, c)T .
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2D projective geometry
The 2D projective plane: homogeneous coordinates and P2

(a, b, c)T represents the same line as k(a, b, c)T for any non-zero constant
k .

A homogeneous vector is an equivalence class of vectors defined by scaling.

The set of homogeneous equivalence classes of vectors in R3 − (0, 0, 0)T is
called the projective space P2.
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2D projective geometry
The 2D projective plane: homogeneous point representations

Since a point x = (x , y)T lies on a line l = (a, b, c)T iff ax + by + c = 0,
we can equivalently write the inner product
(x , y , 1)(a, b, c)T = (x , y , 1)l = 0.

If (x , y , 1)l = 0, it is also true that (kx , ky , k)l = 0.

This makes it convenient to represent a point x = (x , y)T in R2 with the
homogeneous vector (x , y , 1)T .

This means the arbitrary point x = (x1, x2, x3)T in P2 can be used to
represent the point (x1/x3, x2/x3) in R2.

This is nice! Why? Because now we can say that a homogeneous point
x = (x1, x2, x3)T lies on line l iff xT l = 0.
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2D projective geometry
The 2D projective plane: intersection of two lines

Another nice property: the intersection of two lines l and l′ is the point
x = l× l′.

Reminder: the cross product of two vectors x1 = (x1, x2, x3)T and
x′ = (x ′1, x

′
2, x
′
3)T is defined as

x× x′ =

∣∣∣∣∣∣
i j k
x1 x2 x3
x ′1 x ′2 x ′3

∣∣∣∣∣∣
Another reminder: if x = l× l′, x is the vector normal to l and l′ with
magnitude equal to the area of the parallelogram formed by l and l′.

Proof: Since x is orthogonal to both l and l′ we know lTx = 0 and
l′Tx = 0, meaning x lies on both l and l′!

Similarly, the line l joining two points is just l = x× x′.
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2D projective geometry
Ideal points and the line at infinity

Where do the parallel lines (a, b, c)T and (a, b, c ′)T intersect?

The cross product turns out to be (c ′ − c)(b,−a, 0)T = (b,−a, 0)T in P2

but this point has no inhomogeneous representation. (What is
(b/0,−a/0)T ?)

We call such a point (x1, x2, 0)T in P2 an ideal point or a point at infinity
along the direction (x1, x2)T .

All points at infinity lie on the line at infinity l∞ = (0, 0, 1)T (remember
that lines in P2 correspond to planes in R3, points at infinity lie on the
plane x3 = 0, so we represent the plane x3 = 0 by its normal vector
(0, 0, 1)T ).

In P2, then, we can say that any two lines intersect, even if they are
parallel.
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2D projective geometry
A model for the projective plane

Here’s how to think of P2: it is a set of rays through the origin in R3.

If we consider all vectors k(x1, x2, x3)T as k varies, we obtain a ray
through the origin. Each such ray is a single point in P2.

A line between any two different points in P2 forms a plane through the
origin.

Inhomogeneous representations of points and lines can be obtained by
finding the intersection of their rays and planes with the plane x3 = 1.
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2D projective geometry
A model for the projective plane

π

l

x
O

x 1

x

x 3

2

ideal
point

Hartley and Zisserman (2004), Fig. 2.1
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2D projective geometry
A model for the projective plane

In R3, lines through the origin that lie in the x1x2 plane represent ideal
points in P2.

All other lines through the origin represent points in P2.

Planes through the origin in R3 represent lines in P2.

The vector (a, b, c)T representing a line in the Euclidean plane, when
interpreted as a vector in R3, is orthogonal to the R3 plane representing
the line in P2.

You should try to prove that this must be so.
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2D projective geometry
Conics

Conic sections or just conics are curves in the plane described by
2nd-degree equations.

In Euclidean geometry, conics can be parabolas, hyperbolas, and ellipses,
or “degenerate” conics (two lines or a single line).

In inhomogeneous coordinates, we write conics as

ax2 + bxy + cy2 + dx + ey + f = 0

We homogenize the equation by replacing x by x1/x3 and y by x2/x3. This
gives us

ax21 + bx1x2 + cx22 + dx1x3 + ex2x3 + fx23 = 0
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2D projective geometry
Conics

With homogeneous points, similar to the point-line equation, conics can
be written in matrix form:

xTCx = 0

Where the (symmetric) conic coefficient matrix C is given by

C =

 a b/2 d/2
b/2 c e/2
d/2 e/2 f


C is homogeneous because scaling by a non-zero constant does not change
the conic.

C has five degrees of freedom, and each point on the conic gives us one
equation linear in the conic’s parameters, so we need five points to
uniquely define a conic up to scale.
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2D projective geometry
Conics

If we find the points x satisfying xTCx = 0, we obtain the plane curve
described by C:

Solution of xT Cx = 0
Hartley and Zisserman (2004), Fig. 2.2(a)

Exercise: write the circle about the origin with radius r in conic matrix
form, and verify that the points on the circle satisfy xTCx = 0.
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2D projective geometry
Conics

What happens if we take an
arbitrary point x on the conic and
compute Cx, treating C as a linear
operator?

We obtain a 3-vector whose inner
product with x is 0. This means
that l = Cx necessarily represents
a line passing through x.

In fact, the resulting line is special:
it is the tangent to the conic at x.

The line l = Cx is the tangent to C through x.

Hartley and Zisserman (2004), Fig. 2.2(b)
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2D projective geometry
Projective transformations

There is an important class of transformations on P2 called projectivities
or homographies or collineations.

A projectivity (homography) is a transform that can be represented by a
3×3 non-singular matrix H.

Homographies are linear mappings of homogeneous coordinates:x ′1
x ′2
x ′3

 =

h11 h12 h13
h21 h22 h23
h31 h32 h33

x1
x2
x3


or simply x′ = Hx.

Since scaling H doesn’t change the result, we say H is a homogeneous
matrix with 8 degrees of freedom.
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2D projective geometry
Projective transformations as central projections

Homographies can also be thought of as central projections mapping one
plane to another:

O

x y
x

ππ /

/
/

x

x /

y

Hartley and Zisserman (2004), Fig. 2.3

[Actually, central projections between rectilinear coordinate systems as
shown here are called perspectivities and only have 6 degrees of freedom.]
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2D projective geometry
Projective transformations: rectification

One application of homographies is rectification. As an example, suppose
we want to remove projective distortion from a perspective image of a
plane:

(a)
(b)

Hartley and Zisserman (2004), Fig. 2.4
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2D projective geometry
Projective transformations: rectification

By picking any four points in an original image and the desired
corresponding points in the new image, we obtain 8 linear equations in the
9 unknowns of H, allowing us to compute the parameters of H:

x ′ =
x ′1
x ′3

=
h11x + h12y + h13
h31x + h32y + h33

, y ′ =
x ′2
x ′3

=
h21x + h22y + h23
h31x + h32y + h33

.

See the example compute homography.m that implements this idea.
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2D projective geometry
Projective transformations: examples

Here are a few of the most important examples of homographies (Hartley
and Zisserman, 2004, Fig. 2.5):

��

��
��

��

��

��
�� �� �� �� ��

��������������

planar surface

image 2image 1

R,t

x

X

x

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
�� �

�
�
�

�
�
�
�

�
�
�
��

�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

X

x

ximage 1

image 2
/

x

x

Images of a plane from two
cameras related by a rotation
and a translation.

Images of arbitrary objects
from two cameras related by
a rotation.

Images of shadows of planar
objects.

Note that images of arbitrary objects from two cameras related by a
rotation and translation are not related by homographies.

Matthew Dailey (ICT-AIT) Machine Vision 27 / 73



2D projective geometry
Projective transformations: examples

Given a point homography x′ = Hx:

The corresponding line homography is l′ = H−T l

The corresponding conic homography is C′ = H−TCH−1
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2D projective geometry
A hierarchy of transformations

We can create a hierarchy of transformations based on the restrictions that
we put on a linear transformation H.

The real linear group GL(3) consists of all invertible real 3× 3 matrices.1

When we place all members of GL(3) related by scale in an equivalence
class, we obtain the projective linear group PL(3).

There are three important subgroups of PL(3):

The affine group in which the bottom row is constrained to (0, 0, 1);

The similarity group in which the rows and columns of the upper-left
2×2 submatrix are orthogonal;

The Euclidean or isometry group in which the upper-left 2×2
submatrix is orthonormal.

1Recall that a group is a set paired with an operation that has an inverse,
associativity, an identity, and closure.

Matthew Dailey (ICT-AIT) Machine Vision 29 / 73



2D projective geometry
A hierarchy of transforms

Group Matrix Distortion Invariant properties

Projective
8 dof

h11 h12 h13
h21 h22 h23
h31 h32 h33

 Concurrency, collinearity, order
of contact, tangent discontinu-
ities and cusps, cross ratios

Affine
6 dof

a11 a12 tx
a21 a22 ty
0 0 1

 Parallelism, ratio of areas, ratio
of lengths on collinear or paral-
lel lines, linear combinations of
vectors, the line at infinity l∞

Similarity
4 dof

sr11 sr12 tx
sr21 sr22 ty

0 0 1

 Ratio of lengths, angle

Euclidean
3 dof

r11 r12 tx
r21 r22 ty
0 0 1

 Length, area

Hartley and Zisserman (2004), Table 2.1
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2D projective geometry
Action of projectivities and affinities on ideal points

What happens when we apply a homography H to a point at infinity?

Affinities map ideal points to ideal points:

[
A t
0T 1

]x1
x2
0

 =

A

(
x1
x2

)
0


but general projectivities can map ideal points to finite points:

[
A t
vT 1

]x1
x2
0

 =

 A

(
x1
x2

)
v1x1 + v2x2
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2D projective geometry
Action of projectivities and affinities on ideal points

Similarity: circularity
is invariant

Affinity: parallelism is
invariant

Projectivity: the line
at infinity becomes fi-
nite (parallel lines on
the plane intersect at
finite points on l∞)

Hartley and Zisserman (2004), Fig. 2.6
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3D projective geometry
Introduction

Now we move to projective 3-space, or P3.

Things will mostly generalize from P2.

We’ll use homogeneous coordinates in R4 to represent points and planes in
P3.

We’ll see that parallel lines and parallel planes intersect on the plane at
infinity π∞.

Matthew Dailey (ICT-AIT) Machine Vision 34 / 73



3D projective geometry
Points in P3

We represent a 3D point (X ,Y ,Z )T in homogeneous coordinates
X = (X1,X2,X3,X4)T with X4 6= 0 and

X = X1/X4,Y = X2/X4,Z = X3/X4.

Homogeneous coordinates with X4 = 0 represent points at infinity.

A projective transformation on P3 is a linear transformation on
homogeneous 4-vectors, represented by a non-singular 4×4 matrix:
X′ = HX.

H is homogeneous and in general has 15 degrees of freedom.
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3D projective geometry
Planes in P3

Whereas points and lines are dual in P2, points and planes are dual in P3.

A plane in 3-space is written

π1X + π2Y + π3Z + π4 = 0.

The equation is unaffected by scalar multiplication, so we can represent a
plane as the homogeneous vector (π1, π2, π3, π4)T .

Homogenizing the point X, we get

π1X1 + π2X2 + π3X3 + π4X4 = 0

or simply πTX = 0 to express that the point X lies on the plane π.
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3D projective geometry
Points and planes in P3

Suppose we have 3 points in general position. We can find the plane they
lie in by constructing the equation

Xπ =

XT
1

XT
2

XT
3

π = 0

As long as the 3×4 matrix X has rank2 3, the solution π is the right null
space3 of X.

If X is rank 2, we have collinear points and the equation defines a pencil of
planes4 with the line of collinear points as its axis.

2The rank of matrix A is the number of linearly independent rows or columns in A.
3The right null space of matrix A, written N (A), is the set of all solutions of Ax = 0.
4Just a fancy term for the set of planes intersecting at a given line.
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3D projective geometry
Points and planes in P3

Analogous to the definition of the line through two points in P2, the plane
through three points in P3 can be written in terms of determinants and
minors.

We finally obtain (see text for proof)

π =

(
(X̃1 − X̃3)× (X̃2 − X̃3)

−X̃T
3 (X̃1 × X̃2)

)

where X̃ is the inhomogeneous representation of point X.

So we can find the plane through three points by finding N (X) or by using
some vector algebra.
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3D projective geometry
Lines in P3

Lines in 3-space can be defined by their intersection with two given planes:

Hartley and Zisserman (2004) Fig. 3.1

This means a line in 3-space has 4 degrees of freedom.

Wouldn’t it be natural to represent lines as 5-element homogeneous
vectors?

Unfortunately this doesn’t work well with 4-vectors for lines and planes.

Several alternative representations for lines have been proposed.
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3D projective geometry
Lines in P3: homogeneous point representation

In the homogeneous point representation of a line, given two homogeneous
points A and B on the line, we write

W =

[
AT

BT

]
,

in which case:

The span5 of WT is the pencil of points6 λA + µB on the line.7

The span of the 2-dimensional right null-space of W is the pencil of
planes with the line as the axis.

5The set of all linear combinations of the columns of a matrix.
6Just a fancy term for the set of points on a line.
7To convince yourself of this, consider the inhomogeneous parametric representation

of the line Ã + t(B̃− Ã) with t = µ
λ+µ

.
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3D projective geometry
Lines in P3: dual homogeneous plane representation

There is a dual representation of a line as the intersection of two planes P
and Q:

W∗ =

[
PT

QT

]
in this representation,

The span of W∗T is the pencil of planes λ′P + µ′Q with the line as an
axis.

The span of the 2-dimensional null-space of W∗ is the pencil of points
on the line.

Example: find W and W∗ for the points (1, 0, 0, 1)T and (2, 0, 0, 1)T and
verify that W∗WT = WW∗T = 0.
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3D projective geometry
Lines in P3: Plücker matrix representation

We can also represent a line through A and B by a 4×4 skew-symmetric8

homogeneous matrix L defined by

lij = AiBj − BiAj

or equivalently,
L = ABT − BAT .

L is the Plücker matrix representation of a line.

8Recall that a skew-symmetric matrix is a matrix A such that AT = −A.
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3D projective geometry
Lines in P3: Plücker matrix representation

Some nice properties of L:

The rank of L is 2 and its 2-dimensional null-space is spanned by the
pencil of planes with the line as an axis (LW∗T = 0).

L has 4 degrees of freedom, the same as a line, since it is
skew-symmetric (having only 6 independent non-zero elements),
homogeneous, and constrained so that det L = 0 (its rank is 2).

The relation L = ABT − BAT is the generalization to P3 of the
relation l = x× y of P2.

L is independent of the points A and B.

Under the point transformation X′ = HX, the matrix L transforms as
L′ = HLHT .

Example: write the line through (1, 0, 0, 1) and (2, 0, 0, 1) as a Plücker
matrix.
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3D projective geometry
Lines in P3: dual Plücker matrix representation

A dual Plücker representation can be obtained using the intersection of
two planes P and Q:

L∗ = PQT −QPT

L∗ can be derived directly from L by a simple rewrite rule (see text).
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3D projective geometry
Lines in P3: dual Plücker matrix representation

The advantage of the Plücker matrix and dual Plücker matrix
representations is that joins and indicence properties are easily represented:

The plane defined by the join of a point X and a line L is π = L∗X,
and L∗X = 0 iff X is on L.

The point defined by the intersection of a line L and a plane π is
X = Lπ, and Lπ = 0 iff L is on π.

Example: find the intersection of the line through (1, 0, 0, 1) and
(2, 0, 0, 1) with the plane X = 1 (note that the plane X = 1 is represented
as (1, 0, 0,−1)T ).
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3D projective geometry
Lines in P3: Plücker line coordinates

A line can also be represented by the 6 independent non-zero elements of
the skew-symmetric Plücker matrix L.

This representation is called the Plücker line coordinate representation of a
line.

See the text for the properties of this representation.
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3D projective geometry
Quadrics and dual quadrics

A quadric is the 3D analog of a conic, defined by

XTQX = 0

where Q is a symmetric 4×4 matrix.

Here are some properties of quadrics:

9 degrees of freedom (10 independent elements, one lost to scale)
Defined by 9 points in general position
If Q is singular, the quadric is degenerate and can be described by
fewer points
π = QX is the polar plane of X with respect to Q. If X is outside Q

then π is defined by the points of contact of the rays through X
tangent to Q; if X is on Q then π is the tangent plane to Q at X.
The intersection of a plane π and a quadric Q is always a conic C.
Given a 3D homography X′ = HX, the quadric Q transforms as

Q′ = H−TQH−1
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3D projective geometry
Quadrics and dual quadrics

The dual of a point quadric is an equation on planes: the tangent planes
π to point quadric Q satisfying πTQ∗π = 0.

Here Q∗ = Q−1 if Q is invertible, or Q∗ = adjoint Q otherwise.9

Dual quadrics transform as

Q∗′ = HQ∗HT .

9For the curious, the adjoint of matrix M is defined as the transpose of the matrix
where element ij is (−1)i+j det M̂ij where M̂ij is obtained from M by striking out the i-th
row and j-th column.
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3D projective geometry
Types of quadrics

Depending on the rank and signs of the singular values of Q, we obtain a
variety of different topologies:

Quadrics projectively equivalent to a spheres (ellipsoid, hyperboloid of two sheets,
parabaloid), also called non-ruled quadrics, Hartley and Zisserman (2004), Fig. 3.2
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3D projective geometry
Types of quadrics

Hyperboloids of one sheet, also called ruled quadrics, Hartley and Zisserman (2004), Fig. 3.3
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3D projective geometry
Types of quadrics

Degenerate quadrics, Hartley and Zisserman (2004), Fig. 3.4
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3D projective geometry
Twisted cubics

Conics in 2D can be expressed parametrically in P2 asx1
x2
x3

 = A

 1
θ
θ2

 (1)

By analogy, various kinds of space curves called twisted cubics can be
epressed parametrically in P3 as

X1

X2

X3

X4

 = A


1
θ
θ2

θ3

 (2)
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3D projective geometry
Twisted cubics

Some views of a twisted cubic:

Hartley and Zisserman (2004), Fig. 3.5
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3D projective geometry
Hierarchy of transforms

As we saw in 2D, 3D homographies form a hierarchy from most general to
most constrained:

Group Matrix Distortion Invariant properties

Projective
15 dof

[
A t
vT v

] Intersection and tangency of
surfaces in contact. Sign of
Gaussian curvature.

Affine
12 dof

[
A t

0T 1

] Parallelism of planes, volume
ratios, centroids. The plane at
inifinty π∞

Similarity
7 dof

[
sR t

0T 1

]
The absolute conic Ω∞.

Euclidean
6 dof

[
R t

0T 1

]
Volume

Hartley and Zisserman (2004), Table 3.1
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3D projective geometry
The plane at infinity

Recall that in planar projective geometry the line at infinity l∞ contained
the intersections of parallel lines.

In the projective geometry of 3-space, the corresponding object is the
plane at infinity π∞.

The canonical position of the plane at infinity is π∞ = (0, 0, 0, 1)T in
affine 3-space.

Properties of the plane at infinity:

Two planes are parallel iff their line of intersection is on π∞.

Two lines are parallel iff their point of intersection is on π∞.

Matthew Dailey (ICT-AIT) Machine Vision 55 / 73



3D projective geometry
The plane at infinity: motivation

Why do we care about π∞?

Just like l∞ in P2, π∞ in P3 is fixed under affine transformations but
moved under projective transformations.

When we work on 3D reconstruction from multiple views, we’ll get a
projective reconstruction then we’ll need to find a transformation H

giving us a Euclidean reconstruction.

One way to do this is to first transform from a projective frame to an
affine frame, then from affine to Euclidean.

In planar geometry, if we could find l∞ in the image then apply Hp
mapping l∞ to (0, 0, 1), we could also use Hp to transform our
projective reconstruction into a 2D affine frame.

Similarly, in 3-space, if we can find π∞ (e.g. using parallel lines and
planes in an image), we could find a transform Hp mapping the
observed π∞ to (0, 0, 0, 1). Hp would map our reconstruction into a
3D affine frame.
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3D projective geometry
The absolute conic

The absolute conic Ω∞ is a conic on π∞.

As π∞ is fixed under affine transformations, the absolute conic is fixed
under similarity transforms.

In a metric frame, Ω∞ = I.

Informally we can say that Ω∞ records non-metric distortions we’ve applied
in 3-space.

In principle, if we could find Ω∞ in an affine frame (by e.g. comparing
observed to known angles), we could apply an affine transform Ha mapping
Ω∞ to I. This would also undo the affine distortions to the scene.
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3D projective geometry
The absolute conic

The dual of the absolute conic is a degenerate quadric called the dual
absolute quadric Q∗∞.

The dual absolute conic is fixed under similarity transforms and can be
identified directly in a projective frame by observing angles between planes.
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Rigid (Euclidean) transformations
Introduction

Rigid or Euclidean transformations involve only rotations and translations.

We usally think of rigid transformations as transforms between different
coordinate systems in R3.

The vector representation of a point X = (X ,Y ,Z )T should be
understood as X = X i + Y j + Zk where i, j, k are an orthonormal
right-handed basis for R3 with respect to some origin O.

Suppose we have two coordinate systems or frames A = (OA, iA, jA, kA)
and B = (OB , iB , jB , kB).

Problem: given a point X in frame A, what is that same point represented
frame B?
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Rigid (Euclidean) transformations
Rotation and translation

Any rigid transform can be decomposed into a rotation and translation:

X′ = RA/BX + OA/B

where RA/B is a rotation matrix rotating points from frame A to frame B
and OA/B is the representation of the origin of frame A in frame B.

If X and X′ are represented in homogeneous coordinates, we write

X′ = HX =

[
RA/B OA/B

0T 1

]
X.
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Rigid (Euclidean) transformations
Rotation matrices

The rotation RA/B of a point from frame A = (OA, iA, jA, kA) to frame
B = (OB , iB , jB , kB) can be written

RA/B =

 iA · iB jA · iB kA · iB
iA · jB jA · jB kA · jB
iA · kB jA · kB kA · kB

 (3)

The columns of R are the projections of the basis vectors for A onto the
basis vectors for B.
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Rigid (Euclidean) transformations
Rotation matrices

Some important properties of rotation matrices:

A rotation matrix is orthogonal.

Any rotation matrix can be decomposed into the product of 3 simple
rotations, i.e., around i, j, and k.

The inverse of a rotation matrix is its transpose.

The determinant of a rotation matrix is 1.

The columns of a rotation matrix form a right-handed coordinate
system.

The rows of a rotation matrix form a right-handed coordinate system.
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Rigid (Euclidean) transformations
Simple rotation matrices

Here are the simple rotation matrices:

Rotation of α around i:1 0 0
0 cosα sinα
0 − sinα cosα


Rotation of β around j:cosβ 0 − sinβ

0 1 0
sinβ 0 cosβ


Rotation of γ around k: cos γ sin γ 0
− sin γ cos γ 0

0 0 1
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Rigid (Euclidean) transformations
Simple rotation matrices

Note that in aerial robotics, particular conventions are used for the local
coordinate system.

The X axis is the forward direction of the aircraft, Y is right, and Z is
down.

Rotations are specified in terms of roll φ then pitch θ then yaw ψ.

http://en.wikipedia.org/wiki/File:Rollpitchyawplain.png
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Rigid (Euclidean) transformations
Simple rotation matrices

Roll φ is a rotation around X , pitch θ is a rotation around Y , and yaw ψ is
a rotation around Z :

R = RZ (ψ)RY (θ)RX (φ)

=

cosψ − sinψ 0
sinψ cosψ 0
0 0 1

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

1 0 0
0 cosφ − sinφ
0 sinφ cosφ


=

cosψ cos θ cosψ sin θ sinφ− sinψ cos θ cosψ sin θ cosφ+ sinψ sinφ
sinψ cos θ sinψ sin θ sinφ+ cosψ cos θ cosψ sin θ cosφ− cosψ sinφ
− sin θ cos θ sinφ cos θ cosφ


Source: Sturm et al., TUMx: AUTONAVx Autonomous Navigation for Flying
Robots, http://courses.edx.org. Note error in the video version.
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Rigid (Euclidean) transformations
Alternative representations of rotation

Another representation of rotations is the axis/angle a.k.a. twist
coordinate representation.

We specify a rotation axis n and a rotation angle θ.

The 4 parameter version is not minimal.

For a minimal 3 parameter version: use the length of the vector as the
rotation angle.

Rodriguez’s formulae:

R(n, θ) = I + sin θ
[
n
]
× + (1− cos θ)

[
n
]2
×

θ = cos−1
(

trace R− 1

2

)

n =
1

2 sin θ

r32 − r23
r13 − r31
r21 − r12
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Rigid (Euclidean) transformations
Example

Let A = ((0, 0, 0)T , (1, 0, 0)T , (0, 1, 0)T , (0, 0, 1)T ) (i.e., the world
coordinate frame), and let
B = ((2,−1, 1)T , (0, 1, 0)T , (−1, 0, 0)T , (0, 0, 1)T ).

Try to write the rotation from frame A to frame B and the origin of frame
A, represented in frame B.

Then use that to transform the point (1, 12 ,
1
2)T from frame A to frame B.
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Rigid (Euclidean) transformations
Example

Step 1: compute the rotation matrix from frame A to frame B:

R =

 iA · iB jA · iB kA · iB
iA · jB jA · jB kA · jB
iA · kB jA · kB kA · kB

 =

 0 1 0
−1 0 0
0 0 1
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Rigid (Euclidean) transformations
Example

Step 2: compute the origin of frame A in frame B. We compute the
difference between the two frames’ origins in world coordinates then
project the result onto frame B’s basis:

[
iB jB kB

]T
(OA − OB) =

 0 1 0
−1 0 0
0 0 1

−2
1
−1

 =

 1
2
−1


Now we can easily transform from frame A to frame B.
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Rigid (Euclidean) transformations
Example

Now let’s transform the point (1, 12 ,
1
2)T in frame A:
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Rigid (Euclidean) transformations
Example

First we rotate the point into frame B:
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Rigid (Euclidean) transformations
Example

Then we translate by OA/B (the origin of frame A represented in frame B):
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