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Abstract

We present a coherent, flexible, unifying, and intuitive framework for the
study of explicit negation in logic programs, based on the notion of admissi-
ble scenaria and the ”coherence principle”. With this support we introduce,
in a simple way, a proposed "ideal sceptical semantics”, as well as its well
founded counterpart.

Another result is a less sceptical ”complete scenaria semantics”, and its
proof of equivalence to the well-founded semantics with explicit negation
(WFSX). This has the added benefict of bridging complete scenaria to de-
fault theory via WFSX, defined here based on Gelfond-Lifschitz I' operator..

Finally, we characterize a variety of more and less sceptical or credulous
semantics, including answer—sets, and give sufficient conditions for equiva-
lence between those semantics.

Introduction

In general, approaches to semantics follow two major intuitions: scepticism
and credulity [30]. In logic programming, the credulous approach includes
such semantics as stable semantics [7] and preferred extensions [3], while
well-founded semantics [31] is the sole representative of scepticism [3].

Recently, several authors have stressed and shown the importance of
including a second kind of negation in logic programs, for use in deductive
databases, knowledge representation, and non monotonic reasoning [8, 9,
10, 11, 13, 21, 22, 23, 24, 32].

Different semantics for logic programs extended with an explicit negation
(extended logic programs) have appeared [6, 8, 11, 15, 17, 19, 26, 27, 28, 32].
Many of these semantics are either a generalization of stable models seman-
tics [7] or of well-founded semantics (WFS) [31] (cf. [1] for a comparison).



Others are based on constructive logic [12, 13, 14].

While generalizations of stable models semantics are clearly credulous in
their approach, no semantics whatsoever has attempted to seriously explore
the sceptical approach. A closer look at the works generalizing well-founded
semantics [6, 15, 17, 19, 26, 27, 28] shows these generalizations to be rather
technical in nature, where the different techniques introduced to characterize
the well-founded semantics of normal logic programs are slightly modified
in some way to become applicable to the more general case.

Our first contribution is the presentation of a coherent, flexible, unify-
ing, and more intuitive framework for the study of an explicit second kind
of negation in logic programs, based on the notion of admissible scenaria.
This framework extends the approach proposed in [3] for normal logic pro-
grams, and adopts the "coherence principle” of [15]. This principle is easily
illustrated with an example:

Example 1 Consider a program containing the rules:

—driversStrike «— tryBus <« not driversSrike

advising to plan a trip by bus if there is no reason to assume the bus drivers
are on strike, and bus drivers are not on strike. No matter what the rest
of the program is (assuming it is consistent on the whole), it is clear that
a rational agent has no reason to believe the drivers are on strike, and of
course he plans his trip by bus.

In general, the coherence principle states that, for any objective literal
L, if =L follows within a semantics then not L must also be entailed by that
semantics!.

Approaches not taking this principle into account [6, 26, 28] try to trans-
form the program into an "equivalent” normal program version, and then
discard any ”contradictory” models brought about by explicit negation. The
connexion between both kinds of negation is totally absent.

The second contribution is the presentation, in a simple way, of a pro-
posed ideal sceptical semantics and its well-founded (or grounded) part; in
fact an entirely declarative semantics able to handle programs like:

a — notp b+ notr - — not q

and assigning it the semantics {b, notr}.

Most semantics cited above cannot deal with such programs because,
as neither p nor ¢ have rules, they all assume both not p and not ¢ without
regard to the ensuing contradiction, except as an after—the—fact filter. Others
[11, 17, 19, 28] treat these programs as contradictory ones, upon which they
proceed to excise contradiction.

In our ideal sceptical semantics this program is not contradictory at all.
Indeed, the assumptions (not p and not q) are not even accepted, let alone
removed.



A third, multiple, result is the introduction of complete scenaria seman-
tics, a less sceptical semantics than the previous one, and its formal equiva-
lence to WFSX [15]. This has the added benefit result of bridging complete
scenaria semantics to default theory via WEFSX [20]. This equivalence is
especially interesting inasmuch as it shows quite different ways of handling
the same semantics, and as WFSX is here first defined as the fixpoint of a
Gelfond—Lifschitz I'-like operator.

The final result is the characterization of a variety of more and less
sceptical or credulous semantics, including answer-sets [8]. We also give
sufficient conditions for the equivalence between these semantics. The notion
of 7evidence to the contrary” is pervasive, in that it can be tuned to offer
such a variety.

1 Admissible Scenaria for Extended Programs

In this section we generalize the notions of scenario and evidence for normal
logic programs given in [3], to those extended with explicit negation. They
are reminiscent of the notions of scenario and extension of [25].

By extended logic program we mean a set, of (ground) rules of the form
L— A, ..., A,,notBy,...,not By, (n,m >0) where each of L, Ay,..., A,
By, ..., By, is an objective literal, i.e. an atom P or its explicit negation —P.
A non—extended program does not comprise explicit negation and so reduces
to a normal logic program.

In [3, 5] a normal logic program is viewed as an abductive framework
where literals of the form not L (NAF-hypotheses) can be considered as
abducibles, i.e they must be hypothesized. The set of all ground NAF-hy-
potheses is not H, where H denotes the Herbrand base of the program, as
usual, and not prefixed to a set denotes the set obtained by prefixing not
to each of its elements.

In order to introduce explicit negation we first consider negated objective
literals of the form —A as new symbols (as in [7]). The Herbrand base is
now extended to the set of all such objective literals. Of course this is not
enough to correctly treat explicit negation. Relations among —A4, A, and
not A, must be established, as in the definitions below.

Definition 1.1 (Scenario) A scenario of an extended logic program P is
the first order Horn theory P U H, where H C notH.

When introducing explicit negation into logic programs one has to recon-
sider the notion of NAF-hypotheses. As the designation ”explicit negation”
suggests, when a scenario P U H entails - A, it is explicitly stating that A
is false in that scenario. Thus the NAF-hypothesis not A is enforced in the
scenario, and cannot optionally be held independently (cf. example 1). This
is the “coherence principle” [15], which relates both negations.



Definition 1.2 (Mandatory hypotheses wrt PUH) The set of manda-
tory hypotheses wrt a scenario P U H 1s:

Mand(H) = {not L | PUH U{not L «— =L | L € H} F not L}?

Alternatively, the set of mandatory hypotheses wrt PU H s the smallest
set Mand(H) such that Mand(H) = {not L | PU HU Mand(H) - =L}.

Example 2 Let P = {q < notr; —r < notp; —p}. Then:
Mand({}) = {not p,notr,not —q}.

Example 3 Counsider now a program containing the rules:
—driversStrike «— newsAboutStrike «— driversStrike

stating that newspapers publish news about the strike if the drivers are on
strike, and that the bus drivers are definitely not on strike. For a rational
reasoner the second rule should not provide a pretext for newspapers to
publish news about a strike by possibly assuming it, since indeed the first
rule (or some other) may actually state or conclude the contrary of that
assumption.

In other words, any objective literal L in the body of a rule is to be
considered shorthand for the conjunction L, not—L. This allows for technical
sitnplicity in capturing the relation between =L and not L :

Definition 1.3 (Intended program) Let P be an extended logic program.
The intended program of P is the program obtained by replacing every rule
of the form: L+— Ay,...,A,,not By,....notB,, mn,m2>0

by another: L — Ai not—A4,..., A, not A, not By,...,not By,

where = A; denotes the complement of A; wrt explicit negation.

From now on, whenever refering to a program we always mean its in-
tended version. In all examples we expressly use the intended program.
Note how, in the intended program, any true rule head has the effect of
falsifying the body of rules containing its complement literal wrt explicit
negation.

Definition 1.4 (Consistent scenario) A scenario PUH is consistent iff
for all objective literals I such that PU H U Mand(H) &+ L, neither not L €
HUMand(H) nor PUHU Mand(H) - —L.

Unlike the case of non extended logic programs, an extended logic pro-
gram may in general have no consistent scenaria.

Example 4 Program P = {-p; p < notp} has no consistent scenario.
Note that PU{} is not consistent since Mand({}) = {not p} and PU{notp}
p as well as —p.



A notion of program consistency is needed. Intuitively, a program is
consistent iff it has some consistent scenario. Because, for any H, if PU H
is consistent then P U {} U Mand({}) is also consistent, we define:

Definition 1.5 (Consistent program) An extended logic program P is
consistent iff P U Mand({}) is a consistent scenario.

From now on, unless otherwise stated, all programs are consistent.

Not every consistent scenario specifies a consensual semantics for a pro-
gram [25]. For example [3] the program P = {p < notq} has a consistent
scenario P U {not p} which fails to give the intuitive meaning of P. It is not
consensual to assume not p since there is the possibility of p being true (if
not ¢ is assumed), and —p is not explicitly stated (if this were the case then
not ¢ could not be assumed).

Intuitively, what we wish to express s that a NAF-hypothesis can be
assumed only if there can be no evidence to the contrary.

Clearly a NAF-hypothesis not L is only contradicted by the objective
literal L. Evidence for an objective literal L in a program P is a set of NAF-
hypotheses which, if assumed in P together with its mandatories, would
entail L.

Definition 1.6 (Evidence for an objective literal L) A subset E of
not H s evidence for an objective literal L wn a program P iff:
E D Mand(E) and PUELF L3

If P is understood and FE s evidence for L we write E ~» L.

As in [3] a NAF-hypothesis is acceptable wrt a scenario iff there is no
evidence to the contrary, i.e. iff all evidence to the contrary is itself defeated
by the scenario:

Definition 1.7 (Acceptable NAF-hypothesis) A NAF-hypothesis not L
1s acceptable wrt P U H ff:
VE:E~L=3notA€ F|PUHUMand(H)F A
i.e. each evidence for L is defeated by P U H.
The set of all acceptable NAF-hypotheses wrt PUH is denoted by Acc(H).

In a consensual semantics we are interested only in admitting consistent
scenaria whose NAF-hypotheses are either acceptable or mandatory. By
definition of mandatory NAF-hypotheses it is clear that any scenario includes
all its mandatory hypotheses.

Definition 1.8 (Admissible scenario) A scenario PUH is admissible iff
it @8 consistent and:
Mand(H) C HC Mand(H) U Acc(H).

We must guarantee that by considering all admissible scenaria we do not
fail to give semantics to consistent programs, i.e.:



Proposition 1.1 Any consistent program has at least an admissible sce-
narto.

The notion of admissible scenario discards all NAF-hypotheses which
are unacceptable, whatever the semantics of extended logic programs to be
defined. Omne semantics based on that notion can be defined as the class
of all admissible scenaria, where the meaning of a program being, as usual,
determined by the intersection of all such scenaria. However, since P U
Mand({}) is always the least admissible scenario, this semantics does not
include any non mandatory NAF-hypothesis. Consequently it is equivalent
to replacing every not L by the corresponding objective literal —L.

Example 5 Let P = {-p; a < notb}. The least admissible scenario is
PU{notp}. Thus the literals entailed by the semantics are {—p, not p}. Note
notb is not entailed by this extremely sceptical semantics.

The semantics of admissible scenaria is the most sceptical one for ex-
tended logic programs: it contains no hypotheses except for mandatory
ones?. In order to define more credulous semantics one defines classes of
scenaria based on proper subsets of the class of admissible scenaria, as gov-
erned by specific choice criteria. Constraining the set of admissible scenaria
reduces undefinedness but may restrict the class of programs having a se-
mantics. In the next sections we define a sequence of semantics which, by
restricting the set of admissible scenaria, are more credulous but give mean-
ing to narrower classes of programs.

2 A Sceptical Semantics for Extended Programs

Several attempts, mentioned in the introduction, have been made to general-
ize well-founded semantics to logic programs with explicit negation. But on
closer look these generalizations are of a rather technical nature, where dif-
ferent techniques introduced to characterize the well founded semantics for
normal logic programs are modified to become applicable to the more general
case. So it would not be surprising if tomorrow some new ”well-founded” se-
mantics for programs with explicit negation were to be presented. So which
of them is really "well-founded”? And what is the essential difference be-
tween them? How many "well founded” semantics are we going to have?
After all, what makes a semantics "well founded”? Certainly not just be-
cause it is in some way "technically” similar to one or other presentation of
the well-founded semantics of Van Gelder et al. [31]°.

The intuition behind well-founded semantics is scepticism. So it is natu-
ral and important to ask the question of what is an ideally sceptical semantics
for explicit negation, z.e. one which would be part of the semantics of every
rational reasoner.



Suppose that P U H is this "ideal” sceptical semantics. In the previous
section, we have introduced and argued that an ”admissible scenario” rep-
resents a scenario which is admissible for a rational reasoner. Let one such
admissible scenario be P U K. It is clear that PU K U H is again admissible
since H must be part of this agent’s semantics. This leads to an immediate
definition of the “ideal” sceptical semantics.

Definition 2.1 (Ideal sceptical semantics) A set of NAF-hypotheses H
15 called the ideal sceptical semantics, 1SS, if it is the greatest set satisfying
the condition: "For each admissible scenario P U K, PU K U H is again
admissible”.

It is clear that if P is consistent such a set exists, consequence of the fact
that the union of sets satisfying the above condition satisfies it too.

Example 6 For P = {a «— notp; —a «— notq; ¢ <—notr}, ISS = {notr}.
So we are able to conclude ¢ despite the potential inconsistency.

The most distinguishing feature of ISS is its striking simplicity, which
may seem nearly trivial. Such simplicity is clearly a sure sign that our
semantics naturally captures the intuitions behind scepticism.

A well-founded semantics is next construable as the grounded part of the
ideal sceptical semantics. Indeed, in the case of normal programs, the truly
or ideally sceptical semantics is determined as the greatest lower bound of
all preferred extensions [3], well-founded semantics being the grounded part
of that ideal sceptical semantics. This corroborates the intuitions of other
related fields, where a distinction is made between restricted scepticism and
ideal scepticism [29]%. In this context, in order to define the well-founded
semantics for programs with explicit negation all we need is introduce the
grounded part of ideal scepticism:

Definition 2.2 (Well-founded semantics for extended programs)
Let P be an extended logic program whose ideal sceptical semantics 1s PUH.
First define a transfinite sequence {K,} of sets of NAF-hypotheses of P :
Ko = {}
Ka+l = K,U (H n MA(KQ))
where M A(K,,) denotes Mand(K,)UAcc(K,,). The well-founded (sceptical)
semantics of P, WFS0, is defined as P U K, where K =, K,.

NAF-hypotheses belonging to WEFS0 belong perforce to ISS, since that
is imposed at each step of the above process, and are also grounded in the
sense that they are obtained by this bottom—up process, starting from {}.

Example 7 Let P = {a < nota; a <« notb; b« nota}. ISS = {notb}
and WFSO = {}. notb is not grounded.

Theorem 2.1 WFS0 is defined uniquely for every consistent program.



3 The Semantics of Complete Scenaria

In this section we present a semantics less sceptical than WFS0. We call it
"Complete scenaria semantics” (CSS for short). Then we exhibit and prove
some properties of CSS.

For non—extended programs every acceptable hypothesis can be accepted.
In extended programs an acceptable hypotheses may fail to be accepted,
because of verified contradiction.

Example 8 Let P = {-a; a < notb}. The NAF-hypothesis not b is ac-
ceptable wrt every scenario of P. However, by accepting not b the program
becomes inconsistent. Thus not b can never be accepted. In a semantics like
WEFSO such NAF-hypotheses are not accepted.

ISS and WFS0 model a reasoner who assumes the program correct and
so, whenever confronted with an acceptable hypothesis leading to an incon-
sistency he cannot accept such a hypothesis; i.e. he prefers to assume the
program correct rather than assume that an acceptable hypothesis must be
accepted (cf. example 6 where both not p and not g are acceptable, but not
accepted). We can also view this reasoner as one who has a more global
notion of acceptability. For him, as usual, an hypothesis can only be accept-
able if there is no evidence to the contrary, but if by accepting it (along with
others) a contradiction arises, then that counts as evidence to the contrary.

It is easy to imagine a less sceptical reasoner who, confronted with an
inconsistent scenario, prefers considering the program wrong rather than ad-
mitting that an acceptable hypothesis be not accepted. Such a reasoner is
more confident in his acceptability criterium: an acceptable hypothesis is
accepted once and for all; if an inconsistency arises then there is certainly a
problem with the program, not with the acceptance of each acceptable hy-
pothesis. This position is justified by the stance that acceptance be grounded
on the absence of specific contrary evidence rather than on the absence of
global non-specific evidence to the contrary”.

In order to define a semantics modeling such a reasoner we begin by
defining a subclass of the admissible scenaria which directly imposes that
acceptable NAF-hypotheses be indeed accepted.

Definition 3.1 (Complete scenario) A scenario PUH is complete iff is
constistent, and H = Mand(H)U Acc(H).

Example 9 The only complete scenario of P={-b «; b < notc; ¢ < notc;
a «— b,not=b} is PU{not a,not b}. In fact: the mandatory hypotheses of that
scenario are {notb}; nota is acceptable because not —b belongs to every evi-
dence for a, and —b is entailed by the scenario; notc is not acceptable because
{not c} is evidence for c. Since every acceptable or mandatory hypothesis is
in the scenario, and every hypothesis in the scenario is either acceptable or
mandatory, the scenario is complete. Remark that if not =b were not part of



the last rule, as required by definition 1.3 of intended program, then not a
would not be acceptable.

As expected, and in contradistinction to WFS0, complete scenaria may
not in general exist, even when P is consistent.

Example 10 P = {—-a <« notb; a < notc} has several admissible scenaria:
{}, {not b}, {not c}, {nota,notb}, and {not —a,not c}. None is complete.

Definition 3.2 (Contradictory program) A program is contradictory iff
it has no complete scenaria.

Definition 3.3 (Complete scenaria semantics) Let P be a non contra-
dictory program. The complete scenaria semantics (CSS) of P is the set of
all complete scenaria of P. As usual, the meaning of P is determined by the
wntersection of all such scenaria.

3.1 Properties of Complete Scenaria

Next we study properties and present a fixpoint operator for this semantics.

Theorem 3.1 Let CSp # {} be the set of all complete scenaria of P. Then:
1. CSp is a downward—complete semailattice, i.e. each nonempty subset
of CSp has a greatest lower bound.
2. There exists a least complete scenario.

3. In general, CSp is not a complete partial order®.

Definition 3.4 (Well founded complete scenario) Let P be non con-
tradictory. The well founded complete scenario, W F(P), is the least com-
plete scenario of P.

An operator over scenaria exists such that every fixpoint of it is a com-
plete scenario:

Definition 3.5 (Vp operator) Given a program P and a set of NAF-hypo-
theses H we define Vp(H) =g¢c5 H U Mand(H)U Acc(H) just in case P U
Vp(H) is a consistent scenario; otherwise Vp(H) is not defined.

Lemma 3.2 PU H is a complete scenario iff H= Vp(H).

Theorem 3.3 If P is noncontradictory then Vp is monotonic and
Lfp(Ve) = WE(P).



Theorem 3.4 (Iterative construction of the WF complete scenario)
In order to obtain a constructive bottom—up iterative definition of the WF
scenario of a non—contradictory program P, we define the following transfi-
nite sequence {H,} of sets of NAF-hypotheses of P:

Hy = {}
Ho,—l—] = VP(HO)
Hs = U{H.|a <6} foralimit ordinal 6

By theorem 3.3, there exists a smallest A such that Hy ts a fixpoint of Vp.
The WEF' complete scenario s P U H)y.

This constructive definition obliges one to know a prior: whether a pro-
gram is contradictory. This prerequisite is not needed:

Theorem 3.5 A program P is contradictory iff in the sequence of the H,,
there exists a X such that P U Vp(H)) is an inconsistent scenario.

Thus, in order to compute the W F(P) start building the above sequence.
If, at some step 2, H; introduces a pair of complementary objective literals
then end the iteration and P is contradictory. Otherwise iterate until the
least fixpoint of Vp, which is the W F(P).

4 Complete Scenaria and WFSX

In this section we establish the complete scenaria semantics CSS for extended
logic programs and the semantics WFSX set forth in [15] are the same.

We first recap WEFSX differing from the original presentation [15], but in
a straightforwardly equivalent way given the results in [20]. WFSX can be
construed as an appropriate generalization of Baral et al.’s [2] ['?~operator to
programs with explicit negation, where I' is the Gelfond-Lifschitz operator

8.

Definition 4.1 (Seminormal version of a program) The seminormal
verston of a program P is the program P obtained from P by adding to the
(possibly empty) Body of each rule L «— Body, a default literal not =L, where
=L s the complement wrt explicit negation of L. When P s understood from

Definition 4.2 (Extended stable models) Let P be an extended program
and S a set of objective literals such that: (1) S =TT,S; and (2) S CT,S.

Then M = S U {notL|L gTlS} is called an extended stable model
(XSM for short) of P, and S is called the generator of M. Members of
['sS not m S are said undefined wn truth-value.

Example 11 Some programs, like {a —, —a <}, have no XSMs.



Definition 4.3 (WFSX-contradictory program) An extended  logic
program P 1s called WFSX—contradictory iff it has no extended stable models.

Lemma 4.1 For WESX noncontradictory programs the operator I'T's is mo-
notonic wrt set inclusion.

Lemma 4.2 Let S1 and Sy be two fizpoints of I'T's for program P such that
51 CSy. If Sy generates a XSM of P then S| also generates a« XSM of P.

By monotonicity of the I'T'y operator and this last lemma there follows:

Theorem 4.3 If a program P has an XSM then P has a least XSM (wrt
C). Moreover the generator of the least XSM is the least fizpoint of I'T,.

Definition 4.4 (Well-founded model) The well founded model (WF M )
of « WESX—noncontradictory extended program is the least XSM of P.

Analogously to theorems 3.4 and 3.5, an iterative construction of WFM
can be defined where I'T'y replaces Vp.

In this approach the iteration of the fixpoint operator I'T'; ends up with
the set of objective literals which are true in the W F M, and false literals in
the WFM are then obtainable from them.

This is the opposite of the approach taken in complete scenaria semantics.
There the iteration of the fixpoint operator Vp ends up with the set of
objective literals which are false in the W F M, and true literals in the W F M
are then obtainable from them.

The theorem below states the equivalence between WFSX and CSS.

Theorem 4.4 (Equivalence) If S is « XSM of a program P then P U
{not L | L ¢ I'sS} is a complete scenario.
If P U H is a complete scenario, {L | PUH F L} generates a XSM.

5 More Credulous Semantics

Along the same lines of complete scenaria semantics, we can continue re-
stricting the set of admissible scenaria, and defining in this way more cred-
ulous semantics. The most immediate semantics more credulous than CSS
is the one obtained by considering only maximal (wrt C) complete scenaria.
We call this semantics " preferred extensions” following the tradition of non
extended programs [3].

Definition 5.1 (Preferred extensions semantics) The preferred exten-
stons semantics of P s the set of its maximal complete scenaria.

Example below shows that maximal elements might not exist for a col-
lection of complete scenaria, hence preferred extensions are defined for less
programs than CSS. Another straightforward result is that this semantics is
in general more credulous than CSS.



Example 12 Consider program P :
a «— mnotb p(X) — notq(X) b — notp(X)
—a <« noth (X) «— notp(X)
with Herbrand base H = {0,1,2,3,...}.
Every scenario of the form S; = P U {notq(k) | kE <1} is complete but
there exists no complete scenario containing J, S;.

A reasoner can even be more credulous by considering only preferred
extensions that are two valued (or total), i.e. extensions that whenever L is
not a consequence of it not L is assumed in it.

Definition 5.2 (Total scenaria semantics) The total scenaria semantics
of an extended program P is the set of its total complete scenaria.

Theorem 5.1 (Answer—sets) The total scenaria semantics coincides with
the answer-sets semantics of [8].

Clearly answer-sets semantics is defined for less programs than the pre-
vious semantics, since such total scenaria may in general not exist. The
typical program for which answer-sets semantics is not defined but CSS is
defined is P = {a < nota}. This program has only one complete scenario,
{not =a}, and it is not total. With explicit negation new problems regarding
the existence of answer sets appear. Example 12 shows that the computing
of an answer—set cannot in general be made by finite approximations.

5.1 Comparison between the semantics presented

From the definition 2.2 of WFSO0 and the iterative construction of the WF
complete scenario of CSS (theorem 3.4) it follows almost directly that:

Theorem 5.2 (WFSO is more sceptical than CSS) For any non—con-
tradictory program P, WFS0O(P) C CSS(P).

Example 13 Consider program P :
p «— notq ap—a ap—b a «— notb b — nota

whose CSS is {not ¢} (apart from irrelevant literals such as not —a).

Since P U {not q,not—p}, P U {nota,notp}, and P U {nota,notp} are
admissible scenaria (though not all), and neither nota nor notb can be added
to the first scenario, and not ¢ cannot be added neither to the second nor to

the third scenario above, then 1SS = {}. Thus WFS0 = {}.

Interesting questions ave: When do all these semantics coincide? Can
we state sufficient conditions gquaranteeing such an equivalence?

In order to answer the second question we introduce the notion of seman-
tically normal (s—normal for short) programs; i.e. those whose admissible
scenaria can all be completed.



Definition 5.3 (S—normal program) An extended program is s normal
iff for each admissible scenario PU H, PU H U Acc(H) is consistent.

Lemma 5.3 Let P be a s—normal program, PUH be an admaissible scenario,
and let not A, not B be acceptable wrt P U H. Then P U H U {not A} is
admissible and not B is acceptable wrt P U H U {not A}.

From this lemma it follows immediately that the set of all admissible
scenarios (wrt set inclusion) forms a complete partial order for s normal
programs. Hence, each admissible scenario can be extended into a com-
plete scenario. Thus, for s—normal programs, ISS is contained in a complete
scenario.

On the other side, it is easy to see that for each admissible scenario PUH,

PUHUCSS(P) is again admissible. Therefore:

Theorem 5.4 Let P be a s—normal program. Then:
o The set of complete scenaria of P forms a complete semilattice.
o [SS coincides with the intersection of preferred extensions.

e WFSO(P) = CSS(P) C ISS(P).

To define larger classes of programs also guaranteeing these comparability
results is an open problem. Also of special interest, and subject of future
investigation by the authors as well, is to determine syntatic conditions over
programs, guaranteeing the equivalence between answer-sets and CSS, in the
spirit of the work in [4] regarding well founded semantics of non extended
programs and stable models.

However, for non—extended logic programs, since acceptable NAF-hypo-
theses can never lead to an inconsistency, both WEFS0 and CSS coincide.

Theorem 5.5 (Relation to the WFS of normal programs) If P is a
normal (non—extended) program then CSS, WFSO and the well-founded se-
mantics of [31] coincide.

Example 7 shows this equivalence cannot be extended to ISS. There CSS

coincides with WFS0 and with WFS and is {}. ISS is {notb}.
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Notes

'As shown in [1], answer—sets comply with the coherence principle.

2The rather straightforward formal definition of k-, where each (ground) not L is treated
as a new propositional symbol not_L, and each (ground) —L is treated as a new proposi-
tional symbol =_L, can be found in the extended version of this paper. Intuitively, F is
just the standard Tp operator of the Horn propositional programs obtained with the new
symbols in place.

#The consistency of PUE is not required; e.g. PU{not H}F H is allowed.

*This semantics is equivalent to one which only accepts NAF-hypotheses if it is explicitly
negated in the program that there is evidence to the contrary. Hence it contains only the
mandatory literals.

*Dung [4] has shown that stable model semantics can also be viewed as well-founded
semantics, since it can be defined a similar way.

®One existing example of such restricted scepticism in logic programiming is CRSX [19],
which is more sceptical then the well-founded semantics afore. [16] presents a definition
of CRSX based on the scenario framework.

" Another possibility, not explored here, is to refine the criteria by which acceptable
hypotheses are not accepted by virtue of inconsistency, though distinguishing their specific
contribution to the inconsistency, as in [18].

#However, for normal programs CSp is a complete partial order.
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