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Abstract. Due to a proliferation and diversity of approaches to reasoning
with prioritized rules, ordinary properties have been introduced recently

for characterization and evaluation of the proposed semantics. While

ordinary properties are helpful, a fundamental question of whether they
are sufficient to identify a common semantics underlining reasoning with

priorities remains open. In this paper we address this question by intro-

ducing a new simple and intuitive property of inconsistency-resolving
and slightly adapting other ordinary properties to show that they to-

gether indeed determine an unique canonical attack relation that could
be viewed as defining an uniquely defined common semantics for rea-

soning with prioritized rules.
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1. Introduction

Reasoning with prioritized rules is an important and prevalent paradigm in prac-
tical reasoning like legal reasoning or commonsense reasoning [3,5,11,14]. Due to a
proliferation and diversity of approaches [3,6,5,20,11,24,14,22,23], it is important
to establish general principles for characterizing and evaluation of the proposed
semantics. Earlier, Brewka and Eiter [6] have proposed two principles for non-
argument-based approaches. Caminada and Amgoud [8] have introduced the pos-
tulates of consistency and closure that the extensions of argument-based systems
should satisfy. A subargument closure postulate stating that any extension should
contain all subarguments of its arguments has been studied in [22,21,1]. Though
the three proposed postulates are helpful, they are not sufficient to guarantee
intuitive semantics as they do not take into account the preferences of defeasible
rules. To address this problem, Dung [17,12] has proposed a set of simple prop-
erties, referred to as ordinary properties in [12] and argued that they capture the
natural intuitions of reasoning with prioritized rules. Still, a fundamental question
of whether the proposed properties are sufficient to identify a common semantics
underlining reasoning with priorities remains open. In this paper we address this
question by introducing a new simple and intuitive property of inconsistency-
resolving and showing that this property together with some other ordinary prop-
erties indeed determine an unique canonical attack relation that could be viewed
as defining a common unique semantics for reasoning with prioritized rules.

The paper is organized as follows. We recall in the next section the key con-
cepts and notions on which the paper is based. We then introduce the important
property of inconsistency-resolving in the following section. In section 4, we in-
troduce the new and novel concepts of regular attack relations and regular at-



tack relation assignments. In section 5, we study the semilattice of regular attack
relation assignments and propose the canonical semantics. We then conclude.

2. Preliminaries

2.1 Abstract Argumentation and Semilattice
An abstract argumentation framework [16] is defined simply as a pair

(AR, att) where AR is a set of arguments and att ⊆ AR×AR where (A,B) ∈ att
means that A attacks B. A set of argument S attacks (or is attacked by) an argu-
ment A (or a set of arguments R) if some argument in S attacks (or is attacked
by) A (or some argument in R); S is conflict-free if it does not attack itself. A
set of arguments S defends an argument A if S attacks each attack against A.
S is admissible if S is conflict-free and defends each argument in it. A complete
extension is an admissible set of arguments containing each argument it defends.
A stable extension is a conflict-free set of arguments that attacks every argument
not belonging to it.

A partial order (i.e. a reflexive, transitive and antisymmetric relation) ≤ on a
set S is a upper-semilattice (resp. lower-semilattice) [10] iff each subset X of S has
a supremum denoted by tX (resp. infimum denoted by uX) wrt ≤. The upper
(resp. lower) semilattice is often denoted as a triple (S,≤,t) (resp. (S,≤,u)).
It follows immediately that each upper (resp. lower) semilattice S has an unique
greatest (resp. least) element denoted by tS (resp. uS).

2.2 Defeasible Knowledge Bases
In this section and the following one, we recall the basic notions and notations

on knowledge bases from [12,22]. We assume a non-empty set L of ground atoms
(also called a positive literal) and their classical negations (also called negative
literals). A set of literals is said to be contradictory iff it contains an atom a and
its negation ¬a. We distinguish between domain atoms representing propositions
about the concerned domains and non-domain atoms of the form abd representing
the non-applicability of defeasible rule d (even if the premises of d hold).

Following [22,23,19,20,25,12], we distinguish between strict and defeasible
rules. A defeasible (resp. strict) rule r is of the form b1, . . . , bn ⇒ h (resp.
b1, . . . , bn → h) where b1, . . . , bn are domain literals and h is a domain literal or
an atom of the form abd. The set {b1, . . . , bn} (resp. the literal h) is referred to
as the body (resp. head) of r and denoted by bd(r) (resp. hd(r)).

Definition 1 (1.) A rule-based system is defined as a triple R = (RS,RD,�)
where 1) RS is a set of strict rules, 2) RD is a set of defeasible rules, and 3)
� is a transitive relation over RD representing the preferences between defeasible
rules, whose strict core is ≺ (i.e. d ≺ d′ iff d � d′ and d′ 6� d for d, d′ ∈ RD.)
(2.) A knowledge base is defined as a pair K = (R, BE) consisting of a rule-based
system R, and a set of ground domain literals BE, the base of evidence of K,
representing unchallenged observations, facts ect..

For convenience, knowledge base K is often written directly as a quadru-
ple (RS,RD,�, BE) where RS, RD, � or BE of K are often referred to by
RSK , RDK ,�K or BEK respectively.
(3.) A knowledge base K is basic if its precedence relation is empty (i.e. �K = ∅).



Definition 2 Let K = (RS,RD,�, BE) be a knowledge base. An argument wrt K
is a proof tree defined inductively as follows:
(1.) For each α ∈ BE, [α] is an argument with conclusion α.
(2.) Let r be a rule of the forms α1, . . . , αn → / ⇒ α, n ≥ 0, from RS ∪ RD
and A1, . . . , An be arguments with conclusions αi, 1 ≤ i ≤ n, respectively. Then
A = [A1, . . . , An, r] is an argument with conclusion α and last rule r denoted by
cnl(A) and last(A) respectively.
(3.) Each argument wrt K is obtained by applying the above steps 1, 2 finitely
many times.

Example 1 Consider a rule-based system R (adapted from [6,7,12]) whose sets
of rules consisting of three defeasible rules d1 : Dean ⇒ Professor, d2 :
Professor ⇒ Teach, d3 : Administrator ⇒ ¬Teach and two strict rules
r : Dean → Administrator, r′ : ¬Administrator → ¬Dean together with a
precedence relation consisting of just d2 ≺ d3. Suppose we know some dean who is
also a professor. The considered knowledge base is represented by K = (RS,RD,�
, BE) with RS = {r, r′}, RD = {d1, d2, d3}, �= {(d2, d3)} and BE = {D,P}
(D,P,T,A stand for Dean, Professor , Teach and Administrator respectively). Rel-
evant arguments can be found in figure 1 where A1 = [[D], d1], A2 = [A1, d2],
A′2 = [[P ], d2], A3 = [ [[D], r], d3].

Figure 1. Dean Example

Notation 1 The set of all arguments wrt a knowledge base K is denoted by ARK.
The set of the conclusions of arguments in a set S ⊆ ARK is denoted by cnl(S).

A strict argument is an argument containing no defeasible rule. An argument
is defeasible iff it is not strict. A defeasible argument A is called basic defeasible
iff last(A) is defeasible. For any argument A, the set of defeasible rules appearing
in A is denoted by dr(A). The set of last defeasible rules in A, denoted by ldr(A),
is {last(A)} if A is basic defeasible, otherwise it is equal ldr(A1)∪ . . .∪ ldr(An)
where A = [A1, . . . , An, r]. An argument B is a subargument of an argument A iff
B = A or A = [A1, . . . , An, r] and B is a subargument of some Ai. B is a proper
subargument of A if B is a subargument of A and B 6= A.

Definition 3 (1.) The closure of a set of literals X ⊆ L wrt knowledge base K,
denoted by CNK(X), is the union of X and the set of conclusions of all strict
arguments wrt knowledge base (RSK , RDK ,�K , Xdom) with Xdom (the set of all
domain literals in X) acting as a base of evidence. X is said to be closed iff X =
CNK(X). X is said to be inconsistent iff its closure CNK(X) is contradictory.
X is consistent iff it is not inconsistent. We also often write X `K l iff l ∈
CNK(X).
(2.) K is said to be consistent iff its base of evidence BEK is consistent.



As the notions of closure, consistency depend only on the set of strict rules
in the knowledge base, we often write X `RS l or l ∈ CNRS(X) for X `K l or
l ∈ CNK(X) respectively.

Definition 4 Let R = (RS,RD,�) be a rule-based system and K = (R, BE) be a
knowledge base.
(1.) R and K are said to be closed under transposition [8] iff for each strict rule
of the form b1, . . . , bn → h in RS s.t. h is a domain literal, all the rules of the
forms b1, . . . , bi−1,¬h, bi+1, . . . , bn → ¬bi , 1 ≤ i ≤ n, also belong to RS.
(2.) R and K are said to be closed under contraposition [24,23] iff for each set
of domain literals S, each domain literal λ, if S `RS λ then for each σ ∈ S,
S \ {σ} ∪ {¬λ} `RS ¬σ.
(3.) R and K are said to satisfy the self-contradiction property [15] iff for each
minimal inconsistent set of domain literals X ⊆ L, for each x ∈ X, it holds:
X `RS ¬x.

Lemma 1 ([12]) Let R be a rule-based system that is closed under transposition
or contraposition. Then R satisfies the property of self-contradiction.

Definition 5 (Attack Relation) An attack relation for a knowledge base K is a
relation att ⊆ ARK ×ARK such that there is no attack against strict arguments,
i.e. for each strict argument B ∈ ARK , there is no argument A ∈ ARK such that
(A,B) ∈ att.

For convenience, we often say A attacks B wrt att for (A,B) ∈ att.

2.3 Basic Postulates
We recall the postulates of consistency, closure and subargument closure from

[8,22,1,21] where we combine the postulate of closure [8] and the postulate of
subargument closure [22,1,21] into one.

Definition 6 Let att be an attack relation for a knowledge base K.

• att is said to satisfy the consistency postulate iff for each complete exten-
sion E of (ARK , att), the set cnl(E) of conclusions of arguments in E is
consistent.

• att is said to satisfy the closure postulate iff for each complete extension
E of (ARK , att), the set cnl(E) of conclusions of arguments in E is closed
and E contains all subarguments of its arguments.

For ease of reference, the above two postulates are often referred to as basic
postulates.

3. Sufficient Properties for Basic Postulates

As the basic postulates are more about the ”output” of attack relations rather
than about their structure, we present below two simple properties about the
structure of attack relation that ensures the holding of the basic postulates. We
first introduce some simple notations.

We say A undercuts B (at B’) iff B′ is basic defeasible and cnl(A) = ablast(B′).
We also say A rebuts B (at B′) iff B′ is a basic defeasible subargument of B and
the conclusions of A and B′ are contradictory [8,22].



An argument A is said to be generated by a set S of arguments iff all basic
defeasible subarguments of A are subarguments of arguments in S. For an exam-
ple, let S = {B0, B1} (see figure 2). Let consider A0. The set of basic defeasible
subarguments of A0 is { [d0]}. It is clear that [d0] is a subargument of B0. Hence
A0 is generated by S. Similarly, A1 is also generated by S.

We say A directly attacks B if A attacks B and A does not attack any proper
subargument of B.

Definition 7 (Strong Subargument Structure) Attack relation att is said to satisfy
the property of strong subargument structure for K iff for all A,B ∈ ARK ,
followings hold:
(1.) If A undercuts B then A attacks B wrt att.
(2.) A attacks B (wrt att) iff A attacks a basic defeasible subargument of B (wrt
att).
(3.) If A directly attacks B (wrt att) then A undercuts B (at B) or rebuts B (at
B).

We present the first result showing that strong subargument property is suf-
ficient to guarantee the postulate of closure.

Lemma 2 Let att be an attack relation for knowledge base K satisfying the prop-
erty of strong subargument structure. Then att satisfies the postulate of closure.

Proof (Sketch) From condition 2 in definition 7, it follows that each attack against
an argument generated by complete extension E is an attack against E. The
lemma holds obviously. �

A set S of arguments is said to be inconsistent if the set of the conclusions of
its arguments, cnl(S), is inconsistent. We introduce below a new simple property
of inconsistency resolving, a key result of the paper.

Definition 8 (Inconsistency Resolving) We say attack relation assignment att sat-
isfies the inconsistency-resolving property for K iff for each finite set of argu-
ments S ⊆ ARK , if S is inconsistent then S is attacked (wrt att(K)) by some
argument generated by S.

As we will show later, the inconsistency-resolving property is satisfied by com-
mon conditions like closure under transposition, or contradiction or the property
of self-contradiction.

Example 2 Consider the basic knowledge base K consisting of just the rules ap-
pearing in arguments in figure 2. The set S = {B0, B1} is inconsistent. The ar-
gument A0 is generated by S. Let att = {(X,Y ) |X rebuts Y}. It is obvious that
S is attacked by A0. It is clear that att is inconsistency-resolving.

We present now the first important result of this paper.

Theorem 1 Let att, att′ be attack relations for knowledge base K. (1.) If att ⊆ att′
and att is inconsistency-resolving for K then att′ is also inconsistency-resolving
for K;
(2.) If att satisfies the strong subargument structure and inconsistency-resolving
then att satisfies the postulate of consistency.



Figure 2. Generated Arguments

Proof (Sketch) Assertion 1 follows easily from the definition of inconsistency-
resolving. We only need to show assertion 2. From condition 2 in definition 7, it
follows that each argument generated by a complete extension E belongs to E.
Therefore, if E is inconsistent then E is conflicting. Since E is not conflicting, E
is hence consistent. �

4. Regular Attack Relation Assignments

Figure 3. Effective Rebuts

Dung [17,12] has proposed the ordinary properties to capture the intuition of
prioritized rules. We recall and adapt them below. We also motivate and explain
their intuitions. We then define two new novel concepts of regular attack relations
and regular attack relation assignments that lie at the heart of the semantics of
prioritized rules.

4.1 A Minimal Interpretation of Priorities
We first recall from [12] the effective rebut property stating a ”minimal in-

terpretation” of a preference d0 ≺ d1 that in situations when both are applicable
but accepting both d0, d1 is not possible, d1 should be preferred. In figure 3, the
effective rebut property dictates that A1 attacks A0 but not vice versa.

Definition 9 (Effective Rebut) We say that attack relation att satisfies the effec-
tive rebut property for a knowledge base K iff for all arguments A0, A1 ∈ ARK

such that each Ai, i = 0, 1, contains exactly one defeasible rule di (i.e. dr(Ai) =
{di}), and A0 rebuts A1, it holds that A0 attacks A1 wrt att iff d0 6≺ d1.

4.2 Propagating Attacks

Example 3 Consider the knowledge base in example 1. While the effective rebut
property determines that A3 attacks A′2 (see figure 1) but not vice versa (because
d2 ≺ d3), it does not say whether A3 attack A2.

Looking at the structure of A2, A
′
2, we can say that A2 is a weakening of A′2

as the undisputed fact P on which A′2 is based is replaced by the defeasible belief
P (supported by argument A1). Therefore if A3 attacks A′2 then it is natural to
expect that A3 should attack A2 too.

The above analysis also shows that attacks generated by the effective rebut
property, could be propagated to other arguments based on a notion of weakening
of arguments. We recall this notion as well as the associated property of attack
monotonicity from [12] below.



Let A,B ∈ ARK and AS ⊆ ARK . Intuitively, B is a weakening of A by AS if
B is obtained by replacing zero, one or more premises of A by arguments in AS
whose conclusions coincide with the premises.

Definition 10 B is said to be a weakening of A by AS iff
(1.) A = [α] for α ∈ BE, and (B = [α] or B ∈ AS with cnl(B) = α), or
(2.) A = [A1, . . . , An, r] and B = [B1, . . . , Bn, r] where each Bi is a weakening

of Ai by AS.
By A ↓ AS we denote the set of all weakenings of A by AS.

For an illustration, consider again the arguments in figure 1. It is clear that
[P ] ↓ {A1} = {[P ], A1}, A′2 ↓ {A1} = {A′2, A2}.

The attack monotonicity property states that if an argument A attacks an
argument B then A also attacks all weakening of B. Moreover if a weakening of
A attacks B then A also attacks B.

Definition 11 (Attack Monotonicity) We say attack relation att satisfies the prop-
erty of attack monotonicity for knowledge base K iff for all A,B ∈ ARK and for
each weakening C of A, for each weakening D of B, the following assertions hold:

1. If (A,B) ∈ att then (A,D) ∈ att.
2. If (C,B) ∈ att then (A,B) ∈ att.

We next recall the link-oriented property in [12] which is based on an intuition
that attacks are directed towards links in arguments implying that if an argument
A attacks an argument B then it should attack some part of B.

Definition 12 (Link-Orientation) We say that attack relation att satisfies the
property of link-orientation for K iff for all arguments A,B,C ∈ ARK such that
C is a weakening of B by AS ⊆ ARK (i.e. C ∈ B ↓ AS), it holds that if A attacks
C (wrt att) and A does not attack AS (wrt att) then A attacks B (wrt att).

In real world conversation, if you claim that my argument is wrong, I would
naturally ask which part of my argument is wrong. The link-oriented property
could be viewed as representing this intuition.

Example 4 Consider again arguments in figure 1. Suppose d2 is now preferred to
d3 (i.e. d3 ≺ d2). The effective rebut property dictates that A3 does not attack
A′2. Does A3 still attack A2 ? Suppose A3 attacks A2. Since A3 does not attack
A1 that is a subargument of A2, we expect that A3 should attack some other part
of A2. In other words, we expect that A3 attacks A′2. But this is a contradiction
to the effective rebut property stating that A′2 attack A3 but not vice versa. Hence
A′3 does not attack A2.

In other words, the link-orientation property has propagated the ”non-attack
relation” between A3, A

′
2 to a ”non-attack relation” between A3, A2.

We present below a new and novel concept of regular attack relations.

Definition 13 An attack relation is said to be regular if it satisfies to the proper-
ties of inconsistency-resolving and strong subargument structure together with the
properties of effective rebuts, attack monotonicity and link-orientation.



4.3 Attack Relation Assignments: Propagating Attacks Across Knowledge Bases
While regular attack relations are natural and intuitive, they are still not

sufficient for determining an intuitive semantics of prioritized rules. The example
below illustrates this point.

Example 5 Consider a knowledge base K0 obtained from knowledge base K in
example 1 by revising the evidence base to BE = {D}. It is clear that arguments
A1, A2, A3 belong to ARK0

while A′2 is not an argument in ARK0
.

As A′2 does not belong to ARK0
, the effective rebuts property does not ”gener-

ate” any attacks between arguments in ARK0
. How could we determine the attack

relation for K0.
As both A2, A3 belong to ARK , ARK0 and the two knowledge bases K0,K

have identical rule-based system, we expect that the attack relations between their
common arguments should be identical. In other words, because A3 attacks A2

wrt K (see example 3), A3 should attack A2 also wrt K0. This intuition is cap-
tured by the context-independence property in [12] linking attack relations between
arguments across the boundary of knowledge bases.

The example also indicates that attack relations of knowledge bases with the
same rule-based system should be considered together. This motivates the intro-
duction of the attack relation assignment in definitions 14,15.

Definition 14 Let R = (RS,RD,�) be a rule-based system. The class consisting
of all consistent knowledge bases of the form (R, BE) is denoted by CR.

A rule-based system R is said to be sensible iff the set CR is not empty. From
now on, whenever we mention a rule-based system, we mean a sensible one.

Definition 15 (Attack Relation Assignment) An attack relation assignment atts
for a rule-based system R is a function assigning to each knowledge base K ∈ CR
an attack relation atts(K) ⊆ ARK ×ARK .

We next recall the context-independence property stating that the attack relation
between two arguments depends only on the rules appearing in them and their
preferences.

Definition 16 (Context-Independence) We say attack relation assignment atts for
a rule-based system R satisfies the property of context-independence iff for any
two knowledge bases K,K ′ ∈ CR and for any two arguments A, B from ARK ∩
ARK′ , it holds that (A,B) ∈ atts(K) iff (A,B) ∈ atts(K ′)

The context-independence property is commonly accepted in many well-
known argument-based systems like the assumption-based framework [4,18], the
ASPIC+ approach [24,22].

We can now present a central contribution of this paper, the introduction of
the regular attack relation assignments.

Definition 17 (Regular Attack Relation Assignments) An attack relation assign-
ment atts for a rule-based system R is said to be regular iff it satisfies the prop-
erty of context-independence and for each knowledge base K ∈ CR, atts(K) is
regular.

The set of all regular attack relation assignments for R is denoted by RAAR.



For attack relation assignments atts, atts′, define atts ⊆ atts′ iff ∀K ∈ CR,
atts(K) ⊆ atts′(K).

Minimal Removal Intuition
A key purpose of introducing priorities between defeasible rules is to remove

certain undesired attacks while keeping the set of removed attacks to a minimum.
The following very simple example illustrates the idea.

Figure 4. Minimal Removal

Example 6 Consider a knowledge base consisting of just four defeasible rules and
four arguments A,A1, B,B1 as seen in figure 4. Without any preference between
the rules, we have A,A1 attack each other. Similarly B,B1 attack each other.

Suppose that for whatever reason d3 is strictly less preferred than d2 (i.e.
d3 ≺ d2). The introduction of the preference d3 ≺ d2 in essence means that the
attack of B1 against B should be removed, but it does not say anything about the
other attacks. Hence they should be kept, i.e. the attacks that should be removed
should be kept to a minimum.

Let R be a rule-based system and K ∈ CR. The basic attack relation assign-
ment for R, denoted by Batts is defined by: ∀K ∈ CR, Batts(K) = {(A,B) |A
undercuts or rebuts B}. Further let atts be a regular attack relation assignment.
From the strong subargument structure property, it is clear that atts ⊆ Batts.
∀K ∈ CR, the set Batts(K) \ atts(K) could be viewed as the set of attacks
removed from Batts(K) due to the priorities between defeasible rules.

Combining the ”minimal-removal intuition” with the concept of regular at-
tack relation assignment suggests that the semantics of R should be captured by
regular attack relations atts such that ∀K ∈ CR, the set Batts(K) \ atts(K) is
minimal, or equivalently the set atts(K) is maximal. As we will see in the next
section, such maximal attack relation assignment indeed exists.

5. The Upper Semilattice of Regular Attack Relation Assignments

From now on until the end of this section, we assume an arbitrary but fixed
rule-based system R = (RS,RD,�).

Let A be a non-empty set of attack relation assignments for RAAR. Define
tA by: ∀K ∈ CR: (tA)(K) =

⋃
{ atts(K) | atts ∈ A}

The following simple lemma and theorem present a deep insight into the
structure of regular attack assignments.

Lemma 3 If the attack relations assignments in A are regular then tA is also
regular.

Proof (Sketch) The proof is not difficult though rather lengthy as we just need
to check in a straightforward way that each regular property is satisfied. �

It follows immediately

Theorem 2 Suppose the set RATR of regular attack relation assignments is not
empty. Then (RAAR,⊆,t) is an upper semilattice. �



Definition 18 Suppose the set RAAR of all regular attack relation assignments for
R is not empty. The canonical attack relation assignment of R denoted by AttR
is defined by: AttR = tRAAR.

Even though in general, regular attack relation assignments (and hence the
canonical one) may not exist (as the example 7 below shows), they exist under
natural conditions that we believe most practical rule-based systems satisfy, like
the property of self-contradiction or closure under transposition or contraposition
(see theorem 3 below).

Example 7 Consider a rule-based system R consisting of d0 :⇒ a d1 :⇒ b
r : a → ¬b and d0 ≺ d1. Suppose atts be a regular attack relation assignment
for CR. Let K = (R, ∅). The arguments for K are given in figure 5. From the
property of effective rebut, it is clear that (A,B) 6∈ att(K). Hence att(K) =
∅. The inconsistency-resolving property is not satisfied by att, contradicting the
assumption that atts is regular. Therefore there exists no regular attack relation
assignment for CK .

Figure 5. Non-existence of regular assignments

It turns out that a special type of attack relations, the normal attack relations
introduced in [12] is regular if the rule-based systems is closed under transposition
or contraposition or self-contradiction.

Let K be a knowledge base and A,B ∈ ARK . We say that A normal-rebuts B
(at X) iff A rebuts B (at X) and there is no defeasible rule d ∈ ldr(A) such that
d ≺ last(X).

The normal attack relation assignment [12] attsnr is defined by: For any
knowledge base K ∈ R and any arguments A,B ∈ ARK , (A,B) ∈ attsnr(K) if
and only if A undercuts B or A normal-rebuts B.

We present below a central result of this paper.

Theorem 3 Suppose the rule-based system R satisfies the self-contradiction prop-
erty. Then the normal attack relation assignment attsnr is regular and the canon-
ical assignment AttR exists and attsnr ⊆ AttR.

Proof (Sketch) From theorem 2 and the definition of the canonical attack relation,
we only need to show that attsnr is regular.

It is straightforward to show that for each K ∈ CR, the attack relation
attsnr(K) satisfies the properties of strong subargument structure, attack mono-
tonicity, effective rebuts and link-orientation. Further it is also obvious that attsnr
satisfies the context-independence property. Let K ∈ CR. We show that attsnr(K)
satisfies the inconsistency-resolving property. Let S ⊆ ARK s.t. S is inconsis-
tent. Let S′ be the set of all basic defeasible subarguments of S and S0 be a
minimal inconsistent subset of S′. Let A ∈ S0 s.t. last(A) is minimal (wrt ≺) in
{last(X) |X ∈ S0}. From the self-contradiction property, cnl(S0) ` ¬hd(last(A)).



We could then construct an argument B such that B attacks A and all basic

defeasible subarguments of B are subarguments of arguments in S0. �.

Though the normal and canonical attack relations do not coincide in general,

they are equivalent in the sense that they have identical sets of stable extensions.

Theorem 4 Suppose the rule-based system R satisfies the property of self-

contradiction. Then for each K ∈ CR, E ⊆ ARK is a stable extension wrt

attsnr(K) iff E is a stable extension wrt AttR(K).

Proof (Sketch) We first show that for each atts ∈ RAAR, each stable extension of

(ARK , atts(K)) is also a stable extension of (ARK , attsnr(K)). Hence each stable

extension of (ARK , AttR(K)) is also stable extension of (ARK , attsnr(K)). The

theorem follows then from lemma 4 below. �

Lemma 4 Let atts, atts′ be regular attack relation assignments for R such that

atts ⊆ atts′. Then (1.) each stable extension of (ARK , atts(K)) is a stable exten-

sion of (ARK , atts
′(K)); and (2.) each stable extension of (ARK , atts(K)) is a

stable extension of (ARK , AttR(K)).

Proof (Sketch) 1) Let E be a stable extension of (ARK , atts(K)). It is clear that

E attacks each argument in ARK \ E wrt atts′(K). If E is not conflict-free wrt

atts′(K), E is inconsistent (since both atts, atts′ have the same set of undercuts)

and hence not conflict-free wrt atts(K) (a contradiction). Hence E is conflict-

free (and hence stable) wrt atts′(K). 2) Follows immediately from (1) and the

definition of AttR. �

6. Discussion and Conclusion

The preference-based approaches to argumentation [2,3,24,22,23] define the se-

mantics of defeasible knowledge bases by first defining a preference relation be-

tween arguments and then using the preference relation to define attack relation

between arguments. We could also define an argument preference assignment for a

rule-based system R as a function assigning to each knowledge base K ∈ CR, a re-

lation vK ⊆ ARK ×ARK representing a preference relation between arguments

in ARK where strict arguments are not strictly less preferred than any other

arguments. It is possible to define a lower semilattice over the set of preference

relation assignments whose least element corresponds to the canonical semantics

(see [13]).

A key property satisfied by many argument-based and non-argument-based

approaches to reasoning with prioritized rules is the credulous cumulativity prop-

erty [12] stating intuitively that if some beliefs in your belief set are confirmed in

the reality then your belief set will not change because of it. We show in [13] that

credulous cumulativity is satisfied by regular attack relation assignments.

A more liberal notion of rebut, referred to as unrestricted rebut, where a

basic defeasible argument could directly attack a non-basic defeasible argument

is studied in [9,8]. Intuitively an unrestricted rebut is a rebut against a set of

defeasible rules without explicitly rebutting any individual rule in it. It would be

interesting to see how this notion of rebut interacts with the regular properties.
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[7] G. Brewka, I. Niemelä, and M. Truszczynski. Preferences and nonmonotonic reasoning.
AI Magazine, 29(4):69–78, 2008.

[8] M. Caminada and L. Amgoud. On the evaluation of argumentation formalisms. Artificial

Intelligence, 171:286–310, 2007.
[9] M. Caminada, S. Modgil, and N. Oren. Preferences and unrestricted rebut. In Proc

Comma 2014, 2014.

[10] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cambridge University
Press, 2002.

[11] J.P. Delgrande, T. Schaub, and H. Tompits. A framework for compiling preferences in

logic programs. Theory and Practice of Logic Programming, pages 129–187, 2003.
[12] P. M. Dung. An axiomatic analysis of structured argumentation with priorities. Artificial

Intelligence, 231, 2016.
[13] P. M. Dung. Invited lecture, argumentation for practical reasoning: An axiomatic ap-

proach. In M. Baldoni, A. K. Chopra, and T. C. Son M. Maes, editors, PRIMA 2016,

2016.
[14] P. M. Dung and G. Sartor. The modular logic of private international law. Artif. Intell.

Law, pages 233–261, 2011.

[15] P. M. Dung and P. M. Thang. Closure and consistency and logic-associated argumentation.
J. Artificial Intelligence Research, 49:79–109, 2014.

[16] P.M. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic

reasoning, logic programming and n-person gamescceptability of arguments and its funda-
mental role in nonmono- tonic reasoning, logic programming and n-person games. Artif.

Intell., 77(2):321–358, 1995.

[17] P.M. Dung. An axiomatic analysis of structured argumentation for prioritized default
reasoning. In Proc of ECAI 2014, 2014.

[18] P.M. Dung, R.A. Kowalski, and F. Toni. Argumentation in AI, chapter Assumption-based

Argumentation. Springer-Verlag, 2009.
[19] A.J. Garcia and G.R. Simari. Defeasible logic programming: An argumentative approach.

TPLP, 4(1-2):95–138, 2004.
[20] M. Gelfond and T. C. Son. Reasoning with prioritized defaults. In LPKR, pages 164–223,

1997.

[21] D. C. Martinez, A. J. Garcia, and G. R. Simari. On acceptability in abstract argumentation
frameworks with an extended defeat relation. In T. J. M. Bench-Capon P.E. Dunne,

editor, In proc of Int conference on ”Computational models of arguments”. IOS Press,
2006.

[22] S. Modgil and H. Prakken. A general account of argumentation with preferences. Artificial

Intelligence, 197:361–397, 2013.

[23] S. Modgil and H. Prakken. The aspic+ framework for structured argumenttion: a tutorial.
J. Arguments and Computation, 5:31–62, 2014.

[24] H. Prakken. An abstract framework for argumentation with structured arguments. J.
Arguments and Computation, 1, 2010.

[25] G. Vreeswijk. Abstract argumentation systems. Artif. Intell., 90:225–279, 1997.


