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Abstract. We present a new approach to reasoning with specificity
which subsumes inheritance reasoning. The new approach differs from
other approaches in the literature in the way priority between defaults
is handled. Here, it is context sensitive rather than context independent
as in other approaches. We show that any context independent handling
of priorities between defaults as advocated in the literature until now
is not sufficient to capture general defeasible inheritance reasoning. We
propose a simple and novel argumentation semantics for reasoning with
specificity taking the context-dependency of the priorities between de-
faults into account. Since the proposed argumentation semantics is a
form of stable semantics of nonmonotonic reasoning, it inherits a com-
mon problem of the later where it is not always defined for every default
theory. We identify the class of stratified default theories for which the ar-
gumentation semantics is always defined and show that acyclic defeasible
inheritance networks are stratified. We also prove that the argumentation
semantics satisfies the basic properties of a nonmonotonic consequence
relation such as deduction, reduction, conditioning, and cumulativity for
stratified default theories.

1 Introduction

Reasoning with specificity constitutes an inseparable part of default reasoning as
specificity is an important source for conflict resolution in human’s commonsense
reasoning. In fact, the famous example of whether penguins fly because they
are birds [23] in default reasoning is an example of reasoning with specificity.
Reasoning with specificity also constitutes a difficult problem which has been
studied extensively in the literature [1,5,7,14,16,29, 31, 38].

Formally a default theory T could be defined as a pair (F, K) where F is a
set of evidence or facts representing what we call the concrete context of T', and
K = (D, B) constitutes the domain knowledge consisting of a set of default rules
D and a first order theory B representing the background knowledge. In the lit-
erature [1,5,7,14,16,29] the principle of reasoning with specificity is “enforced”



by first determining a set of priority orders between defaults in D using the in-
formation given by the domain knowledge K. Based on these priorities between
defaults and following some sensible and intuitive criteria, the semantics of T is
then defined either model-theoretically by selecting a subset of the set of all mod-
els of FUB as the set of preferred models of T or proof-theoretically by selecting
certain extensions as preferred extensions. The problem of these approaches is
that their obtained semantics is rather weak. They do not capture general defea-
sible inheritance reasoning. There are many intuitive examples of reasoning with
specificity (see below) that can not be handled in these approaches. The reason
is that the priorities between defaults are defined independent of the context.

Priority orders are partial orders ! between defaults in D. Let POg be the set
of all these priority orders. For each priority order o € POk, where (d,d') € «
means that d is of lower priority than d', a priority order <, between the sets of
defaults in D is defined where S <, S’ means that S is preferred to S’. There
are many ways to define <, [1,5,7,14, 16,29, 31]. But whatever the definition of
<q 18, <4 has to satisfy the following property.

Let d,d' be two defaults in D such that (d,d') € a. Then {d'} <, {d}.
<4 can be extended into an partial order between models of BUFE as follows:
M <, M'iff Dy <o Dyp

where D), is the set of all defaults in D which are satisfiable in M whereas a
default p — ¢ is said to be satisfiable in M iff the material implication p = ¢ is
satisfiable in M.

A model M of BU FE is defined as a preferred model of T if there exists a
partial order o in PO such that M is minimal with respect to <,. We then
say that a formula § is defeasibly derived from T if $ holds in each preferred
model of T'.

In a previous paper [11], we formally proved that any preferential semantics
based on <, can not account in full for defeasible inheritance reasoning. We
include below this proof for the self-containment of the paper.

Ezample 1. Let us consider the following defeasible inheritance network?

! Partial orders are transitive, irreflexive and antisymmetric relations
2 Throughout the paper, solid lines and dotted lines represent strict rules and defoult
rules respectively.



where the links s A m, a — m, and s — y represent the normative sen-
tences “normally, students are not married”, “normally, adults are married”, and
“normally, students are young adults”, respectively, and, the strict link y = a
represents the subclass relation “young adults are adults.”

This defeasible inheritance network represents the domain knowledge (B, D)
with B={y=a},and D={dy: a—>m, da: s —>—-m, d3: s = y}.

Consider now the marital status of a young adult who is also a student. This
problem is represented by the default theory T' = (E, B, D) with E = {s,y,a}.
The desirable semantics here is represented by the model M = {s,y,a,—-m}. To
deliver this semantics, all priority-based approaches in the literature [1, 5, 7, 16,
29] assigns default 1 a lower priority than default 2.

Let us consider now the marital status of another student who is an adult
but not a young one. Let T’ = (E', B, D) with E' = {s, —y,a}. Now, since y does
not hold, default 2 can not be considered more specific than default 1. Hence,
it is intuitive to expect that neither m nor —m should be concluded in this
case. This is also the result sanctioned by all semantics of defeasible inheritance
networks [17,18,37,41,39,40]. In any priority-based system employing the same
priorities between defaults with respect to E' as with respect to E, we have
M = {-m,s,~y,a} <o M' = {m,s,~y,a} since Dy = {2} <4 D}, = {1} (due
to (1,2) € a). That means priority-based approaches in the literature conclude
—m given (E', K) which is not the intuitive result we expect.

To produce a correct semantics, 1 should have lower priority than 2 only
in the context {s,y,a} where the considered student is young (i.e. default 3
can be applied). In other words, the priority order under the context {s,y,a}
is different than the priority order under the context {s,y,a}. In general, the
example shows that specificity cannot be treated independently from the context
in which it is defined. O

Argumentation has been recognized lately as an important and natural ap-
proach to nonmonotonic reasoning [6,9, 14, 30, 32, 33, 38, 45]. It has been showed
in [9] that many major nonmonotonic logics [22, 23,25, 28, 34] represent in fact
different forms of a simple system of argumentation reasoning. Based on the
results in [9], a simple logic-based argumentation system has been developed
in [6] which captures well-known nonmonotonic logics like autoepistemic logics,
Reiter’s default logics and logic programming as special cases. In [14] argumen-
tation has been employed to give a proof procedure for conditional logics. In
[38], an argumentation system for reasoning with specificity has been developed.
Like the proposals based on context-independent priorities, this system is rather
weak. It can not deal with many intuitive examples and also fails to capture
inheritance reasoning. It does not satisfy many basic properties of defeasible
reasoning like the cumulativity. But despite these shortcomings, works like [38]
suggests that argumentation offers a natural and intuitive framework for dealing
with specificity. As we will show in this paper, argumentation indeed provides a
simple and intuitive framework for reasoning with specificity.

In this paper, we extend the approach to reasoning with specificity [11] to
allow general default theories. In the process, we simplify the notion of more



specific. We propose a simple and novel argumentation semantics for reasoning
with specificity taking the context-dependency of the priorities between defaults
into account. We then identify a large class of stratified default theories for
which the argumentation semantics is always defined and show that acyclic and
consistent inheritance networks are stratified. We prove that the argumentation
semantics satisfies the basic properties of a nonmonotonic consequence relation
such as deduction, reduction, conditioning, and cumulativity for stratified default
theories.

2 A General Framework

We assume a first order language £ that is finite but large enough to contain all
constants, function and predicate symbols of interest. The set of ground literals
of L is denoted by lit(L). Literals of £ will be called hereafter simply as literals
(or L-literals) for short. Following the literature, a default theory is defined as
follows:

Definition 1. A default theory T is a triple (E, B, D) where

(i) E is a set of ground literals representing the evidences of the theory;

(ii) B is a set of ground clauses;

(11i) D is a set of defaults of the form Iy A ... ANl — lo where l;’s are ground
literals; and

(iv) EU B is a consistent first order theory.

Notice that in the above definition, we use — to denote a default implication. The
material implication is represented by the = symbol. Intuitively, « — b means
that “typically, if @ holds then b holds” while @ = b means that “whenever a
holds then b holds.” It is worth noting that default theories considered in [11]
do not contain ground clauses, i.e., B = ().

For a default d =1; A ... Al, — lp, we denote [y A...Al, and ly by bd(d)
and hd(d) respectively.

In the following, we often use clauses and defaults with variables as a short-
hand for the sets of their ground instantiations.

Ezample 2. Consider the famous penguin and bird example:



We have that B = {p = b} (penguins are birds) and D consisting of two
defaults p — —f (normally, penguins do not fly) and b — f (normally, birds

fly)3.
The question is to determine whether penguins fly. This problem is epresented
by the default theory T' = (E, B, D) where E = {p}. O

We next define the notion of defeasible derivation.

Definition 2. Let T = (E, B, D) be a default theory and l be a ground literal.
e A sequence of defaults dy,...,d, (n > 0) is said to be a defeasible derivation
of 1 if following conditions are satisfied:
1. n =0 and EU B\ [ where the relation - represents the first-order conse-
quence relation, or
2. (a) EUBF bd(dy); and
(b) EUBU{hd(dy),...,hd(d;)} F bd(di+1); and
(c) EUBU{hd(dy),...,hd(d,)} F L.
e We say l is a possible consequence of E with respect to B and a set of defaults
K C D, denoted by EU B kg 1, if there exists a defeasible derivation dy,...,d,
of l such that for all 1 <i<mn, d; € K. O

For a set of literals L we write EUB Vg Liff Vie L: EUBFg L.

We write EUB Fg L iff there is an atom a such that both EUB Fx a and
E U B Fg —a hold.

For the default theory from example 1, it is easy to check that EUB F,_, .,y
-mand EUB F(s .y 43m} m. Hence EUBFp L.

A set of defaults K is said to be consistent in T if EUB Wk L. K is
inconsistent if it is not consistent °.

The “More Specific” Relation

We now define the notion of “more specific” between defaults generalizing the
specificity principle of Touretzky in inheritance reasoning. Consider for example
the network from the example 1, it is clear that being a student is normally
a specific case of being a young adult. Since being a young adult is always a
specific case of being an adult, it follows that being a student is a specific case
of being an adult if the respective individual is a young adult. This stipulates
us to say that the default s — —wn (students are normally not married) is more
specific than the default a — m (adults are normally married) provided that the
default s — y (students are normally young adults) can be applied. Similarly, in
example 2, since being a penguin is always a specific case of being a bird, we can
conclude the default p — —f (penguins don’t fly) is always more specific than
b — f (birds fly).

% On the other hand, we have to change p = b to p — b if we were to use the notion
of default theories in [11].

* Throughout the paper, we use T and L to denote True and False respectively.

5 If there is no possibility for misunderstanding, we often simply say consistent instead
of consistent in T



Definition 3. Let di, dy be two defaults in D. We say that dy is more specific
than dy with respect to a set of defaults K C D, denoted by dy <x d2, if

(i) BU{hd(dy), hd(dz)} is inconsistent;

(ii) bd(d;) U B kg bd(ds); and

(#5i) bd(d;) U B t/k L.

In the above definition (i) guarantees that a priority is defined between two
defaults only if they are conflicted, (ii) ensures that being bd(d;) is a special
case of being bd(ds) provided that the defaults in K can be applied, and (iii)
guarantees that K is a sensible set of defaults. We could say that this is a
generalization of Touretzky’s specificity principle to general default theories. In
[11], the more specific relation is defined based on the minimal conflict set notion,
which in turn is defined based on the defeasible derivation notion. As it can be
seen, the above definition is much simpler than that was proposed in [11]. Besides,
it allows us to deal with default theories with nonempty background knowledge.

If K = () we say that d; is strictly more specific than ds and write d; < d»
instead of dy <y ds

Ezample 3. In example 1, d> <4,y di holds, i.e. da is more specific than d; if d3
is applied. In the context E = {s,y,a}, d3 can be applied, and hence d» is more
specific than d; in the context E. But in the context E' = {s, -y, a}, ds can not
be applied, and hence, dy is not more specific than d; in E’.

In example 2, it is obvious that dy < di, i.e. d> is always more specific than
dy. O

Stable Semantics of Default Reasoning with Specificity

The semantics of a default theory is defined by determining which defaults can be
applied to draw new conclusions from the evidences. For example, the semantics
of the network in example 1 is defined by determining that the defaults which
could be applied are 2 and 3.

In the following, we will see that an argumentation-theoretic notion of attack
between a set of defaults K and a default d lies at the heart of the semantics of
reasoning with specificity.

Suppose that K C D is a set of defaults we can apply. Further let d be a
default such that E U B kg —hd(d). It is obvious that d should not be applied
together with K. In this case, we say that K attacks d by conflict.

For illustration of attack by conflict, consider the default theory 7" in example
1. Let K = {d3,d2}. Since EU B kg —m, K attacks d; by conflict. Similarly,
K' = {ds,d,} attacks d2 by conflict because E'U B Fg: m.

The other case where d should not be applied together with K is where it is
less specific than some default with respect to K. Formally, this means that if
there exists d' € D such that d' <x d and EU B Fg bd(d') then d should not
be applied together with the defaults in K. In this case we say that K attacks d

by specificity.



For illustration of attack by specificity, consider again the default theory T'
in example 1. Let K = {d3}. Because dy <{4,3 di and EU B k41 bd(ds), K
attacks d; by specificity.

The following definition summarize what we have just discussed:

Definition 4. Let T = (E, B, D) be a default theory. A set of defaults K is said
to attack a default d in T © if following conditions are satisfied:

(i) (Attack by Conflict) EU B ki —hd(d); or

(ii) (Attack by Specificity) There exists d' € D such that d' <k d and E U
Btk bd(d").

Note that there is a distinct difference between attack by conflict and inconsis-
tency. It is possible that though K is consistent and K U {d} is inconsistent but
K does not attack d by conflict. It is also possible that K attacks some default d
by conflict though K U{d} is consistent. The Nixon diamond example illustrates
these points.

Let E={a}, B=0,and D ={d; : ¢ > d,dy: b= —d,d3 : a = ¢,dy :
a — b}. Though K = {di,d»,ds} is consistent and K U {d3} is inconsistent,
K does not attack ds by conflict. Further, though K' = {d,ds} attacks d; by
conflict, K = K'U {d1} is consistent.

It is obvious that if K attacks d then every superset of K attacks d. K is said
to attack some set H C D if K attacks some default in H. K is said to attack
itself if K attacks K.

Now we can give a precise definition of what constitutes the semantics of a
default theory with specificity.

Definition 5. Let T = (E,B,D) be a default theory. A set of defaults S is called
an extension of T if S does not attack itself and attacks every default not belong-
ing to it.

Definition 6. Let T = (E,B,D) be a default theory. Let | be a ground literal.
We say T entails I, denoted by T |~ 1, if for every extension S of T, EUB Fgl

S if there is no possibility for misunderstanding then T often is not mentioned



Because the defeasible consequence relation g subsumes the first order conse-
quence relation (definition 2), it is obvious that an inconsistent set of defaults
attacks every default. Therefore it is clear that an extension is always consistent.

Example 4. Consider the theory in example 2. We have that dy < dy, i.e., d3 is
strictly more specific than d;. This can be used to prove that {d>} is the unique
extension of T'. Therefore T |~ —f. O

Ezample 5. 1. Consider the theory T in example 1. Let H = {ds, d>}. Because
{s,y,a}UB g -m, H attacks dy by conflict. Furthermore, since {s,y,a} U
B ¥y mand {s,y,a}UB /g —y, H does not attack itself by conflict. Because
there is no default which is more specific than ds or d3 with respect to H,
H does not attack itself by specificity. Hence H does not attack itself and
attacks every default not belonging to it. Therefore H is an extension of 7T'.
Let K = {dy,ds}. Because d» <k d; and {s,y,a} U B Fg bd(ds), K attacks
dy by specificity. Hence K is not an extension of 7'. It should be obvious now
that H is the only extension of T. Hence, T |~ —m.

2. Consider the theory 7" in example 1. Let H = {d»} and K = {d;}. Since
{s,7y,a} Fg —-m and {s,~y,a} Fx m, and {s,—y,a} k¢ -y, H attacks
dy,ds by conflict while K attacks ds,ds by conflict. Due to the fact that ds
can not be applied, there are no defaults d,d' such that d <g d’ or d <g d'.
Hence both H and K do not attack themselves. Thus, both H and K are
extensions of 7', and so, T' [ —m and T" [~ m.

O

The definition 5 of an extension of a default theory corresponds to the stable
semantics of argumentation which has been first introduced in [9] and later fur-
ther studied in [6]. There are also a number of other semantics for argumentation
which could be applied to reasoning with specificity. But in this paper we will
limit ourselves to the stable semantics.

Existence of Extensions

A well-known problem of stable semantics in nonmonotonic reasoning is that
it is not always defined for every nonmonotonic logics. As our semantics is a
form of stable semantics of argumentation, it is expected that the same problem
will be encountered in our framework. The following example originated from
[7] confirms our expectation.

Ezample 6 ([7]). Consider T = (E,(, D) with E = {a,b,c} and D consists of
the following defaults
di:aNqg— —p

de:a—p
ds :bAr — —q
dy:b—q
ds:cAp— —r
dg:c—r



It is easy to see that for each K C D, there is no d € D such that d <x di
ord—<gdsord=<pgds.

We will prove that T' does not have an extension.

Assume the contrary that 7" has an extension S. We want to prove that
di ¢ S. Assume the contrary that d; € S. Since E Fy4,} p and S does not attack
itself, we conclude that ds ¢ S. This implies that S attacks d. There are two
cases:

1. S attacks dy by conflict. This means that E g —p, which implies that
E I—S q.

2. S attacks ds by specificity. Since the only default in D, that is more specific
than do, is di, S attacks dy by specificity implies that E Fg bd(d;). Thus
E |—s q.

It follows from the above two cases that E g q. Therefore S contains dj.
Now, consider the two defaults ds and ds. Since do € S, E /s bd(ds). Therefore
S does not attack dg by specificity. Further E /s bd(ds) implies that E /g —r.
So, S does not attack dg by conflict either. Again, because S is an extension,
we have that dg € S. However, E F4.y bd(dz), which implies that S attacks
dy by specificity, i.e., S attacks itself. This contradicts the assumption that S is
an extension of T'. Thus the assumption that d; € S leads to a contradiction.
Therefore d; & S.

Similarly, we can prove that d3 € S and d5 € S. Since S is a stable extension
of T, S attacks d;. This implies that S must attack d; by conflict because there is
no default in D which is more specific than d;. Thus dy € S. Similar arguments
lead to dy € S and dg € S, i.e.,, S = {d2,ds,ds}. However, S attacks d» by
specificity because di < d» and E U B tg bd(d;). This means that S attacks
itself which contradicts the assumption that S is a stable extension of T'. Thus
the assumption that there exists an extension leads to a contradiction. Therefore,
we can conclude that there exists no extension of T O

In the next section we will introduce the class of stratified default theories for
which extensions always exist.

3 Stratified Default Theories

The definition of stratified default theories is based on the notion of a rank
function which is a mapping from the set of ground literals lit(£) U {T, L} to
the set of nonnegative integers.

Definition 7. A default theory T = (E, B, D) over L is stratified if there exists
a rank function of T, denoted by rank, satisfying the following conditions:
(i) rank(T) = rank(L) = 0;
(ii) for each ground atom l, rank(l) = rank(-l);
(iii) for all literals I and l' occurring in a clause in B, rank(l) = rank(l');
(iv) for each default ly,... 1y, — 1 in D, rank(l;) < rank(l), i=1,...,m;



It is not difficult to see that all the default theories in examples 1 and 2 are
stratified. We prove that

Theorem 1. Every stratified default theory has at least one extension. O

3.1 General Properties of |~

There is a large body of works in the literature [2,14,19] on what properties
characterize a defeasible consequence relation like |~. In general, it is agreed
that such relation should extend the monotonic logical consequence relation.
Further, since the intuition of a default rule d is that bd(d) normally implies
hd(d), we expect that in the context E = {bd(d)}, T |~ hd(d) holds. Another
important property of defeasible consequence relations is related to the adding
of proved conclusions to a theory. Intuitively, this means that if T |~ a then we
expect T and T+ a 7 to have the same set of conclusions. Formally, the discussed
key properties are given below:

Deduction: T' |~ [ if EU B - I;

Conditioning: If E = {bd(d)} for d € D, then T |~ hd(d);
— Reduction: f T' |~ @ and T+ a |~ b then T |~ b;

— Cumulativity: f T |~ a and T |~ b then T +a |~ b;

In the next two theorems, we show that |~ satisfies deduction and reduction:

Theorem 2 (Deduction). Let T=(E,B,D) be an arbitrary default theory. Then,
for every l € lit(L), EU B 1 implies T |~ . a

Theorem 3 (Reduction). Given T=(E,B,D) be an arbitrary default theory
and a,b € lit(L) such that T |~ a and T +a |~ b. Then, T |~ b. a

In general |~ does not satisfy cumulativity as the following example shows.

Ezample 7. Consider the default theory T'= (E, B, D)

/"‘?C

i
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where E = {f}, B = 0, D = {di:f — a, dy:a — ¢, d3:c —» —a} Because
the only instance of the more-specific-relation is di <4, 4,} d3, T has a unique
extension {d;,d>}. Hence, T |~ a and T |~ c.

Now consider T + ¢. T + ¢ has two extensions: {d;,d2} and {d2,d3}. Thus,
T + ¢ |~ a. This implies that |~ is not cumulative.

" T + a denotes the default theory (E U {a}, B, D).

10



The next theorem proves that stratification is sufficient for cumulativity.

Theorem 4 (Cumulativity). Let T = (E, B, D) be a stratified default theory
and a,b be literals such that T |~ a, and T |~ b. Then T +a |~ b. a

Because stratification does not rule out the coexistence of defaults like a —
—¢, a — ¢, conditioning does not hold for stratified theories as the next example
shows.

Ezample 8. Let T = ({a},0,{d1 : a = —¢, dy: a — c}). It is obvious that T
is stratified. Because d; < dy and ds < dy, both d;,ds are attacked by specificity
by the empty set of defaults. Thus the only extension of T is the empty set.
Hence, T |£ —¢, and T [ c¢. That means that conditioning is not satisfied.

The coexistence of defaults like @ — —¢, a — ¢ means that a is normally ¢
and normally not ¢ at the same time which is obviously not sensible. Hence it
should not be a surprise that conditioning is not satisfied in such cases. The
conditioning property would hold for a default d if in the context of bd(d), d is
the most specific default. The following definition formalizes this intuition. For
simplicity, we often write d < d' if d <k d' for some K. Let <* be the transitive
closure of <.

Definition 8. A default theory T = (E,B,D) is said to be conditioning-sensible
if for every default d following conditions are satisfied:

(i) d A* d;

(ii) For every set K C D such that bd(d) U B Fgyugqy L and bd(d)UB Wk L,
there exist d' € K such that d <x d’

Theorem 5. Let T = (E, B, D) be a conditioning-sensible default theory, d be
a default in D, and E = bd(d). Then T |~ hd(d). a

It is interesting to note that conditioning-sensibility and stratification are two in-
dependent concepts. Default theories like the one in example 7 are conditioning-
sensible but not stratified while default theories like that in example 8 are strati-
fied but not conditioning-sensible. Further while example 8 shows that stratifica-
tion does not imply conditioning, example 7 shows that conditioning-sensibility
does not imply cumulativity.

We prove that our approach captures inheritance reasoning by transforming
each acyclic and consistent inheritance network I" into a default theory T and
show that the conclusions sanctioned by the credulous semantics of I' are also
the conclusions of |~ with respect to Tr8.

4 Discussion and Conclusion

Reiter and Criscuolo [35] are among the first to discuss the importance of speci-
ficity (or default interaction, in their terminology) in default reasoning. They dis-
cussed various situations, in which the interaction between defaults of a normal

& Due to the lack of space, we omit the transformation here. It can be found in the
full paper.
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default theory can be compiled into the original theory to create a new default
theory whose semantics yields the intuitive results. It has been recognized rela-
tively early that priorities between defaults can help in dealing with specificity.
In prioritized circumscription, first defined by McCarthy [24], a priority order
between predicates is added into each circumscription theory. Lifschitz [27] later
proved that prioritized circumscription is a special case of parallel circumscrip-
tion. A similar approach has been taken by Konolige [20] in using autoepistemic
logic to reason with specificity. He defined hierarchical autoepistemic theories in
which a preference order between sub-theories and a syntactical condition on the
sub-theories ensure that higher priority conclusions will be concluded. Brewka
[4] - in defining prioritized default logic - also adds a preference order between
defaults into a Reiter’s default theory and modifies the semantics of default logic
in such a way that guarantees that default of higher priority is preferred. Baader
and Hollunder [5] develops prioritized default logic to handle specificity in termi-
nological systems. All of the approaches in [4,5,24,27,20] assume that priorities
between defaults are given by the users.

Computing specificity is another important issue in approaches to reasoning
with specificity. Work from Poole [31] is an early attempt to extract the prefer-
ence between defaults from the theory. Poole defines a notion of more specific
between pairs consisting of a conclusion and an argument supporting this conclu-
sion. Moinard [26] pointed out that Poole’s definition yields unnecessary priority,
for example, it can arise even in consistent default theories. Simari and Loui [38]
noted that Poole’s definition does not take into consideration the interaction
between arguments. To overcome this problem they combined Poole’s approach
and Pollock’s theory [30] to define an approach that unifies various approaches
to argument-based defeasible reasoning. We have discussed the shortcoming of
Simari and Loui’s system in the introduction.

Touretzky’s specificity principle [42] in inheritance reasoning is a major step
in reasoning with specificity. Although this principle is generally accepted, differ-
ent intuitions on “what does more specific mean?’ leads to numerous approaches
to reasoning with specificity. More interestingly, some seem to contradict the
others. Detailed discussions about this problem in inheritance reasoning can be
found in Touretzky et al. [43, 44]. Moinard [26] showed that Touretzky’s approach
does not work well for general default theories. He proposed several principles for
determining a preference relation based on specificity in default logic but does
not discuss how this preference would change the semantics of a default the-
ory. Furthermore, like Poole he does not take into consideration the interaction
between arguments either.

Conditional entailment of Geffner and Pearl [14] bridges the extensional and
conditional approaches to default reasoning and is the first approach to rea-
soning with specificity which satisfies the basic properties of a nonmonotonic
consequence relation. Because the priority order between assumptions in [14] is
context-independent, conditional entailment, however, is too weak (as also noted
by Geflner and Pearl) to capture inheritance reasoning. Pearl also discussed how
a preference relation between defaults can be established. In System Z [29], Pearl
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uses consistency check to determine the order of a default. The lower the order of
a default is, the higher is its priority. As in Poole’s approach, sometimes System
7 introduces unwanted priorities.

The idea of compiling specificities into a general nonmonotonic framework is
also used in [7,11] and in this work. Delgrande and Schaub [7] compiled the pref-
erence order between defaults (defined using a order similar to a Z-order of [29])
into the original theory and create a Reiter’s default theory whose semantics
defines the semantics of the original theory. The compilation of the preference
order, however, does not take the context into consideration. As a consequence
their approach cannot capture inheritance reasoning. In our approach, the com-
pilation of the more specific relation into the original theory is done in such a
way that the context will affect the decision process determining which default
can be applied.

Our approach to specificity in this paper is a continuation of our own work
in [11]. It could be viewed as a kind of a hybrid between the above approaches.
For an intuitive semantical foundation of reasoning with specificity, we develop
a general framework, but for implementation, we translate our framework into
Reiter’s default logics. Wang, You and Yang [46] has applied our idea to give a
semantics for possibly cyclic inheritance networks.

Even though our work is not directly related to the recent works on prioritized
default theories [8,15,36] or adding priority into extended logic programming
[3], we believe that there is a mutual benefit between the research done in these
works and ours. For example, the more specific relation defined here can be used
to specify the priorities between defaults in [8] or the preference relation in [15].
Thus, these two approaches can be extended to realize two different modes of
reasoning: one with explicit priority ordering and the other with implicit priority
ordering. On the other hand, programs such as that in [46] can be extended to
compute the more specific relation and hence allows a fully automatic translation
from a default theory T = (E, B, D) into its corresponding Reiter’s default
theory, Ry. The result of [46] also shows that this can be done in polynomial
time for defeasible inheritance networks.

Our work also shows that inheritance networks can be modularly translated
into equivalent general nonmonotonic formalism such as Reiter’s default theory.
We want to note that there are other works on formulating inheritance networks
using general nonmonotonic formalisms such as [10, 12,13, 46] or the works listed
in [17]. To the best of our knowledge, our work is the first general approach
to default reasoning with specificity which is capable of capturing inheritance
reasoning in full.
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