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Abstract

We present a succession of presentations of an argumentation-theoretic proof procedure that
applies uniformly to a wide variety of logics for default reasoning, including Theorist, de-
fault logic, logic programming, autoepistemic logic, non-monotonic modal logic and certain
instances of circumscription.

The proof procedure can be viewed as conducting a dispute, which is a sequence of
alternating arguments:

D0,A0,D1, . . . ,Ai,Di+1, . . .
between a defendant and an opponent. The defendant goes first and wins the dispute if the
defendant has a defence Di+1 against every attack Ai by the opponent.

The proof procedure generalises an abductive proof procedure for logic programming
and implements the admissibility semantics. The admissibility semantics can be viewed as
a variant of the stable semantics, which is the conventional semantics for many logics for
default reasoning.

1 Introduction

In this paper, we present an argumentation-theoretic proof procedure for default rea-
soning. The proof procedure applies uniformly to any logic [30, 42, 31, 32] that can
be defined by means of an abstract framework [4] for default reasoning, which includes
default logic, logic programming, autoepistemic logic, non-monotonic modal logic and
certain instances of circumscription.

The proof procedure can be viewed as conducting a dispute in which a defendant
and an opponent exchange arguments. In its simplest form, the dispute can be viewed
as a sequence of alternating arguments:

D0,A0,D1, . . . ,Ai,Di+1, . . .
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The defendant puts forward some initial argument D0. For every argument Di

put forward by the defendant, the opponent attempts to respond with an attacking
argumentAi againstDi. For every attacking argumentAi put forward by the opponent,
the defendant attempts to counter-attack with a defending argument Di+1 against Ai.
To win the dispute, the defendant needs to have a defending argument against every
attacking argument of the opponent.

A winning dispute can be represented both in the form of a proof tree, and in the
form of a derivation, which represents the top-down, step-by-step construction of the
proof tree.

It can also be represented both abstractly, with arguments represented simply by
sets of defeasible assumptions, and concretely, with arguments represented by complete
proofs supported by defeasible assumptions.

These two options, proof tree versus derivation, and abstract versus concrete, give
rise to four different but closely related presentations of our proof procedure. They
allow us to develop our proof procedure in a succession of steps starting from a semantic
specification and ending with the definition of concrete derivation, which is close to a
Prolog implementation.

The specification of our proof procedure is the admissibility semantics, which gen-
eralises the admissibility semantics for logic programming [12, 13]. A set of defeasible
assumptions is admissible, if it defends itself against all attacks (by counter-attacking
all attacks against it) and does not attack itself. The proof procedure implements the
semantics by constructing admissible sets incrementally.

The admissibility semantics is a credulous semantics for default reasoning. It con-
trasts with the stable semantics, which is the conventional semantics associated with
most logics for default reasoning, including default logic, autoepistemic logic and non-
monotonic modal logic. Informally speaking, a set of defeasible assumptions is stable,
if it attacks every assumption not in the set and does not attack itself.

The admissibility semantics is more general than the stable semantics, in the sense
that every stable set of assumptions is a maximal (with respect to set inclusion) admiss-
sible set of assumptions. However, not every maximal admissible set of assumptions is
stable. Nonetheless, proof procedures for the admissibility semantics can also be used
to compute the stable semantics in certain cases.

In the general case, the “global” character of the stable semantics (that a sta-
ble set must attack every assumption not in the set) presents a major obstacle to its
efficient implementation. In contrast with the stable semantics, the admissibility se-
mantics requires only the “local” construction of a set of assumptions that is relevant
to establishing that a given query is a default consequence of a given theory. The local
character of the admissibility semantics facilitates the development of an efficient proof
procedure.

This paper is a sequel to the earlier paper [4], which described the abstract frame-
work and its applications in detail. The paper [28] presents further examples, comple-
menting those in [4]. Because these papers provide motivating examples, in this paper
we focus mainly on the technical details of the proof procedure.
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The rest of the paper has the following structure: Section 2 describes the abstract
framework and its concrete instances. Section 3 describes the stable and admissibility
semantics, while section 4 discusses and illustrates the computational problems asso-
ciated with the stable semantics. Section 5 prepares the ground for the abstract proof
trees for the admissibility semantics presented in section 6. The following three sec-
tions 7, 8, 9 present successive refinements of the proof procedure. Section 10 compares
the proof procedure with other proof procedures for default reasoning, and is followed
by the conclusion. Proofs of the theorems are in the appendix.

2 Assumption-based frameworks

In this section we briefly review the notion of assumption-based framework [5, 4, 28, 27],
showing how it can be used to extend any deductive system for a monotonic logic to a
non-monotonic logic for default reasoning.

A deductive system is a pair (L, R) where

• L is a formal language consisting of countably many sentences, and

• R is a set of inference rules of the form

{α1, . . . , αn}
α

where α, α1, . . . , αn ∈ L and n ≥ 0. If n = 0, then the inference rule represents
an axiom1.

A set of sentences T ⊆ L is called a theory.
A deduction from a theory T is a sequence β1, . . . , βm, where m > 0, such that, for

all i = 1, . . . , m,

• βi ∈ T , or

• there exists
α1, . . . , αn

βi

in R such that α1, . . . , αn ∈ {β1, . . . , βi−1}.

T ` α means that there is a deduction (of α) from T whose last element is α.
T ` Q, for a set of sentences Q, means that T ` α for every α ∈ Q. Th(T ) is the set
{α ∈ L |T ` α}.

To simplify the definition of the proof procedure later on in the paper, from section 8
we will assume that the theory T is empty. This assumption can be made without loss
of generality, because domain-specific theories can be simulated by domain-specific
inference rules. More precisely, the consequence relation T ` σ in a deductive system
(L, R) is equivalent to the consequence relation {} ` σ in a deductive system (L, R′)
where R′ = R∪ {

α
|α ∈ T}.

1For simplicity, we simply writeα1,...,αn

α instead of {α1,...,αn}
α
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Deductive systems are monotonic, in the sense that T ⊆ T ′ implies Th(T ) ⊆
Th(T ′). They are also compact, in the sense that T ` α implies T ′ ` α for some finite
subset T ′ of T .

Given a deductive system (L, R), an assumption-based framework with respect to
(L, R) is a tuple 〈T, Ab, 〉 where

• T, Ab ⊆ L, Ab 6= {}
• is a mapping from Ab into L. α is called the contrary of α.

The theory T can be viewed as a given set of beliefs, and Ab as a set of candidate
assumptions that can be used to extend T . An extension of a theory T is a theory
Th(T ∪∆), for some ∆ ⊆ Ab. Sometimes, informally, we refer to the extension simply
as T ∪∆ or ∆.

We understand the problem of determining whether a given sentence σ in L (also
called a query) is a default consequence of 〈T, Ab, 〉 as the problem of determining
whether there exists an “appropriate” ∆ ⊆ Ab of T such that T ∪ ∆ ` σ. We also
say that a set Q of sentences is a default consequence of 〈T, Ab, 〉 if σ is a default
consequence of 〈T, Ab, 〉 for every σ in Q. 2 This is a credulous semantics for default
reasoning, in the sense that it requires only that σ belong to some “appropriate”
extension of T .

Many logics for default reasoning are credulous in this same sense, differing how-
ever in the way they understand what it means for an extension to be “appropriate”.
Some logics, in contrast, are sceptical, in the sense that they require that σ belong
to all “appropriate” extensions. However, the semantics of any of these logics can be
made sceptical or credulous, simply by varying whether a sentence is deemed to be a
consequence of a theory if it belongs to all “appropriate” extensions or if it belongs
only to some “appropriate” extension.

Different logics for default reasoning differ, however, not only in whether they are
credulous or sceptical and how they interpret the notion of what it means to be an
appropriate extension, but also in their underlying frameworks.

Theorist [38] can be understood as a framework 〈T, Ab, 〉 where T and Ab are both
arbitrary sets of sentences of first-order logic and the contrary α of an assumption α is
just its negation. The deductive system (L, R) is any deductive system for first-order
logic.

Circumscription [30] can be understood similarly, except that the set of candidate
assumptions is the set of all negations of (variable-free) atomic sentences ¬p(t), for all
predicates p which are minimised, and of all (variable-free) atomic sentences q(t) or their
negations, for all predicates q which are fixed. Both Theorist and Circumscription agree
on their interpretation of what it means for an extension to be appropriate. However,
the semantics of Theorist is credulous, whereas the semantics of Circumscription is
sceptical.

2Whenever we assume T to be empty, T ∪∆ ` σ is equivalent to ∆ ` σ.
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Logic programs can be viewed as frameworks 〈{}, Ab, 〉 where the language L
of the deductive system (L, R) consists of variable-free (also called ”ground”) atomic
formulae and their negations and the inference rules R consist of ”domain specific”
rules of the form 3

α1, . . . , αm, notβ1, . . . , notβn

γ

For notational convenience, we also write such inference rules in the linear notation

γ ← α1, . . . , αm, notβ1, . . . , notβn

We also write γ instead of
γ

or γ ←.

The intuitive meaning of not β is that β can not be shown. The set of candidate
assumptions Ab is the set of all negations not p of ground atomic sentences p, and the
contrary not p of an assumption is p. Most semantics for logic programs, including both
credulous and sceptical semantics, can be understood in terms of this framework.

Default logic [42] is the case where the underlying monotonic logic is first-order logic
augmented with domain-specific inference rules of the form

α1, . . . , αm,Mβ1, . . . , Mβn

γ

where αi, βj, γ are first-order sentences. 4 T is a first-order theory and Ab consists of
all expressions of the form Mβ where β is a sentence of first-order logic. The contrary
Mβ of an assumption Mβ is ¬β. The intuitive meaning of Mβ is that ¬β can not be
shown. The semantics of default logic is normally understood in credulous terms.

In autoepistemic logic [32] the language L is the language of modal logic, with
a modal operator L, but the inference rules in R are those of classical logic. The
assumptions have the form ¬Lα or Lα. The contrary of ¬Lα is α, and the contrary
of Lα is ¬Lα. The intuitive meaning of Lα is that α can be shown. Non-monotonic
modal logics [31] are similar, except the inference rules are those of some underlying
modal logic and only assumptions of the form ¬Lα are considered. The semantics of
both autoepistemic logic and non-monotonic modal logics are normally understood in
credulous terms.

All examples used in the paper are drawn from logic programming, because of its
simplicity. However, the same examples can also be expressed in any of the other
formalisms (see [28]).

With the possible exception of logic programming, where many different notions of
appropriate extension have been investigated, almost all of these logics have focused
on the notion of stable extension, presented in the next section 3. They also require
that an appropriate extension ∆ be closed.

3We assume, as is conventional, that a logic program containing variables stands for the set of all
its ground instances over the Herbrand universe of the program.

4As in the case of logic programs, inference rules containing free variables are interpreted as standing
for the set of all their ground instances.
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Definition 2.1 A set of assumptions ∆ ⊆ Ab is closed if and only if ∆ = {α ∈
Ab |T ∪ ∆ ` α}. An assumption-based framework is flat if and only if every set of
assumptions ∆ ⊆ Ab is closed.

Our proof procedure is defined for flat assumption-based frameworks. However, as
we will see later, it can also be adapted to non-flat frameworks.

All frameworks for logic programming and default logic are flat. Informally speak-
ing, flat frameworks are ones in which there are no “hidden” assumptions.

The framework with T = {¬Lp}, in both auto-epistemic and non-monotonic modal
logic, is an example of a non-flat framework. In this framework, the empty set of
assumptions implies, together with T , the “hidden” assumption ¬Lp.

3 Argumentation semantics for assumption-based

frameworks

In this section we review the argumentation semantics of stable and admissible ex-
tensions for assumption-based frameworks, as given in [12, 13, 5, 4, 28, 27]. In these
semantics a deduction of a conclusion from a theory T augmented by assumptions A is
regarded as an argument for the conclusion, supported by A. A set of assumptions A
is regarded as attacking another set of assumptions ∆ if A supports an argument for
the contrary of some assumption in the ∆. More formally:

Definition 3.1 Given any assumption-based framework 〈T, Ab, 〉 and a set of as-
sumptions A ⊆ Ab,

• A attacks an assumption α ∈ Ab if and only if T ∪ A ` α. The corresponding
deduction of α is said to be an argument for α and against α, supported by A.

• A attacks a set of assumptions ∆ ⊆ Ab if and only if A attacks some assumption
α ∈ ∆. The corresponding deduction of α is said to be an argument against ∆,
supported by A. Any such assumption α ∈ ∆ is said to be a culprit in ∆ attacked
by A.

Definition 3.2 A set of assumptions ∆ is stable if and only if

1. ∆ is closed,

2. ∆ does not attack itself, and

3. ∆ attacks every assumption α 6∈ ∆.

Equivalently, ∆ is stable if and only if ∆ is closed and ∆ is the set of all assumptions
it does not attack. Thus, the stable semantics forces ∆ to take a stand for, or against,
every assumption, no matter whether or not that assumption is relevant to a given
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candidate query. The admissibility semantics, on the other hand, requires only that ∆
takes a stand against those (relevant) assumptions that participate in closed attacks
against ∆.

Definition 3.3 A set of assumptions ∆ is an admissible extension of a given theory T
if and only if

1. ∆ is closed,

2. ∆ does not attack itself, and

3. for each closed set of assumptions A ⊆ Ab,

if A attacks ∆ then ∆ attacks A.

In other words, an admissible set of assumptions is a closed set of assumptions that
does not attack itself and that counter-attacks every closed set of assumptions that
attacks it.

For an important class of frameworks, namely stratified frameworks, there exist
unique stable extensions. These extensions coincide with the unique maximal admissi-
ble extensions of these frameworks [4]. Because every admissible extension is contained
in some maximal admissible extension, admissible extensions for stratified frameworks
can always be extended to stable extensions, and proof procedures for the admissibil-
ity semantics can, therefore, be used to approximate the computation of the stable
semantics.

Definition 3.4 A flat framework is stratified if and only if there exists no infinite
sequence of assumptions of the form α1, . . . , αn, . . ., where for every n ≥ 1, αn+1 belongs
to a minimal (with respect to set inclusion) attack against αn.

Example 3.1 The logic program

p ← not q

q ← not p

is not stratified, because there exists an infinite sequence of the form:
not p, not q . . . , not p, not q, . . ..

In the next section we discuss some of the problems inherent in the computation of
credulous default consequences under the stable semantics.
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4 Computation of stable semantics

In the general case, default reasoning is non-computable no matter what semantics is
used to determine the notion of default consequence. This is because, formulated in
argumentation-theoretic terms, all such semantics require the construction of sets of
assumptions ∆ that do not attack themselves. In the case of Theorist and Circum-
scription, this is equivalent to showing that ∆ is consistent; and consistency in general
is not even semi-decidable. The situation is no better for the other logics for default
reasoning.

Because of the non-computability of default reasoning in general, all formal com-
plexity results for default reasoning apply only to the case of finite propositional theories
(e.g. see [11]). Our comparison of the relative efficiency of determining stable versus
admissible consequences, therefore, will be largely informal and will be illustrated by
means of examples.

Example 4.1 It is a principle of most systems of law that a person who is accused of
committing a crime is deemed to be innocent unless the person is proven to be guilty.
Suppose Mary’s father is accused of committing a crime. These assumptions can be
formalised by means of the theory T = {} with the following domain specific inference
rules, written in logic programming form.

innocent(X) ← accused(X), not guilty(X)

accused(father(Mary)).

Consider whether innocent(father(Mary)) is a default consequence of T according
to the stable model semantics. For this purpose, it is necessary to ensure the existence
of a stable set of assumptions ∆ such that innocent(father(Mary)) ∈ Th(T∪∆). How-
ever, only the assumption not guilty(father(Mary)) is “relevant”, in the sense that it
alone, together with the given theory, monotonically implies innocent(father(Mary)).
Thus it is necessary to show that this assumption belongs to some stable set.

There is only one stable set of assumptions for the given theory, and the assumption
does indeed belong to it. However, the stable set is the infinite set

{not guilty(fatheri(Mary))|i ≥ 0}.
In contrast, the singleton set

{not guilty(father(Mary))}
consisting of only the relevant assumption, is admissible.

The “global” character of the stable semantics affects the efficiency of its proof
procedures, which need to guarantee the existence of an entire stable extension, in-
dependently of the query to be answered. In contrast, our proof procedure for the
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admissibilty semantics is query-oriented. It uses the monotonic inference rules back-
wards, logic programming style, not only to find assumptions ∆0 to support the given
query, but also to find attacks and to generate defences against attacks, ending with
an admissible set of assumptions ∆ that includes these defences and extends ∆0.

Some proof procedures for the stable semantics do manage to restrict their attention
to the ”local” computation of relevant assumptions (e.g. [44]), while guaranteeing
nonetheless that they belong to some stable set. However, the following example shows
that this is not always possible.

Example 4.2 Consider whether innocent(father(Mary)) is a default consequence
according to the stable semantics of the theory T = {} and the following domain
specific rules of inference.

innocent(X) ← accused(X), not guilty(X)

accused(father(Mary))

accused(Mary) ← not accused(Mary).

The last rule can be seen as a “bug” in the program. As in example 4.1, only the
set of assumptions ∆0 = {not guilty(father(Mary))} is relevant to the conclusion.

However, according to the stable semantics it is necessary to ensure the existence
of a stable set of assumptions ∆ that contains ∆0. To be a stable set, ∆ either must
contain not accused(Mary) or must imply accused(Mary) (but not both). But the
only way to derive accused(Mary) is by means of the assumption not accused(Mary).
Consequently, there exists no such stable set ∆.

Thus, the example shows that in order to determine whether or not the conclusion
innocent(father(Mary)) holds according to the stable semantics, it is necessary to
consider assumptions, such as not accused(Mary), that are not relevant to the conclu-
sion in any way. In contrast, the admissibility semantics completely avoids the need to
consider such irrelevant assumptions, since ∆0 alone is admissible.

Because stable sets of assumptions are infinite in the general case, most proof
procedures for the stable semantics of logic programs restrict attention to the finite
case (e.g. see [7, 35, 34, 3, 40, 21, 2]). To achieve this restriction, they either prohibit
the use of function symbols or they restrict the number of ground instances of the
program in some other way.

Despite these restrictions, the stable semantics has been successfully applied to a
large class of problem domains, including combinatorics and planning [10]. Typically
in these applications, the input and output are represented by sets of ground relations,
instead of by terms as in ordinary logic programming. It is not obvious, however, to
what extent the success of this approach is due to the semantics and to what extent it is
due to the associated programming style. To the extent that it is due to the program-
ming style, it is possible that similar results can be achieved with proof procedures for
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other semantics, such as the proof procedure for the admissibility semantics presented
in this paper.

As we have already noted, our proof procedure for the admissibility semantics can be
used for many of the applications for which the stable semantics has proved to be useful.
However, it can also be used for more conventional logic programming applications, in
which stable extensions are often infinitely large and can not be computed.

5 Towards a proof procedure for the admissibility

semantics

Both the stable and the admissibility semantics are a semantics in the sense that they
provide a non-constructive specification of default consequence. A proof procedure, on
the other hand, needs not only to be constructive but also to be as efficient as possible.

A potential source of non-constructivity and inefficiency is the need, in the general
case, to generate closed sets ∆ and closed attacks A against ∆. This necessitates
generating potentially all deductive consequences of a set of assumptions to determine
what other hidden assumptions might be entailed.

This problem of generating hidden assumptions does not exist in flat assumption-
based frameworks. However, even in non-flat frameworks, it is not always prohibitively
expensive. For example in the non-flat auto-epistemic and non-monotonic modal logic
theory T = {¬Lp}, the “hidden” assumption ¬Lp belongs to every closed set of as-
sumptions. Therefore, in this example, to turn any set of assumptions ∆ into a closed
set, it suffices simply to add this hidden assumption to ∆.

For the sake of simplicity, we shall focus on developing a proof procedure for flat
assumption-based frameworks. The first two presentations of the proof procedure (in
terms of sets of attacking and defending assumptions) can be adapted to non-flat
frameworks, simply by replacing every reference to ”attack” by ”closed attack”.

Another source of non-constructivity and inefficiency is the requirement that an
admissible set ∆ attacks all attacks A against ∆. This requirement is non-constructive
because, given any attack A0, any superset A of A0 is also an attack and there can be
infinitely many such supersets.

Ideally, it would be sufficient to generate and counter-attack only the minimal
attacks against ∆. But in the general case it is not even semi-decidable to ensure that
an attack is minimal. Therefore instead of minimal attacks we generate and counter-
attack only covering sets of attacks.

Definition 5.1 A set C of sets of assumptions is a covering set of attacks against a set
of assumptions ∆ if and only if each element of C is an attack against ∆ and for every
attack A against ∆, there exists C ∈ C such that C ⊆ A.

Requiring ∆ to counter-attack all attacks in some covering set of attacks greatly
reduces the number of attacks that ∆ needs to counter-attack, and therefore it greatly
improves the prospects of developing an efficient proof procedure.
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Example 5.1 Consider the logic program

q ← not r, not p

q ← not r

r ←
All attacks against the admissible set ∆ = {not q} are supersets of the attack A0={not r}.
Thus, in order to check that ∆ is admissible, it is necessary only to check that ∆
counter-attacks the covering set {{not r}} of attacks against ∆.

Note that if the empty set attacks ∆, then the set consisting of only the empty set
is a covering set of attacks, and consequently there is no way for ∆ to defend itself
against all attacks. On the other hand, if there are no attacks against ∆, then the
empty set is the only covering set of attacks, and therefore ∆ trivially defends itself
against all attacks.

The following theorem is simply a restatement of the definition of admissiblity in
terms of counter-attacking a covering set of attacks.

Theorem 5.1 Given a (flat) assumption-based framework 〈T, Ab, 〉, a set of as-
sumptions ∆ ⊆ Ab is admissible if and only if

1. ∆ does not attack itself, and

2. there exists some covering set C of attacks against ∆,

such that for every A ∈ C, ∆ attacks A.

6 Proof trees for flat assumption-based frameworks

We decompose the task of establishing whether a given set of sentences Q is a credulous
default consequence of 〈T, Ab, 〉 under the admissibility semantics into two subtasks:

1. find a set ∆0 ⊆ Ab such that T ∪∆0 ` Q;

2. find a set ∆ ⊆ Ab such that ∆0 ⊆ ∆ and ∆ is admissible.

Example 6.1 Consider the problem of showing that the query not p is a default con-
sequence of the program

p ← not q

q ← not r

We do this in two stages: First construct the set ∆0 = {not p}. Then extend ∆0 to
the admissible set ∆ = {not p, not r}.
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In this section we focus on the second task, of extending a given ∆0 to an admissible
set ∆. The computation of ∆0 will be incorporated into the proof procedure in section 8.

The notion of abstract proof tree in this section captures the essence of our proof
procedure for the admissibility semantics. In later sections, we will show how to derive
proof trees one step at a time, top-down, starting from the root node and how to
incorporate monotonic inference into the proof tree.

Abstract proof trees demonstrate the incremental extension of an initial set of
assumptions ∆0 to an admissible set ∆. Each node in the proof tree is labelled 5 by a
set of assumptions and has the status of either a defence node or an attack node, but
not both. The set ∆ is the set of all assumptions belonging to the defence nodes in
the tree. For every defence node labelled by a set of assumptions D, the children of
the node are a set of attack nodes labelled by a covering set of attacks against D. For
every attack node labelled by a set of assumptions A, there is a single child node that
is a defence node labelled by an attack against A.

A proof tree can be seen as representing a dispute between a defendant and an
opponent who take turns in exchanging arguments, in the form of sets of assumptions.
The defendant and opponent share the same beliefs, in the form of the assumption-
based framework underlying the construction of the tree. The set of assumptions ∆0,
put forward by the defendant, is the starting point of the dispute. To win the dispute,
the defendant must find a defence against every attack by the opponent.

Thus, viewed top-down, breadth-first and level by level, the dispute is a sequence
of alternating defences and attacks:

D0 = ∆0,A0,D1, . . . ,Ai,Di+1, . . .
The defendant puts forward some defence Di, and the opponent responds with a cov-
ering set of attacks Ai against Di. The defendant counter-attacks with some further
defence Di+1 sufficient to counter-attack every attack in Ai. The defender wins the
dispute either if it never ends or if, for some n, there are no attacks against Dn.

A proof tree is an abstraction of a dispute, in that it does not show how the
proof tree is constructed, and it does not show the search for defences. It is also an
abstraction, in that it does not specify complete arguments, but only the assumptions
underlying those arguments.

It is worth noting, however, that proof trees can be constructed not only top-down,
but also bottom-up, as well as mixed top-down and bottom-up. Thus proof trees
can form the basis for the development of a wide variety of different types of proof
procedures.

Example 6.2 Consider the logic program

p ← not q

q ← not r, not p

5We distinguish between nodes and their labels, because the same set of assumptions can label
different nodes. Alternatively and equivalently, we could treat proof trees as multi-sets of nodes, that
is to say as nodes that are occurrences of sets of assumptions.
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defence: {not q}

attack: {not r, not p}

defence: {}

Figure 1: Proof tree for ∆0 = {not q} in example 6.2

q ← not t, u

r ←
t ←

The problem is to show that p is a default consequence of the program. To do
so, we construct a proof tree whose root is a defence node labelled by {not q}. The
root has a single child, which is an attack node, labelled by {not r, not p}. This attack
node also has a single child, which is a defence node, labelled by the empty set, which
attacks the culprit not r in {not r, not p}. Therefore it is also a leaf node, because there
is no attack against an empty set. The full tree is given in figure 1

Note that not p is another possible choice of culprit in {not r, not p}, and this is
attacked by {not q}. Therefore, there is an infinite proof tree in which the defence
{not q} and the attack {not r, not p} alternate. This infinite proof tree is another suc-
cessful proof for the defendant, because the defendant has a counter-attack for every
attack put forward by the opponent.

A proof tree can be viewed as an and-tree (“and” because it includes all attacks
in a covering set for all attacks against all defence nodes in the tree). However, the
search space for a proof can be viewed as an and-or-tree (“or” because it includes some
defence against every attack node in the tree). To obtain a proof procedure from the
definition of proof tree, we need to specify a strategy for searching the and-or tree, to
find a defence against every attack.

Definition 6.1 A proof tree for a set of assumptions ∆0 is a (possibly infinite) tree
T such that

1. Every node of T is labelled by a set of assumptions and is assigned the status
of defence node or attack node, but not both.

2. The root is a defence node labelled by ∆0.
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3. For every defence node N labelled by a set of assumptions D, the children of N
are a set of attack nodes labelled by a covering set C of attacks against D. (One
such child for every attack in C.)

Note that if there are no attacks against D, then N is a terminal node. In
particular, N is a terminal node, if D is an empty set of assumptions.

4. For every attack node N labelled by a set assumptions A, there exists exactly one
child of N which is a defence node labelled by an attack against an assumption
δ ∈ A. δ is often referred to as the culprit in A.

The set of all assumptions belonging to the defence nodes in T is called the defence
set of T .

The definition of proof tree incorporates the requirement that an admissible set ∆
attacks every attack against ∆. Moreover, it shows how ∆ can be constructed incre-
mentally, starting from ∆0. However, it does not incorporate the further requirement
that ∆ does not attack itself. This further requirement is incorporated in the definition
of admissible proof tree:

Definition 6.2 A proof tree T for ∆0 is admissible if and only if no culprit in the
label of an attack node belongs to the defence set of T .

Notice that the definition of admissibility does not require that attack nodes and
defence nodes have no assumptions in common. This is because the opponent can
use the defendant’s own assumptions against the defendant. However, if the opponent
can attack the defendant using only the defendant’s own assumptions, then the de-
fendant looses the dispute. To win the dispute, the defendant needs to identify and
counter-attack in every attack of the opponent some culprit that does not belong to
the defendant’s own defence.

The admissibility requirement does not necessarily imply that a proof procedure
that searches for admissible proof trees needs to incorporate an explicit admissibility
check. As we will see in theorem 6.2, finite proof trees are guaranteed to be admissible
even without such a check.

The first part of the following theorem is a soundness result, stating that the defence
set of an admissible proof tree is an admissible superset of ∆0. The second part is a
completeness result, guaranteeing that, for any given admissible superset ∆ of ∆0,
there exists a proof tree for ∆0 whose defence set is ∆.

Theorem 6.1 Given a set of assumptions ∆0 ⊆ Ab:

i) If T is an admissible proof tree for ∆0 and ∆ is the defence set of T ,

then ∆0 ⊆ ∆ and ∆ is admissible.

ii) If ∆ ⊆ Ab is an admissible set of assumptions such that ∆0 ⊆ ∆,

then there exists an admissible proof tree for ∆0 with defence set ∆.
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Admissible proof trees can be non-constructive, both because they can be infinite
in breadth and because they can be infinite in depth: They can be infinite in breadth,
because covering sets can be infinite. They can be infinite in depth, because there
can be infinitely long branches of alternating attack and defence nodes. The following
examples illustrate these two possibilities.

Example 6.3 Consider the logic program

p ← q(X), not r(X)

q(succ(X)) ← q(X)

q(0)

r(X)

and the set of assumptions ∆0 = {not p}. The Herbrand universe is the infinite set
{succi(0)|i ≥ 0}. There are infinitely many (finite) attacks against ∆0, i.e.

{not r(0)}, {not r(succ(0))}, {not r(succ(succ(0)))}, etc.
Therefore, the smallest covering set C for all attacks against ∆0 is

{{not r(succi(0))}|i ≥ 0}
and every proof tree for ∆0 is infinite in width. Note that every attack in C is counter-
attacked by the empty set, and thus there exists an admissible proof tree for ∆0 with
defence set ∆0; and therefore ∆0 is admissible.

Example 6.4 Consider the logic program

p(X) ← not q(succ(X))

q(X) ← not p(succ(X))

and the set of assumptions ∆0 = {not p(0)}. There exists an admissible proof tree for
∆0, which consists of a single infinite branch of alternating defence and attack nodes.
For every defence node labelled by a set of assumptions of the form {not p(succ2i(0))},
there is a single child node, which is an attack node labelled by {not q(succ2i+1(0))}.
Similarly, for every attack node labelled by a set of assumptions of the form {not q(succ2i+1(0))}
there is a single child node, which is a defence node labelled {not p(succ2i+2(0))}. The
set of assumptions

∆ = {not p(succ2i(0))|i ≥ 0}
belonging to the labels of defence nodes is an admissible superset of ∆0.

In the special case of proof trees that are finite in depth, the admissibility check is
unnecessary 6:

6However, as example example 7.2 later shows, although an explicit admissibility check is unneces-
sary for such proof trees, it can none-the-less increase the efficiency of recognizing that a partial proof
tree can not be extended into a full proof tree, and therefore it can increase the efficiency of proof
procedures that search for proof trees.
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Theorem 6.2 Any proof tree that has no infinite branches is an admissible proof tree.

All proof trees for stratified frameworks (see section 4) are finite in depth. This is
because the well-ordering of assumptions guarantees the absence of infinite branches.
Therefore, an explicit admissibilty check is unnecessary for such frameworks.

Admissible proof trees represent the idealised output of a proof procedure, which,
to be complete, would have to be capable of constructing infinitely large proof trees. In
practice, therefore, any feasible proof procedure, restricted to constructing finite proof
trees, will necessarily be incomplete in the general case. The definition of derivation in
the next section is restricted to finite derivations. Therefore, any proof procedure that
generates such derivations is incomplete in the general case.

7 Derivations with Filtering by Defences

Informally, a derivation is a step by step, top-down construction of a proof tree, starting
from the root node. Each step corresponds to selecting a node in the frontier of the
proof tree and generating all of its children. Any node can be selected for this purpose.
Different selections give rise to different derivations, but do not affect completeness,
because they simply represent different ways of generating the same proof tree. This
selection can be formalised by means of a selection function, analogous to the use of
such functions in the formal definitions of SLD and SLDNF in logic programming.

The selection of nodes in the proof tree is different from the search for defences
against attacks. The search for defences requires a search strategy, which turns the
definition of derivation into the specification of a proof procedure for finding derivations.

Because our ultimate goal is to develop effective proof procedures, we restrict the
definition of derivation to derivations of finite length. However, as we will see later,
the corresponding proof trees can sometimes be infinite.

Each step in a derivation corresponds to the selection of a node in the frontier of a
proof tree and generating a new frontier. We represent this frontier by a data structure
of the form 〈∆i,Di,Ai〉, where ∆i is the set of defence assumptions generated so far,
Di is the set of defence assumptions that have not yet been selected, and Ai is the set
of attacks that have not yet been selected. 7

The set ∆i is used to filter defence assumptions in Di, so they are not considered
redundantly, more than once, and to filter culprits σ ∈ A in attacks A ∈ Ai, so that
the defence set ∆ constructed by the derivation does not attack itself.

As we will see later, because of filtering of defence assumptions, finite derivations
can sometimes correspond to infinite proof trees. Therefore, because finite derivations
can correspond to infinite proof trees, filtering of attack assumptions is necessary to
guarantee admissibility.

7The ”sets” ∆i,Di,Ai can be true sets or multi-sets (i.e. occurrences of sets), depending upon
whether or not new assumptions and new attacks are filtered to determine whether or not they already
belong to the set or multi-set to which they are added.
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Definition 7.1 A filtered derivation of a defence set ∆ for a set of assumptions
∆0 is a finite sequence of triples

〈∆0,D0,A0〉, . . . , 〈∆i,Di,Ai〉, . . ..,〈∆n,Dn,An〉
where

D0 = ∆0

A0 = Dn = An = {},
∆ = ∆n,

and for every 0 ≤ i < n, only one σ in Di or one A in Ai is selected, and:

1. If σ ∈ Di is selected then

Di+1 = Di − {σ},
∆i+1 = ∆i,

Ai+1 = Ai ∪ C
where C is a covering set of attacks against σ.

2. If A ∈ Ai is selected then there is an attack D against some culprit σ ∈ A such
that

σ 6∈ ∆i (filtering of culprits)

Ai+1 = Ai − {A}
Di+1 = Di ∪D −∆i (filtering of defence assumptions)

∆i+1 = ∆i ∪D.

The use of defence assumptions ∆i to filter defence assumptions Di can turn an
infinite proof tree into a finite derivation. This is illustrated by the following example:

Example 7.1 Consider the logic program

p ← not q

q ← not p

and the query {not p}. There exists a two-step derivation of the defence set {not p}:
〈{not p}, {not p}, {}〉,
〈{not p}, {}, {{not q}}〉,
〈{not p}, {}, {}〉.

Without filtering defence assumptions, it would be necessary to generate an infinite
sequence of alternating defences {not p} and covering sets of attacks {{not q}}, and
the derivation would never terminate. Thus, filtering defence assumptions allows finite
derivations to be constructed in some cases where the corresponding proof tree is
infinite.

Because filtering of defence assumptions can turn an infinite proof tree into a finite
derivation, filtering of culprits is necessary for admissibility :

17



Example 7.2 Consider the same logic program

p ← not q

q ← not p

but this time with the query {not p, not q}. With filtering of defence assumptions, but
without filtering of culprits, there would exist a derivation:

〈{not p, not q}, {not p, not q}, {}〉,
〈{not p, not q}, {not q}, {{not q}}〉,
〈{not p, not q}, {not q}, {}〉,
〈{not p, not q}, {}, {{not p}}〉,
〈{not p, not q}, {}, {}〉.
This derivation corresponds to an infinite proof tree that is not admissible.

Filtering of culprits can also improve efficiency by turning an infinitely failed at-
tempt to generate a derivation into a finite failure.

Example 7.3 Consider the logic program p ← not p and the query {not p}.
The only partial derivation that can be generated by any proof procedure termi-

nates in failure after only one step:

〈{not p}, {not p}, {}〉,
〈{not p}, {}, {{not p}}〉.

This partial derivation can not be extended, because the only candidate culprit in
the only attack in A1 belongs to ∆1.

Without filtering culprits, a proof procedure would attempt to generate an infinite
sequence of alternating defences {not p} and covering sets of attacks {{not p}}, and
would never terminate.

Note that the definition of derivation could be modified to incorporate also filter-
ing by means of culprits, by adding an extra component Ci into the data structure
〈∆i,Di, Ci,Ai〉, where Ci is the set of potential culprits already selected for counter-
attack earlier in the derivation. The definition of derivation would then need to be
modified in step 2, where σ ∈ A is selected as potential culprit and D is chosen to
counter-attack σ, by adding the extra conditions Ci+1 = Ci ∪ {σ} and Ci+1 ∩D ={}.

This modification might seem to be necessary to guarantee admissibility, but it is
not. The situation is analogous to the situation with finite proof trees: Incorporating
such an additional admissibility check can shorten the search for derivations, but is not
necessary for admissibility.

The correspondence between derivations and proof trees is obvious from the sim-
ilarity between their definitions: the step from 〈∆i,Di,Ai〉 to 〈∆i+1,Di+1,Ai+1〉 in a
derivation corresponds to the relationship between a node and its children in a proof
tree. Consequently, derivations have the same defence sets as their corresponding proof
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trees. However, many different derivations with different selection functions can corre-
spond to the same proof tree. If there is a derivation with one selection function, then
there is a derivation with any other selection function. These observations justify the
following theorems.

Theorem 7.1 For every filtered derivation of a defence set ∆ for a set of assumptions
∆0, there exists a (possibly infinite) admissible proof tree for ∆0 with defence set ∆.

The following corollary is a soundness result for derivations, which follows directly
from theorem 6.1.

Corollary 7.1 For every filtered derivation of a defence set ∆ for a set of assumptions
∆0, the defence set ∆ is an admissible set such that ∆0 ⊆ ∆.

Completeness holds for finite derivations, in the sense that for every finite proof
tree there exists a ”corresponding” finite derivation. However, because of filtering, the
correspondence is not exact.

Theorem 7.2 For every finite proof tree for a set of assumptions ∆0 with defence set
∆, and for every selection function, there exists a derivation for ∆0 of a defence set
∆′ ⊆ ∆.

The notions of proof tree and derivation presented in this and the previous section
are defined for flat assumption-based frameworks. As mentioned earlier, the definitions
can be adapted to non-flat frameworks, simply by replacing all references to ”attack”
by references to ”closed attack”.

However, the definitions of concrete proof tree and concrete derivation in the next
two sections can not be so readily adapted to non-flat frameworks. This is because
they incorporate the use of monotonic inference to generate sets of assumptions. To
adapt the definitions to non-flat frameworks, it would be necessary to show how the
monotonic inference rules can be used to generate hidden assumptions, and this is not
straight-forward in the general case.

8 Proof trees incorporating monotonic inference

In this section, we use the monotonic inference rules backwards both to generate attacks
and defences and to generate the supporting set of assumptions ∆0 for an initial query
Q. For this purpose, we generalise the labels of nodes from sets of assumptions to sets
of sentences.

To apply the inference rules backwards, we select some non-assumption sentence
σ in the set of sentences R labelling a node N . We then create a child of N labelled

by the set of sentences R − {σ} ∪ S for some inference rule
S

σ
∈ R. Depending on
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whether N is a defence node or an attack node, N has either one such child (when N
is a defence node) or it has all such children (when N is an attack node).

In the logic programming case, these labels of the children of N are just ground
resolvents of the label at N . In the more general case, they generalise the notion of
resolvent. Just as in the case of resolution, their definition can be further generalised
to incorporate unification.

This generalisation to incorporate unification is especially important in the cases
of logic programming and default logic. Without unification, proof procedures for
generating derivations need to consider all ground instances of the inference rules.
With unification, they can employ the inference rules, containing variables, directly.
We will return to this issue in the next section.

To minimise the use of new terminology, when there is no possibility of confusion,
we will use the same terminology, proof tree and derivation, as we have before. However,
where confusion might arise, we use the terms abstract proof tree and abstract derivation
for the trees and derivations of the earlier sections and concrete proof tree and concrete
derivation for those defined in this section and the next section.

A concrete proof tree can be seen as a concrete representation of a dispute, which
displays, not only the assumptions made by the two adversaries, but also the monotonic
inference steps that the adversaries use to construct their arguments.

Definition 8.1 A proof tree for a set of sentences Q is a (possibly infinite) tree T
such that

1. Every node of T is labelled by a set of sentences and is assigned the status of
defence node or attack node, but not both.

2. The root of T is a defence node labelled by Q.

3. Let N be a defence node labelled by D. If D is empty, then N is a terminal node.
If D is not empty and the selected sentence in D is an assumption δ, then there
exists one child of N , which is an attack node labelled by {δ} and a second child
of N that is a defence node labelled by D - {δ}. If δ is not an assumption, then

there exists some inference rule
S

δ
∈ R and there exists exactly one child of N ,

which is a defence node labelled by D − {δ} ∪ S.

4. Let N be an attack node labelled by A. There exists some selected sentence α in
A. If α is an assumption, then α is the culprit at N , and there exists exactly one
child of N , which is a defence node labelled by {α}. If α is not an assumption

and there exists no inference rule
S

α
∈ R, then N is a terminal node. Otherwise,

the children of N are a set of attack nodes labelled by the sets of sentences

A− {α} ∪ S, where
S

α
∈ R. (There being one such child for each such inference

rule.)
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aaaaaa

defence: {p}

defence: {not q}

attack: {q}

attack: {not r, not p}

defence: {r} defence: {t}

attack: {not t, u}

defence: {}defence: {}

Figure 2: Proof tree for Q = {p} in example 8.1

5. There is no infinite branch consisting only of defence nodes.

The set ∆ of all assumptions belonging to defence nodes in T is called the defence
set of T .

Definition 8.2 A proof tree T for a set of sentences Q is admissible if and only if
no culprit at an attack node belongs to the defence set of T .

Example 8.1 Consider the logic program

p ← not q

q ← not r, not p

q ← not t, u

r ←
t ←

The program is the same as that of example 6.2, and the problem is the same,
namely to show that p is a default consequence of the program. The concrete proof
tree is given in figure 2.

Note that the proof tree contains a branch that does not correspond to any branch
in the abstract proof tree of example 6.2. This is because the branch unnecessarily
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.................................................................................

defence: {not p}

attack: {p}

attack: {p}

attack: {p}

Figure 3: Concrete proof tree for Q = {not p} for the program p ← p

defends the potential attack {not t, u}, which cannot be developed into a complete
attack.

In concrete proof trees, any node N whose selected sentence is an assumption σ,
whether a defence node or an attack node, always has a single child N ′, which is a
node of the opposite status, labelled by {σ}. This node represents all potential attacks
against σ. Monotonic inference rules are applied backwards to such nodes, to generate
descendant nodes of the same status as N ′.

In the case where these descendant nodes are defence nodes, they represent a choice
of one way to counter-attack σ. For such a counter-attack to succeed, it must generate
a finite argument for σ. For this reason, a proof tree may not contain any infinite
branches consisting of defence nodes only. For example, given the logic program p ← p,
there exists no proof tree for the query {p}.

In the case where these descendant nodes are attack nodes, they represent a poten-
tial covering set of attacks against σ. An infinite branch consisting of a succession of
such attack nodes indicates a failure to generate an attack. A proof tree may, therefore,
contain such infinite branches consisting of attack nodes only. For example, given the
logic program p ← p, the query {not p} has an infinite proof tree, the initial part of
which is shown in figure 3.

In addition to finitely generated attacks that are defeated and to infinitely failed
attempts to generate an attack, a proof tree may also contain finitely failed attempts to
generate an attack. This happens when the selected sentence in the label of an attack

node is a non-assumption σ that is the conclusion of no inference rule
S

σ
∈ R.
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To obtain a proof procedure from the definition of proof tree, we construct the
proof tree top-down and specify the search strategy for finding defences. The sim-
plest alternatives are to employ a depth-first or a breadth-first search. Other more
sophisticated strategies are also possible. It is also possible to regard such choices as
non-deterministic, in which case they can be implemented in a non-deterministic pro-
gramming language, such as Prolog. In fact, our implementation of the proof procedure
in Prolog specifically makes use of this possibility. The use of Prolog, of course, means
that the search is depth-first, but controlled by the Prolog compiler or interpreter,
rather than by the Prolog program.

Although it may be more obvious to construct proof trees top-down, as in the case
of abstract proof trees, concrete proof trees can also be constructed bottom-up, as well
as mixed top-down and bottom-up. Thus concrete proof trees, like abstract proof trees,
can form the basis for the development of a great variety of types of proof procedure.

The following theorem states the relationship between abstract and concrete proof
trees: For any concrete proof tree there corresponds an abstract proof tree having the
same or smaller defence set. Similarly, for any abstract proof tree there is a corre-
sponding concrete proof tree having the same or smaller defence set.

Theorem 8.1 Given a set of sentences Q

i) For every concrete proof tree T for Q there exists a set of assumptions ∆0 ⊆ Ab
and an abstract proof tree T ′ for ∆0 such that

• T ∪∆0 ` Q.

• The defence set of T ′ is a subset of teh defence set of T .

• T is an admissible proof tree if and only if T ′ is an admissible proof tree.

ii) For every ∆0 ⊆ Ab such that T ∪ ∆0 ` Q, and for every abstract proof tree T ′

for ∆0, there exists a concrete proof tree T for Q such that

• The defence set of T is a subset of the defence set of T ′.

• T is an admissible proof tree if and only if T ′ is an admissible proof tree.

The following corollary follows directly from the theorem and the soundness and
completeness result for abstract proof trees. It states the soundness and a strong
form of completeness for concrete proof trees. The completeness result is actually
an improvement over the simple completeness we have in the abstract case. Indeed,
the fact that not every possible admissible extension ∆ of ∆0 can be generated as
a defence set of an admissible concrete proof tree is actually an advantage, because
arbitrary extensions ∆ can contain assumptions that are not relevant to the defence of
∆0.

Corollary 8.1 Given a set of sentences Q:
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i) If T is an admissible concrete proof tree for Q and ∆ is the defence set of T ,

then, T ∪∆ ` Q and ∆ is admissible.

ii) If ∆ ⊆ Ab is an admissible set of assumptions such that T ∪∆ ` Q,

then, there exists an admissible concrete proof tree for Q with defence set ∆′ ⊆ ∆
such that ∆′ is admissible and T ∪∆′ ` Q.

As is the case with abstract proof trees, the admissibility check is unnecessary for
concrete proof trees that are finite in depth:

Theorem 8.2 Any concrete proof tree that has no infinite branches is an admissible
concrete proof tree.

For a large class of frameworks, generalising the class of acyclic logic programs [1],
all branches of all concrete proof trees are finite. A framework is acyclic if there is a
well-ordering of all sentences in the language of the framework such that, whenever a
sentence belongs to the premise of an inference rule, then the sentence is lower in the
ordering than the consequent of the inference rule.

Although proof trees can be constructed top-down, bottom-up or mixed top-down-
bottom-up, derivations restrict that choice to the top-down direction.

9 Concrete Derivations with Filtering by Defences

Concrete derivations bear to concrete proof trees the same relationship that abstract
derivations bear to abstract proof trees. As in the case of abstract derivations, we
restrict concrete derivations to derivations of finite length. However, because of filtering
by defences, concrete derivations sometimes correspond to infinite concrete proof trees.
Concrete derivations generalise the derivations for logic programming of [18].

Definition 9.1 A filtered derivation of a defence set ∆ for a non-empty set of
sentences Q is a finite sequence of triples

〈∆0,D0,A0〉, . . . , 〈∆i,Di,Ai〉, . . ..,〈∆n,Dn,An〉
where

D0 = Q
∆0 = Ab ∩Q
A0 = Dn = An = {},
∆ = ∆n, and
for every 0 ≤ i < n, either σ in Di or A in Ai is selected but not both, and:

1. If σ ∈ Di is selected and σ is an assumption, then

Di+1 = Di − {σ}
∆i+1 = ∆i

Ai+1 = Ai ∪ {{σ}}.
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2. If σ ∈ Di is selected and σ is not an assumption, then there exists some inference

rule
S

σ
∈ R and

Di+1 = Di − {σ} ∪ S −∆i (filtering of defence assumptions)

∆i+1 = ∆i ∪ (Ab ∩ S)

Ai+1 = Ai.

3. If A ∈ Ai and α ∈ A are selected and α is an assumption, then

α 6∈ ∆i (filtering of culprits)

Ai+1 = Ai − {A}
Di+1 = Di ∪ {α}
∆i+1 = ∆i.

4. If A ∈ Ai and α ∈ A are selected and α is not an assumption, then

Ai+1 = Ai − {A} ∪ {A− {α} ∪ S | S
α
∈ R}

Di+1 = Di

∆i+1 = ∆i.

Note that the definition of concrete derivation could be modified, like the definition
of abstract derivation, to incorporate also filtering by means of culprits. As in the case
of abstract derivations, this modification has the advantage that it can result in earlier
termination of unsuccessful searches.

The definition can also be modified in steps 2 and 4 above, to incorporate unification
of the selected non-assumption with the conclusion of the inference rules. This modi-
fication is necessary in cases like logic programming and default logic, where infinitely
many inference rules are represented by finitely many inference rule schemata.

This modification is illustrated in the following two examples:

Example 9.1 Consider the query {even(s(s(0)))} to the program:

even(0)

even(succ(X)) ← not even(X)

The second rule is actually an inference rule schema, standing for the infinitely
many ground instances: even(succi+1(0)) ← not even(succi(0)), over the Herbrand
universe {succi(0)|i ≥ 0}.
Using unification to match selected non-assumptions with the conclusion of the infer-
ence rule schema, we obtain the following derivation:

〈{}, {even(succ(succ(0)))}, {}〉,
〈{}, {not even(succ(0))}, {}〉,
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〈{not even(succ(0))}, {}, {{even(succ(0))}}〉,
〈{not even(succ(0))}, {}, {{not even(0)}}〉,
〈{not even(succ(0))}, {even(0)}, {}〉,
〈{not even(succ(0))}, {}, {}〉.

Example 9.2 Consider the query {not p} to the logic program:

p ← q(X), not r(succ(X))

q(0)

r(succ(0))

r(succ(X)) ← r(X)

The only way to attack the query is by using the inference rule schema p ← q(X), not
r(succ(X)). Without unification, a proof procedure would have to consider separately
the infinitely many potential attacks {q(succi(0)), not r(succi+1(0))}, where i ≥ 0,
associated with the ground instances of the inference rule schema.

However, by using unification instead of ground instantiation, it is possible to con-
sider instead only the single schematic potential attack {q(X), not r(succ(X))}.

Suppose the selection rule chooses q(X) in this schematic potential attack. With
unification, this selection rule gives rise to the following finite derivation:

〈{not p}, {not p}, {}〉,
〈{not p}, {}, {{q(X), not r(succ(X))}}〉,
〈{not p}, {}, {{not r(succ(0))}}〉,
〈{not p}, {r(succ(0))}, {}〉,
〈{not p}, {}, {}〉.
Our Prolog implementation is a meta-logic program that directly implements the

unmodified definition above. It represents the potentially infinitely many ground in-
stances of an inference rule schema by a single meta-level term, directly representing
the schema itself. Thus, it is the Prolog compler/interpreter, rather than the Prolog
implementation of the proof procedure, that unifies selected non-assumptions with the
conclusions of the inference rules.

The correspondence between concrete derivations and concrete proof trees is similar
to that between abstract derivations and abstract proof trees: One step in a deriva-
tion corresponds to the relationship between a node and its children in a proof tree.
Consequently, concrete derivations have the same defence sets as their corresponding
concrete proof trees:

Theorem 9.1 For every concrete filtered derivation of a defence set ∆ for a set of
sentences Q, there exists a (possibly infinite) admissible concrete proof tree for Q with
defence set ∆.

The following corollary is a soundness result for derivations, which follows directly
from theorem 9.1 above and corollary 8.1.
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Corollary 9.1 For every filtered derivation of a defence set ∆ for a set of sentences
Q, the defence set ∆ is an admissible set such that ∆0 ⊆ ∆.

As in the case of abstract derivations, completeness holds for finite derivations:

Theorem 9.2 For every finite concrete proof tree for a set of sentences Q with defence
set ∆, and for every selection function, there exists a concrete filtered derivation for Q
of defence set ∆′ ⊆ ∆.

The proofs of theorems theorem 9.1 and theorem 9.2 for the concrete case are
similar to those for theorem 7.1 and theorem 7.2 for the abstract case. Because of this
similarity they are not included in the appendix.

10 Comparisons

The proof procedure presented in this paper is a further development of the proof
procedure of Dung, Kowalski and Toni [16] for computing the admissibility semantics
for abstract assumption-based frameworks. The proof procedure of [16] is developed
in the form of a metalogic program that is derived systematically from specifications
formalised in logic, by means of logic program transformation techniques [36].

In developing the proof procedures in [16], we discovered that the notion of proof
tree is the basic notion upon which all the other notions depend. For this reason, we
have temporarily set aside the transformation techniques of [16], to develop the proof
tree approach presented in this paper.

Kakas and Toni [47, 27] also develop an argumentation-theoretic proof procedure
for the admissibility semantics as well as for the well-founded semantics [50], the weak
stability semantics [25] and the acceptability semantics [26]. Their proof procedure is
explicitly defined only for logic programs, but, as the authors remark and as this paper
shows, they can be generalised to any flat assumption-based framework.

Kakas and Toni [47, 27] present a number of presentations of their proof procedure,
parameterised for different semantics. Although they use the terminology of proof trees,
all of their presentations of their proof procedure are, in fact, based on derivations,
rather than on proof trees in the sense that we have defined them. Therefore, although
their proof procedure is similar to our derivations, they do not have a presentation
in terms of proof trees in our sense. Moreover, their use of proof tree terminology
arguably obscures the nature of their proof procedure.

The proof procedures of [16] and [47, 27], like that of this paper all generalise
the proof procedure for logic programming of [18]. Although the proof procedures of
[47, 27] incorporate both filtering by defences and filtering by culprits, in this paper
we analyse the extent to which such filtering is needed both to turn some infinite proof
trees into finite derivations and to guarantee admissibility.

Although our proof procedure computes credulous default consequences relative to
the admissibility semantics, it can also be used as a basis for computing (credulous
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and/or sceptical) default consequences relative to other semantics. In particular, since
every admissible extension is contained in a maximal admissible extension, our proof
procedure is sound with respect to (credulous) maximal admissible extension semantics,
i.e. partial stable model [43]/preferred extension semantics [12] in the logic program-
ming case. Dung, Mancarella and Toni [15] present a number of proof procedures for
computing sceptical consequences under the partial stable model/preferred extension
semantics and credulous and sceptical consequences under the stable semantics that
are parametric with respect to any procedure for computing credulous consequences
under admissibility.

Various proof procedures have been defined for the stable semantics for a number
of concrete logics for default reasoning. However, to the best of our knowledge, there
currently exists no proof procedure for any logic for default reasoning that computes
default consequences under the (credulous or sceptical) stable semantics consequences
that does not have significant restrictions.

Satoh and Iwayama [44] define a proof procedure for computing the stable semantics
for range-restricted logic programs that admit at least one stable model. Therefore,
the proof procedure cannot be applied to the program in example 4.2. However, for
example 4.1, it generates only the one relevant assumption needed to establish the
desired conclusion and, therefore, it avoids in this case the need to explicitly consider
the infinitely many irrelevant assumptions.

Chen and Warren [7] define a proof procedure for computing the stable semantics
for finite propositional logic programs. However, they show that the proof procedure
can also be used to compute credulous default consequences of non-propositional logic
programs under the partial stable model semantics [43]. In example 4.2, the sentence
innocent(father(Mary)) is a default consequence under the partial stable model se-
mantics, and the proof procedure sucessfully demonstrates the conclusion, generating
only the one relevant assumption that is needed for the conclusion.

Niemelä and Simmons [35] define proof procedures for computing default conse-
quences under both the credulous and sceptical stable semantics for range-restricted,
function-free logic programs. Because of these restrictions, the proof procedures cannot
be applied to examples 4.1 and 4.2.

Satoh [45] adapts the (credulous) proof procedure in [44] to determine default con-
sequences with respect to the semantics of default logic. The proof procedure applies
to consistent default theories whose default rules are expressed in clausal form. The
procedure is defined only for the propositional case, but can be applied to the non-
propositional case, by appropriately instantiating variables.

Niemelä [34] also defines proof procedures for default logic. These procedures are
defined for the propositional case and for a decidable fragment of first-order logic.

Barback and Lobo [3] similarly define a proof procedure for default logic. The proof
procedure is sound and complete for finite semi-normal default theories, whose every
subtheory is guaranteed to admit a (stable) extension.

Dung [14] introduced the idea of viewing proof procedures in logic programming
as dialogue games in which an opponent and proponent attack and defend their argu-
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ments. This view of proof procedures is similar to the view presented in this paper.

11 Conclusion

In this paper, we have presented a succession of presentations of an argumentation-
theoretic proof procedure for credulous default reasoning. The most abstract of these
is based upon the notion of abstract proof tree, which displays the tree structure of
attacks and defences, put forward by a defendant and opponent in the course of a
dispute ending as a win for the defendant.

Abstract proof trees are neutral with respect to whether they are constructed top-
down, bottom-up or mixed top-down-bottom-up, and also with respect to the search
strategy for searching for successful proof trees.

Derivations are obtained from proof trees, by restricting the direction for construct-
ing proof trees to the top-down direction. Each step in a derivation corresponds to the
generation of the children of a selected child at the frontier of a proof tree and the con-
struction of a new frontier. New defence assumptions and culprits are filtered, using the
accumulated set of defence assumptions already generated in the derivation. Filtering
new defence assumptions sometimes results in finite derivations whose corresponding
proof trees are infinite. Filtering of culprits is necessary in such cases to ensure that
the final defence set generated by the derivation does not attack itself.

Like abstract proof trees, abstract derivations are also neutral with respect to the
search strategy for searching for successful derivations.

Although we define abstract proof trees and abstract derivations explicitly only for
flat frameworks, they can be adapted for non-flat frameworks by replacing all references
to ”attacks” by references to ”closed attacks”.

We define concrete proof trees and concrete derivations by specifying how to incor-
porate monotonic inference into abstract proof trees and abstract derivations, respec-
tively. This restricts the resulting proof procedures to flat assumption-based frame-
works. In other respects, however, concrete proof trees and concrete derivations bear
a similar relationship to that between abstract proof trees and abstract derivations.

We have implemented in Prolog a proof procedure that searches for concrete deriva-
tions. The implementation is a non-deterministic meta-logic program. The proof pro-
cedure inherits its depth-first search strategy and selection function from the Prolog
interpreter/compiler; and it similarly inherits its use of unification for applying infer-
ence rule schemata from the Prolog interpreter/compiler.

Our argumentation-theoretic proof procedure is defined for the admissibility se-
mantics. However, as Kakas and Toni have shown [47, 27], it is possible to define
proof procedures, for a number of different semantics, including the admissibility se-
mantics, in a uniform, parametric manner. It would be interesting, therefore, to adapt
the argumentation-theoretic proof procedure of this paper to the range of semantics
investigated in [47, 27]. It would also be interesting to explore the applicability of
these proof procedures to the legal reasoning domain and to study their relationships
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to the argumentation-theoretic proof procedures that have been developed specifically
for legal reasoning [39].
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A Abstract Proof Trees

Given a proof tree, an attack node N in the tree, labelled by a set of assumptions A,
and a child of N labelled by a set of assumptions D, let culprit(A) be an arbitrary
assumption in A attacked by D.

Theorem 6.1
Given a set of assumptions ∆0 ⊆ Ab:

i) If T is an admissible proof tree for ∆0 and ∆ is the defence set of T ,

then ∆0 ⊆ ∆ and ∆ is admissible.

ii) If ∆ ⊆ Ab is an admissible set of assumptions such that ∆0 ⊆ ∆,

then there exists an admissible proof tree for ∆0 with defence set ∆.

PROOF

1. It is obvious that ∆0 ⊆ ∆. It remains to prove that ∆ does not attack itself and
attacks every attack against it.

From the definition of admissible proof tree, it follows that for each label A of an
attack node in T , culprit(A) 6∈ ∆

Assume that ∆ attacks itself. Let δ ∈ ∆ such that ∆ attacks δ. From the
definition of ∆, there is a defence node N labelled by D such that δ ∈ D. Since
∆ attacks δ, ∆ attacks D. Because the labels of the children of N form a covering
set of attacks against D, there is a child of N that is labelled with A such that
A ⊆ ∆. Hence culprit(A) ∈ ∆. Contradiction.

Assume that S is an attack against some assumption δ ∈ ∆. From the definition
of ∆, there is a defence node N labelled with D such that δ ∈ D. Since S attacks
δ, S attacks D. Therefore there is a child M of N which is labelled by some A
such that A ⊆ S. Therefore A is attacked by the label E of its only child. Since
E ⊆ ∆, ∆ attacks A and therefore ∆ attacks S.

2. Let C be a covering set of attacks against ∆. Note that C is also a covering set
of attacks against ∆0. Construct a proof tree as follows:

(a) The root is labelled by ∆0. This node is of rank 0.

(b) The children of the root are labelled by the attacks in C - there being one
such node for every such attack. These children are all attack nodes and
have rank 1.

(c) For each node N of rank k ≥ 1:

• If N is a defence node, then N is labelled by ∆ and the children of N
are labelled by the attacks in C - there being one such node for every
such attack.
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• If N is an attack node, then N has a single child, which is a defence
node of rank k+1, labelled with ∆.

It is obvious that this tree is an admissible proof tree whose set of defence nodes
is ∆.

Theorem 6.2
Any proof tree that has no infinite branches is an admissible proof tree.

PROOF: Two nodes (N, M) are said to be conflicting if N is a defence node and
M is an attack node such that the culprit of M belongs to the label of N . Let
(N,M) < (N ′,M ′) if (N,M)and(N ′,M ′) are conflicting pairs of nodes, N ′ is a child
of N , and M ′ is a child of M .

It is clear that the existence of an infinite sequence (N0,M0) < (N1,M1) < ....
implies that the proof tree is not finite.

To prove the theorem, we prove that any non-admissible proof tree is infinite. This
follows directly from the following claim:

Claim Let (N, M) be a conflicting pair of nodes. There is another conflicting pair
(M ′, N ′) such that (N, M) < (M ′, N ′).

Proof: Let α be the culprit at M . Let D be the label of the only child M ’ of M .
Then D attacks α.

Because α belongs to the label of N , and because the labels of the children of N
are a covering set of attacks against the label of N , there is a child N ′ of N that is
labelled by some D′ such that D′ ⊆ D. Because N ′ is an attack node, D′ 6= {}. Hence
it is clear that the culprit at N ′ belongs to D’ and therefore also belongs to D. This
implies that (M ′, N ′) is a conflicting pair of nodes and (N, M) < (M ′, N ′).

B Transformation of Filtered Abstract Derivation

Into Abstract Proof Trees

The transformation consists of two steps: First a filtered abstract derivation is trans-
formed into a filtered abstract proof tree, then a filtered abstract proof tree is trans-
formed into a abstract proof tree.

B.1 Filtered Abstract Proof Tree

Definition B.1 A filtered abstract proof tree for a set of assumptions ∆0 is a
finite tree T such that:

1. Every node of T is labelled by a set of assumptions and is assigned the status of
defence node or attack node, but not both.

2. The root is an defence node labelled by ∆0
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3. At every defence node N , the assumptions belonging to its label are classified as
one of type”filtered” or ”defended”. For each assumption belonging to the label
of a defence node, there is exactly one defence node at which it has the status
”defended”.

4. For every defence node N labelled by a set of assumptions D, the children of N
are a set of attack nodes, labelled by a covering set of attacks against the set
consisting of the defended assumptions in the label of N .

5. For every attack node N labelled by a set of assumptions A, there exists exactly
one child of N , which is a defence node labelled by an attack against A.

The set of all assumptions belonging to defence nodes in T is called the defence
set of T .

The definition of admissible filtered proof tree is similar to the definition of admis-
sible proof trees.

B.2 Transformation of Filtered Abstract Derivations Into Fil-
tered Abstract Proof Trees

Let
〈∆0,D0,A0〉, . . . , 〈∆i,Di,Ai〉, . . . , 〈∆n,Dn,An〉

be a filtered derivation.

We will construct a sequence of partial filtered proof trees:
T0, . . . , Ti, . . . , Tn,
such that Ti corresponds to 〈∆i,Di,Ai〉 in the sense that:

Lemma B.1 • The set of assumptions belonging to the labels of defence nodes of
Ti coincides with ∆i.

• The set of assumptions that belong to the labels of defence nodes of Ti and are
neither of type filtered nor of type defended coincides with Di.

• The set of labels of attack nodes of Ti that are leaves in Ti coincides with Ai.

Proof: The trees Ti are constructed inductively as follows:

• T0 consists of exactly one node that is also its root and is a defence node. The
label of the root is ∆0.

Assume that Ti has been constructed and corresponds to 〈∆i,Di,Ai〉. We now
construct Ti+1. There are two cases:
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• σ ∈ Di is selected and

Di+1 = Di − {σ},
∆i+1 = ∆i,

Ai+1 = Ai ∪ Cσ

where Cσ is a covering set of attacks against σ.

Let N be a defence node such that σ belongs to the label of N . Let |Cσ| = k.
Add k children to N and label them with the attacks in Cσ. Mark the type of σ
as ”defended”. The new nodes are attack nodes.

The resulting tree Ti+1 corresponds to 〈∆i+1,Di+1,Ai+1〉.
• A ∈ Ai is selected and there is an attack D against some culprit σ ∈ A such that

σ 6∈ ∆i

Ai+1 = Ai − {A}
Di+1 = Di ∪D −∆i,

∆i+1 = ∆i ∪D.

Let N be a leaf in Ti such that N is an attack node and A is the label of N . Add
a child of N and label it with D. Mark the assumptions belonging to D ∩∆i as
”filtered”.

The resulting tree Ti+1 corresponds to 〈∆i+1,Di+1,Ai+1〉.
Corollary

Tn is a admissible filtered proof tree whose defence set is ∆n.

B.3 Expanding Abstract Filtered Proof Trees into Abstract
Proof Trees

Informally speaking, we expand a filtered proof tree T into a proof tree, by repeatedly
adding below each defence node whose label contains one or more filtered assumptions
δ additional subtrees rooted in attack nodes against δ, extracted from the part of T
where δ is marked as defended.

More precisely: For each assumption δ belonging to the defence set of T , let Nδ be
the unique defence node of T at which δ is marked as defended.

Let C be the set of all labels of the children of Nδ.
It is clear that the set Cδ = {A ∈ C | A is an attack against δ } is a covering set of

attacks against δ. For each of A ∈ Cδ, define Tδ,A to be the subtree of T whose root is
the child of Nδ labelled by A.

The expansion of T is obtained as the limit of the sequence
T0, . . . , Ti,Ti+1, . . . ,.
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defined as follows:

1. T0 = T .

2. Assume that we have already constructed Ti, where i ≥ 0. Ti+1 is obtained by
expanding Ti simultaneously at each defence node N whose label contains one or
more filtered assumptions as follows:

Let D be the set of all filtered assumptions belonging to the label of N . Let
CN = (

⋃{Cδ | δ ∈ D}) − C where C is the set of all labels of the children of N .
Let Ti+1 be Ti with new children added to N that are attack nodes labelled by
the elements of CN . Expand each of these children by the tree Tδ,A.

3. The limit of (Ti)i=1,...,∞ is denoted by expand(T ).

It is obvious from the construction of expand(T ) that:

Lemma B.2 1. expand(T ) is a proof tree.

2. expand(T ) is admissible iff T is admissible.

3. The defence sets of T and expand(T ) coincide.

It follows immediately that:

Lemma B.3 Given a set of assumptions ∆0, for every admissible filtered proof tree
T for ∆0, there exists a admissible proof tree T ′ for ∆0 such that the defence sets of
T and T ′ coincide.

It follows that:

Theorem 7.1
For every filtered derivation of a defence set ∆ for a set of assumptions ∆0, there exists
a (possibly infinite) admissible proof tree for ∆0 with defence set ∆.

B.4 Transformation of Finite Abstract Proof Trees into Fil-
tered Abstract Proof Trees

To prove theorem 7.2, we give a method to translate every finite proof tree with a
defence set ∆ into a filtered proof tree T ′ with a defence set ∆′ ⊆ ∆.

Let T be a finite proof tree with a defence set ∆. For each assumption δ ∈ ∆, let
dis(δ) = min{ k | there is a node N such that δ belongs to the label of N and k is the
length of the path from the root to N }.

We construct T ′ by starting from T and repeatedly cutting of nodes from T and
labelling the assumptions accordingly:
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• For each defence node N in T , mark each assumption δ belonging to the label of
N, as filtered if the length of the path from the root to N is greater than dis(δ).
Mark all the other assumptions as defended.

For each defence node N, it is obvious that the set of all labels of the children
of N is covering set of attacks against the label of N. Let CN be a subset of this
set that constitutes a covering set of attacks against the assumptions marked as
defended.

• Repeatedly for each defence node N, delete all the children of N whose labels do
not belong to CN .

It is not difficult to see that T ′ is a filtered abstract proof tree.

C Transformation from Concrete Proof Trees into

Abstract Proof Trees and Vice Versa

C.1 Preliminaries

A set of assumptions A is said to support α if A ` α. A supports a set of sentences S
if A supports each sentence in S. A is also often called a support of α or S.

A representative set of supports for α is defined as a set of assumptions B such that
B ∩ A 6= {} for any support A of α.

It should be clear that R is a representative set of supports for an assumption α iff
α ∈ R. Further if α has no support then every set of assumptions is a representative
set of supports of α. If α has an empty support then there exist no representative set
of support of α.

It is easy to see that

Lemma C.1 Let C be a covering set of attacks against an assumption α. A set of
assumptions B is a representative set of supports for α iff for each A ∈ C, A ∩B 6= {}
Lemma C.2 1. Let α be a non-assumption sentence and B be a representative set

of support of α. Then for each rule of the form S
α
, there is at least a β ∈ S such

that B is also a representative set of supports of β

2. Let α be a non-assumption sentence. For each rule r of the form S
α
, let Br be a

representative set of supports of at least one β ∈ S. Then

B =
⋃{Br | r is a rule of the form S

α
} is a representative set of supports of α

3. Let A be a set of sentences. B is a representative set of supports of A iff B is a
representative set of supports for some α ∈ A
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PROOF

1. Let B be a representative set of supports of α. Let r be a rule of the form S
α
. We

want to show now that B is also a representative set of support for some β ∈ S.
Assume the contrary. Therefore for each β ∈ S there is a set of assumptions Rβ

such that Rβ supports β and B ∩ Rβ = {}. Therefore R =
⋃{Rβ | β ∈ S } is a

set of assumptions that supports α and R ∩ B = {}. This is contrary to the fact
that B is a representative set of supports of α. Therefore, there is β ∈ S s.t. B
is a representative set of its supports.

2. Let R be a set of assumption that supports α. Therefore there is a rule r of the
form S

α
such that R supports S. Therefore R also supports every element of S.

Therefore, from the definition of Br, it follows immediately R ∩ Br 6= {}. Hence
B ∩R 6= {}. We have proved that B is a representative set of supports of α.

3. We only need to prove the only-if direction. Let B be a representative set of
supports of G. Assume B is not a representative set of supports of any of the
subgoals of G. Hence for any subgoal α of G there is a support Sα that is disjoint
to B. Therefore the union of all Sα is a support of G that is disjoint to B.
Contradiction

We introduce two kinds of partial proof trees which together constitute the concrete
proof tree.

C.2 Support Tree

A support tree of a set of sentences Q is a tree defined as follows:

1. Every node is labelled by a set of sentences and is assigned the status of a defence
node.

2. The root is labelled by Q.

3. Let N be a node labelled D. If D is empty, then N is a terminal node. If D is
not empty and the selected sentence in D is an assumption δ, then there exists
exactly a child of N , which is labelled by D - {δ}. If δ is not an assumption,

then there exists some inference rule
S

δ
∈ R and there exists exactly one child of

N labelled by D − {δ} ∪ S.

It is easy to see that

Lemma C.3 1. Let T be a finite support tree of Q. Then the set of assumptions
in T supports Q

2. Let S be a set of assumptions supporting Q. Then there exists a finite support
tree of Q whose set of assumptions is a subset of S.
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C.3 Representative Tree

A representative tree of a set of sentences A is a finite tree defined as follows:

1. Every node is labelled by a set of sentences and is assigned the status of attack
node.

2. The root is labelled by A

3. Let N be an node labelled by B. Then B 6= {}. If the sentence selected in B is
an assumption α, thenN is a leaf. If the selected sentence α is not an assumption

and there exists no inference rule
S

α
∈ R, then N is a terminal node. Otherwise,

the children of N are a set of attack nodes labelled by the sets of sentences

A− {α} ∪ S, where
S

α
∈ R. (There being one such child for each such inference

rule.)

Lemma C.4 Let A be a set of sentences.

1. Let B be the set of assumptions selected in a representative proof treeT of A.
Then B is a representative set of supports of A

2. Let B be a representative set of supports of G. Then there is a representative
proof tree T of A for some α ∈ A such that the set of assumptions selected in T
is a subset of B.

Proof

1. Let R be a set of assumptions supporting A. We have to show that there exists a
leaf of T whose selected sentence is an assumption belonging to R. Let α be the
selected sentence at the root. If alpha is an assumption, we are done. Assume
now that α is not an assumption.

It is clear that there is a deduction of A from T ∪ R. For the purpose of the
simplicity, we introduce the following notion of a simplified deduction.

A simplified deduction of A from R is a sequence β1, . . . , βn such that

• A ⊆ {β1, . . . , βn} ∪R, and

• For every i ≤ k there is a rule of the form S
βi

such that S ⊆ R∪{β1, . . . , βi−1}.

It is clear that there is a simplified deduction β1, . . . , βn of A from R. Because α
is not an assumption, it is clear that n ≥ 1.

We prove the lemma by induction on n.

Letn = 1. Therefore there is a rule of the form S
α

such that S ⊆ R. Because
A ⊆ {β1, . . . , βn}∪R, it follows A ⊆ {α}∪R. Since α ∈ A, it follows immediately
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(A− {α}) ∪ S ⊆ R. As (A− {α}) ∪ S labels a child of the root, it is not empty.
We are done.

Induction hypothesis. Let n ≥ 2. Let S
α

be the rule used in the first step of the
simplified deduction. LetNbe the node corresponding to this rule in the set of
children of the root of T . Let δ be the selected sentence at this node. If δ is an
assumption then obviously δ ∈ R and N is a leaf of T . Part 1 of the above lemma
is therefore proved.

Let δ be a non-assumption sentence. It is clear that there is a simplified deduc-
tion of set (A − {α}) ∪ S labellingN from R that is a subsequence of β1, . . . , βn.
Obviously this deduction has a length less than n. Therefore, according to the
induction hypothesis, the intersection of R with the set of assumptions selected
in the subtree of T which hasNas its root is not empty. Hence the intersection
of the set of assumptions labelling the leaves of T with R is not empty.

2. T is defined as follows:

(a) Every node is labelled by a set of sentences and is assigned the status of
attack node.

(b) The root is labelled by A such that B is a representative set of support of
the selected sentence.

(c) Let N be an node labelled by B. Then B 6= {}. If the sentence selected in
B is an assumption α, thenN is a leaf. If the selected sentence α is not an

assumption and there exists no inference rule
S

α
∈ R, then N is a terminal

node. Otherwise, B is a representative set of support of α and the children
of N are a set of attack nodes labelled by the sets of sentences A−{α}∪S,

where
S

α
∈ R. (There being one such child for each such inference rule.)

The existence of such a tree T is guaranteed by lemma C.2. Because B is a
representative set of supports of α, from lemma C.2, it follows that if a assump-
tion subgoal is selected, it belongs to B. It follows immediately that the set of
assumptions selected at the leaves of T is a subset of B.

C.4 Transformation from Concrete Proof Trees into Abstract
Proof Trees

Let T be a concrete proof tree. Define T (N) as the maximal subtree of T rooted at N
all of whose nodes have the same attack/defence node status as N . Intuitively, T (N)
isolates the monotonic part of the subtree of T rooted at N . Equivalently, T (N) can
be obtained from T as follows:

• Let T1 be the subtree of T rooted at N .
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• Delete all the nodes in T1 which have a different attack/defence node status than
N or which are successors of a node that has different attack/defence node status
than N . The resulting tree is T (N).

It is easy to see that if N is an attack node labelled by δ for some assumption δ
then T (N) is a representative tree of δ. Further if N is an defence node labelled by δ
for some assumption δ then T (N) is a support tree of δ.

Let assumptions(T (N)) be the set of assumptions selected in T (N). If N is a
defence node, then these are all the assumptions in T (N). If N is an attack node, then
these are all culprits, which are counter-attacked at a lower level in T .

We construct an abstract proof tree reduct(T ), corresponding to T , such that
reduct(T ) and T have the same defence assumptions and culprits:

Definition C.1 1. The root of reduct(T ) is a defence node labelled by assumptions(T (N0))
where N0 is the root of T .

2. Suppose that N is a defence node and the ancestors of N in reduct(T ) are already
defined. Let D be the set of assumptions labelling N . For each assumption δ
belonging to D, let Nδ be an attack node in T labelled by {δ}. Since T (Nδ) is
a representative tree for δ, Bδ = assumptions(T (Nδ)) is a representative set of
supports for δ (lemma C.4).

Let Cδ be an arbitrary but fixed covering set of attacks against δ. For each set
A ∈ Cδ, let culprit(A) be an arbitrary but fixed assumption from A ∩ Bδ (From
lemma C.1, it is clear that A ∩Bδ is not empty).

The children of N are a set of attack nodes labelled by
⋃{Cδ | δ ∈ D}. For each

label A of one of these children, culprit(A) is the selected culprit in A.

3. Suppose that N is an attack node and the ancestors of N in reduct(T ) are already
defined. Let A be the set of assumptions labelling N , and let α = culprit(A) be
the selected culprit in A. Let Nα be an defence node in T labelled by {α}.
Then N has a single child labelled by assumptions(T (Nα)).

Note that since T (Nδ) is a support tree for δ, assumptions(T (Nδ)) is a support
for δ (lemma C.3).

It is easy to see that, by letting T ′ = reduct(T ), we obtain theorem 8.1, part i).

D Transformations from Abstract Proof Trees into

Concrete Proof Trees

Let T be an abstract proof tree for a set of assumptions ∆0. For each assumption δ
in the defence set or culprit set of T let Nδ be an arbitrary but fixed node such that δ
belongs to the label of Nδ. Let D be the defence set of T .
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For each assumption δ ∈ D, Cδ consists of the labels of the children of Nδ that are
attacks against δ. It is not difficult to see that Cδ is covering set of attacks against
δ. Let Bδ be the set of culprits in Cδ. It is obvious that Bδ is a representative set of
supports for δ.

For each assumption δ that is the culprit at some attack node N labelled by A, let
Dδ denote the label of the only child of N . It is clear that Dδ is a support of δ.

Before defining a concrete proof tree T ′, we define the following tree T1.

1. The root of T1 is a defence node labelled by ∆0.

2. Let N be a defence node labelled by D. If D is empty, then N is a terminal node.
If D is not empty and the selected sentence in D is an assumption δ, then there
are two children of N : one is an attack node labelled by {δ} and the other is a
defence node labelled by D - {δ}.

Now we recursively expand T1 into a concrete proof tree as follows:

1. Expand each attack node N labelled by {δ} that is a child of a defence node
by a representative tree T whose set of selected assumptions is a subset of Bδ.
(The existence of such tree is guaranteed by lemma C.4). Further, expand each
terminal node in T whose selected sentence is an assumption δ by a child that is
a defence node and labelled with δ.

2. For each defence node N labelled by {δ} that is a child of a attack node, expand
N by a support tree T whose set of selected assumptions is a subset of Dδ. (The
existence of such tree is guaranteed by lemma C.3). For each node in T whose
selected sentence is an assumption δ, expand this node by a child that is a attack
node and labelled with δ.

Theorem 8.1, part ii), follows immediately from the lemmas C.3, C.4.
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