
[11:43 26/6/2009 exp032.tex] LogCom: Journal of Logic and Computation Page: 1 1–39

Towards a Common Framework for
Dialectical Proof Procedures in Abstract
Argumentation
PHAN MINH THANG, PHAN MINH DUNG and NGUYEN DUY HUNG,
Department of Computer Science, Asian Institute of Technology, GPO Box 4,
Klong Luang, Pathumthani 12120, Thailand.
E-mail: thangfm@ait.ac.th; dung@cs.ait.ac.th; nguyenduy.hung@ait.ac.th

Abstract
We present a common framework for dialectical proof procedures for computing credulous, grounded, ideal and sceptical
preferred semantics of abstract argumentation. The framework is based on the notions of dispute derivation and base
derivation. Dispute derivation is a dialectical notion first introduced for computing credulous semantics in assumption-based
argumentation, and adapted here for computing credulous semantics and grounded semantics. Base derivation is introduced
for two purposes: (i) to characterize all preferred extensions containing a given argument, and (ii) to represent backtracking
in the search for a dispute derivation. We prove the soundness of the proof procedures for any argumentation frameworks and
their completeness for general classes of finitary or finite-branching argumentation frameworks containing the class of finite
argumentation frameworks as a subclass. We also discuss related results.

Keywords: Abstract argumentation, dialectical, proof procedure, dispute resolution

1 Introduction

Argumentation is a form of reasoning, that could be viewed as a dispute resolution, in which the
agents present their arguments to establish, defend or attack certain propositions. Argumentation
provides a basis for understanding non-monotonic and defeasible reasoning [11, 20, 33, 34, 36],
a promising platform for investigating decision making, negotiation, legal reasoning, and dispute
resolution [20, 25, 26, 38, 43, 45, 51, 52, 60].

Over the years, a number of argumentation systems have been introduced [11, 20, 40, 46, 49,
53, 54, 57]. The most abstract of them is the abstract argumentation framework of [20] defined
by a set of ‘atomic’ arguments together with a binary relation representing the attack relationship
between arguments. The semantics of abstract argumentation is based on the notion of acceptability
of arguments: an argument A is acceptable w.r.t. a set S of arguments iff S attacks every argument
attacking A. The preferred semantics [20] is based on preferred extensions, maximal (under set
inclusion) conflict-free sets of arguments that can defend itself against all possible attacks. This
semantics is credulous since an agent may hold a preferred extension conflicting with the ones
held by others. In some applications such as in the legal domain, it is often more appropriate to
accept an argument only if it represents a consensus among all agents. Several sceptical semantics
were proposed for this purpose, notably the sceptical preferred semantics [20] under which only
arguments acceptable w.r.t. all preferred extensions are accepted. More easily computable but also
more sceptical are the ideal semantics [23] and the grounded semantics [18, 20, 50], both specify
a subset of the set of arguments sceptically preferred accepted as their unique extension. Besides
proposals of new semantics to overcome certain shortcomings of the semantics studied in [20], there

© The Author, 2009. Published by Oxford University Press. All rights reserved.
For Permissions, please email: journals.permissions@oxfordjournals.org
doi:10.1093/logcom/exp032

 Journal of Logic and Computation Advance Access published June 26, 2009

[11:43 26/6/2009 exp032.tex] LogCom: Journal of Logic and Computation Page: 2 1–39

2 Dialectical Proof Procedures in Abstract Argumentation

has been an extensive study to extend the abstract argumentation framework in other directions, for
example, to deal with new features like preferences [1] and values [7, 8], or to deal with constructing
arguments and identifying attacks from a set of rules in an underlying logic [11, 21, 23]. There is a
need for a common framework to develop proof procedures for all these extensions.

Viewing ordinary, human debates and discussions as forms of proofs, dialectical proof procedures
provide a formal account for informal reasoning in everyday argumentation. Imagine a group of agents
whose beliefs are represented by different preferred extensions of some argumentation framework,
a proof for the credulous acceptance of a given argument A is seen as the formal counterpart of a
discussion about A that requires at least one of these agents to support. In contrast, a discussion about
A that requires the support from all these agents corresponds to a proof for its skeptical acceptance.
Dialectical proof procedures could be seen as a formal represention of these discussions. The TPI (Two
party Immediate Response) procedure of Vreeswijk and Prakken [59] constructs disputes in which two
fictitious players called the proponent and the opponent alternate in attacking each other’s most recent
argument whenever possible, until the opponent lost the dispute because it cannot present anything
new. This argument game is shown to be a sound and complete proof for credulous acceptance [29].
Cayrol et al. in [14] also presented argument games for credulous acceptance. Their games improve
on [59] by performing more filtering in order to finish earlier, and differ from [59] in that search
strategies are left open. To our best knowledge, there are no dialectical procedures computing sceptical
semantics in all but some cases. In [23], Dung et al. developed dialectical procedures computing
the ideal and grounded semantics of assumption-based argumentation frameworks based on the
dialectical procedure for the credulous semantics in [21]. In [42], Modgil and Caminada presented
several argument games for the grounded semantics. The sceptical TPI dispute procedure of [59] and
the procedure of [14], both for computing the sceptical preferred semantics, are proven to be sound
and complete only in coherent argumentation frameworks [14, 29]. However, there are collections of
procedures using non-dialectical methods. Vreeswijk in [58] developed a procedure for computing
the grounded semantics and all admissible sets containing an examined argument. The procedures of
Doutre and Mengin in [16], Cayrol et al. in [14], Caminada in [13], Modgil and Caminada in [42], and
Verheij in [56] can construct all preferred extensions, and using these sceptical preferred acceptance
can be checked. Besides differences in semantics and paradigms, existing proof procedures also differ
in their origins. One of the early known dialectical procedures for logic programming was presented
in [18]. Later proof procedures for assumption-based argumentation [21, 23] could be viewed as
being inspired by both negation as failure approach in logic programming and by the dialectical view
in [18].

We present a common framework capable of capturing dialectical proof procedures for computing
the credulous, grounded, ideal and sceptical preferred semantics in general cases of abstract
argumentation frameworks. The framework consists of only two notions of dispute derivations and
base derivations. Dispute derivation is a dialectical notion originally introduced in [21] for computing
the credulous semantics in assumption-based argumentation, and adapted here in several variants for
abstract argumentation. Base derivation is introduced for two purposes: (i) to characterize all preferred
extensions containing a given argument, and (ii) to represent backtracking in the search for a dispute
derivation. We prove the soundness of obtained proof procedures for any argumentation frameworks
and their completeness for a general class of finitary argumentation frameworks containing the class
of finite argumentation frameworks as a subclass.

The structure of the article is as follows. In Section 2, we introduce proof procedures computing
the credulous and grounded semantics. In Section 3, we develop proof procedures computing the
sceptical preferred and ideal semantics. In Section 4, we present algorithmic issues. We conclude in
Section 5.

[11:43 26/6/2009 exp032.tex] LogCom: Journal of Logic and Computation Page: 3 1–39

Dialectical Proof Procedures in Abstract Argumentation 3

This article is an extended and improved version of [24]. It extends its predecessor by introducing
proof procedures for the grounded and ideal semantics, concrete algorithms for all proof procedures
and analysis of related work.

2 A dialectical framework for proof procedures in abstract argumentation

Following [20], we define an argumentation framework as a pair AF= (A,att), where A is a set of
arguments, and att is a binary relation over A representing the attack relation between the arguments
(att⊆A×A). Given two arguments A and B, (A,B)∈att means A attacks B. A set S of arguments
attacks an argument A if some argument in S attacks A; S attacks another set S’ if S attacks some
argument in S’. The definitions of conflict-free, admissible, complete sets and preferred, grounded,
ideal extensions are recalled from [20] as follows.

Let S be a set of arguments

1. Argument A is acceptable with respect to S iff S attacks every argument attacking A.
2. S is conflict-free iff it does not attack itself.
3. S is admissible iff S is conflict-free and each argument in S is acceptable with respect to S.
4. S is a preferred extension iff S is maximally (w.r.t. set inclusion) admissible.
5. S is ideal iff it is admissible and contained in every preferred extensions. S is an ideal extension

iff it is maximally ideal.
6. S is complete iff it is admissible and contains every arguments acceptable w.r.t. to S.
7. S is a grounded extension iff it is minimally complete.

Let F(S)={A∈A | A is acceptable w.r.t. S}, the characteristic function of AF . The following
properties were proven in [20, 23]:

– S is complete iff it is a conflict-free fixed point of F ,
– there is a unique grounded extension, which is the least fixed point of F ,
– there is a unique ideal extension, which is the union of all ideal sets,
– the ideal extension, the grounded extension and preferred extensions are complete and
– the ideal extension is a super set of the grounded extension and is a subset of the intersection of

all preferred extensions.

In ascending order of scepticism, an argument A is said to be:

1. credulously accepted if it is contained in at least one preferred extension,
2. sceptically preferred accepted if it is contained in every preferred extensions,
3. ideally accepted if it is contained in the ideal extension and
4. groundedly accepted if it is contained in the grounded extension.

An overly confident agent may believe in an argument if it is credulously accepted, while an overly
sceptical agent may only do so if the argument is groundedly accepted. In between these semantics,
other rational agents may believe in ideally or sceptically preferred accepted arguments.

Example 1
For the framework (A,att) borrowed from [23] depicted below,1 the grounded extension is a proper
subset of the ideal extension, which is a proper subset of the intersection of all preferred extensions.

1For purpose of reference, we often identify an AF with the graph representing it.

[11:43 26/6/2009 exp032.tex] LogCom: Journal of Logic and Computation Page: 4 1–39

4 Dialectical Proof Procedures in Abstract Argumentation

Figure 1. The framework of Example 2.1 in [23].

– {A,C,E} and {A,C,F} are preferred extensions.
– A,C are sceptically preferred accepted.
– {C} is the ideal extension.
– {} is the grounded extension.

Throughout the article we assume that an implicit argumentation framework AF= (A,att) is given
and only mention it explicitly if not clear by the context. Given an argument B∈A, AttackB and
AttackedB denote the set of arguments attacking B, i.e. AttackB={A | (A,B)∈att}, and attacked by B,
i.e. AttackedB={A | (B,A)∈att}.

Argumentation provides a natural framework for representing dispute resolution. In informal terms,
a dispute between a proponent and an opponent is a sequence of alternate moves where at each move
a player puts forward an argument attacking arguments made in previous moves by the opposing
player. An argumentation strategy of a player specifies when an argument should be presented. An
argument is accepted credulously if the proponent has a winning strategy for defending it. Proof
procedures have to address three questions:

1. what are the winning argumentation strategies?
2. how to search for such strategies?
3. how to filter both within and across disputes?

In the context of credulous acceptance, the framework of Modgil and Caminada [42] only addresses
the first question by specifying what are the disputes won by the proponent, and partially addresses
the third by discussing filtering within disputes. It leaves unanswered the second question, is thus not
yet ready to be used procedurally. The TPI framework of Vreeswijk and Prakken [59] formalized by
Dunne and Bench-Capon [29] mixes winning strategies and the search, and provides some filtering
across disputes. The framework of Cayrol et al. [14] integrates winning strategies with filtering
mechanisms. It leaves open search strategies, making it easier to understand. But it is unclear
how these frameworks could be extended to deal with other semantics like grounded, ideal or
sceptical preferred. It is also unclear whether they can be implemented in instances of the abstract
argumentation framework, like logic programming, assumption-based argumentation [11, 21] or
Prakken and Sartor’s [49] defeasible argumentation system in which arguments need to be constructed
on demand. Our approach provides a common framework for dialectical proof procedures for all
these semantics. The framework is geared towards the abstract argumentation as well as its existing
instances. It is based on the notions of dispute derivation and base derivation. Dispute derivation
provides a means to construct winning argumentation strategies for both the credulous and grounded
semantics. Base derivation incorporating different backtracking strategies provides, among others,
also means to search for dispute derivations. In this section we present dispute derivation and describe
the base derivation in Section 3.

[11:43 26/6/2009 exp032.tex] LogCom: Journal of Logic and Computation Page: 5 1–39

Dialectical Proof Procedures in Abstract Argumentation 5

2.1 Dispute trees

To prove a credulous/grounded acceptance, a dispute tree is constructed. Dispute tree is a conceptual
tool for illustrating winning argumentation strategies. Under the credulous semantics, the proponent
wins if he can attack every attacking argument of the opponent without self-attacking. The grounded
semantics requires further requirements, which shall be presented later.

We recall below the definition of dispute tree from [21–23]:

Definition 1
A dispute tree T for an argument A with respect to an argumentation framework AF is defined as
follows:

1. Every node of T is labelled by an argument and is assigned the status of proponent node or
opponent node, but not both. The status of a child node is different to the status of its parent
node. The argument labelling a child node attacks the argument labelling its parent node.

2. The root is a proponent node labelled by A.
3. For every proponent node N labelled by an argument B, and for every argument C attacking

B, there exists a child of N labelled by C.
4. For every opponent node N labelled by an argument B, there exists exactly one child of N

labelled by an argument attacking B.
5. There are no other nodes except those given by rules 1–4 above.

The set of all arguments labelling the proponent nodes in a dispute tree T is called the defense
set of T .

A branch in a dispute tree may be finite or infinite. A finite branch represents a winning debate (also
called dispute) that ends with an argument by the proponent against which the opponent is unable to
attack. An infinite branch represents a winning debate in which the proponent counterattacks every
attack of the opponent, ad infinitum. A dispute tree is finite iff all its nodes have a finite number of
children, and all its branches are of finite length.

The definition of dispute tree requires that the proponent must counterattack every attack, but it
does not guarantee that the proponent does not attack itself. This further requirement is incorporated
in the definition of admissible dispute tree [21, 23].

Definition 2
A dispute tree is said to be admissible if there is no argument that labels both a proponent node and
an opponent node.

Example 2
Figure 2 depicts an argumentation framework and two admissible dispute trees for argument A (a node
is represented by x:Y where Y is the argument labelling the node and x is either p or o denoting its
proponent or opponent status).

The following lemma is analogous to Theorem 5.1 of [21] and Theorem 3.2 of [23].

Lemma 1
1. If T is an admissible dispute tree for an argument A then the defense set of T is admissible.
2. Let S be an admissible set of arguments and A∈S. Then there exists an admissible dispute tree

T for A such that the defense set of T is a subset of S.

Similar to Theorem 5.2 of [21], Theorem 3.1 of [23] proves that all finite dispute trees are
admissible. We prove further that these are admissible trees for groundedly accepted arguments in the

[11:43 26/6/2009 exp032.tex] LogCom: Journal of Logic and Computation Page: 6 1–39

6 Dialectical Proof Procedures in Abstract Argumentation

Figure 2. Depiction of an argumentation framework and two admissible dispute trees for argument
A. (a) A finite admissible dispute tree with defense set {A,D,E}. (b) An infinite admissible dispute
tree with defense set {A,D}.

Figure 3. An infinite-branching framework.

following theorem. Moreover, the reverse also holds for finite-branching argumentation frameworks,
i.e. frameworks where for any argument A, attackA is finite.

Theorem 1
An argument A in a finite-branching argumentation framework is groundedly accepted iff there exists
a finite dispute tree for A.

The proof of this theorem and of all other results in this section are given in Appendix A.
Theorem 1 underlines the strategies φG1 , φG2 , φG3 of [42], all of which essentially guarantee the

finiteness of constructed dispute trees by preventing the proponent from repeating arguments. Since
for each of these strategies there is an equivalent finite dispute tree but the reverse does not hold,
Theorem 1 is more general than the related results of [43].

In general, the theorem does not hold for any arbitrary argumentation frameworks, as shown by
the following example.

Example 3
ArgumentAin the argumentation framework depicted in Figure 3 is groundedly accepted. The unique
dispute tree for A is not finite because it is infinite in breath.

As elaborated in [21, 23], admissible dispute trees shorten the distance between proofs for
credulous/grounded acceptance and procedures searching for these proofs because they show how

[11:43 26/6/2009 exp032.tex] LogCom: Journal of Logic and Computation Page: 7 1–39

Dialectical Proof Procedures in Abstract Argumentation 7

to construct incrementally an admissible set in defense of a given, desired argument. However, it
is inefficient to construct them faithfully because they may contain repeated redundant segments,
or even are non-constructive because they may be infinite as shown by Example 2. For efficiency
and completeness, a proof procedure needs concrete filtering mechanisms, like one avoiding re-
defense of what has already been defended in order to fold infinite trees into finite trees, or one
checking admissibility explicitly in order to reduce their sizes. Indeed, we will incorporate these
mechanisms into our notions of dispute derivations, credulous dispute derivation and ground dispute
derivation, which, respectively, provide efficient constructions of dispute trees for proving credulous
acceptance and grounded acceptance. But first in the following, we present their preliminary form,
simple dispute derivation, seen here as an initial step between dispute trees and our final dispute
derivations, because it is correct, but highly inefficient for grounded acceptance, and not complete
for credulous acceptance. It, however, presents an important feature of our framework for linking
with practical argument-based systems. Our dispute derivations are defined in a spirit like the dispute
derivation in [21, 23] (that are themself inspired by proof procedures in logic programming like
SLDNF, the ‘EK’ procedure of [17, 19, 30], the ‘KT’ procedure of [37, 55]), the dialectical proof
procedure for the grounded semantics in [18] and the argument games in [14, 29, 35, 47, 48].

2.2 Simple dispute derivations

Asimple dispute derivation is a top-down construction of a dispute tree by a sequence of pairs 〈Pi,Oi〉,
where Pi is a set of arguments presented by the proponent but not yet attacked by the opponent, and
Oi is a set of arguments presented by the opponent but not yet counterattacked by the proponent.
Trees emerging at any step i but the last one are called partial dispute trees, because they are like
dispute trees with the exception that conditions 3, 4 of Definition 1 are not applied to their frontier
nodes (i.e. nodes labelled by arguments in Pi or Oi). The initial partial dispute tree (i.e. i=0) consists
of only one node labelled by the initial argument. Partial dispute trees are expanded stepwise into the
final dispute tree. Each step represents the expansion of a partial dispute tree by expanding a frontier
node labelled by argument B by a child node labelled by an argument in AttackB (if B∈Oi) or by a
set of child nodes (if B∈Pi) labelled by arguments in AttackB (note that arguments are allowed to
be repeated since there are no filtering mechanisms preventing so). Different selections give rise to
different derivations, but do not affect completeness, because they simply represent different ways
to construct the same dispute tree.

Definition 3
Given a selection function, a partial simple dispute derivation for an argument A is a possibly infinite
sequence of pairs 〈P0,O0〉...〈Pn,On〉..., where:

1. Pi,Oi are argument sets
2. P0={A},O0=∅
3. Let B be the argument selected at step i

(a) If B∈Pi then
Pi+1=Pi \{B}
Oi+1=Oi∪AttackB

(b) If B∈Oi then there exists some argument C∈AttackB such that
Pi+1=Pi∪{C}
Oi+1=Oi \{B}

[11:43 26/6/2009 exp032.tex] LogCom: Journal of Logic and Computation Page: 8 1–39

8 Dialectical Proof Procedures in Abstract Argumentation

Figure 4. (a) A finite simple dispute derivation containing a wasteful re-defeat of C. (b) An infinite
simple dispute derivation.

A full simple dispute derivation is a finite partial simple dispute derivation ended by pair 〈∅,∅〉.
The following theorem states that full simple dispute derivations represent sound and complete proofs
for grounded acceptance.

Theorem 2
1. An argument A is groundedly accepted if there is a full simple dispute derivation for it.
2. If an argument A is groundedly accepted in a finite-branching argumentation framework, then

there is a full simple dispute derivation for it.

Simple dispute derivations not only answer the question of what are winning argumentation
strategies, but also address partially the problem of filtering across disputes by collecting arguments
not attacked yet in sets Pi and Oi instead of multi-sets.2 Thus, a proof procedure based on simple
dispute derivations for grounded acceptance needs to specify only a search strategy. Such a procedure
clearly improves on procedures that faithfully construct dispute trees. However, it is still highly
inefficient, and even may not terminate since simple dispute derivations may be redundant or infinite,
as shown by the following example.

Example 4 (Continue Example 2)
– The infinite simple dispute derivation in Figure 4b constructs the infinite tree in Figure 2b. There

is no full simple dispute derivation for this infinite tree.
– In the full simple dispute derivation depicted in Figure 4a constructing the finite tree in Figure 2a,

argument C is defeated twice. This is wasteful, although still better than the case of faithfully
constructing the tree with three times of defeating C.

Simple dispute derivations present an important feature of our framework: to attack a proponent’s
argument selected in some step, the opponent puts forward all possible arguments simultaneously.

2An argument can have several occurrences in a multi-set since several nodes of a dispute tree can be labelled by the same
argument.

[11:43 26/6/2009 exp032.tex] LogCom: Journal of Logic and Computation Page: 9 1–39

Dialectical Proof Procedures in Abstract Argumentation 9

Other existing frameworks, e.g. those of Cayrol et al. [14], allow only one argument in such a step;
thus, the opponent needs many steps not necessarily consecutively to attack the same argument.
In practical instances of the abstract argumentation where arguments need to be constructed, like
logic programming, the assumption-based argumentation [11, 21] or the framework by Prakken and
Sartor [49], generating all arguments attacking some given argument at once is much more efficient
than generating them separately at different steps. This is because interleaving their construction
makes it difficult to reuse their shared segments. For example, consider a logic program consisting
of the following rules: p←q;q←r;r←nots;r←nott; and g←notp where nots,nott and notp
are assumptions. The argument supporting g is represented by a backward deduction {g}{notp}
and denoted by α. There are two arguments attacking α, represented by backward deductions
{p}{q}{r}{nots} and {p}{q}{r}{nott} sharing the initial segment, which will be constructed twice if
there is no reuse. Allowing the opponent to attack simultaneously avoids the need to plan its attacks.

2.3 Credulous dispute derivations

A credulous dispute derivation is a top-down construction of a possibly infinite admissible dispute
tree by a sequence of tuples 〈Pi,Oi,SPi,SOi〉, where Pi and Oi are defined exactly as in simple
dispute derivations. Unlike simple dispute derivations, repeated arguments are distinguished from
fresh arguments by two new components, SPi denoting the set of arguments presented by proponent
up to step i (so Pi⊆SPi); and SOi denoting the set of arguments presented by the opponent and already
counterattacked by the proponent so far (so the opponent has presented Oi∪SOi). With regard to
the partial dispute tree of step i, Pi (resp. Oi) is the set of arguments labelling its proponent (resp.
opponent) frontier nodes; SPi is the set of arguments labelling all its proponent nodes; and SOi is the
set of arguments labelling its opponent internal nodes. This richer representation of the tree makes it
possible to apply a series of filtering mechanisms. Each step represents the expansion of its partial
dispute tree by a selection of a frontier node labelled by argument B and its replacement by some of
its children (because it is unnecessary to reconsider children already attacked). Furthermore, there
are two conditions to ensure that the set of proponent’s arguments is conflict-free: (i) if B∈Pi then
AttackB∩SPi=∅ (argument B of the proponent is not attacked by his other arguments in SPi); (ii) if
B∈Oi then the proponent does not use arguments in (SOi∪Oi) to avoid later conflicts in SPj, j>i.

To prove the credulous acceptance of an argument A (or generally a set S of arguments), the first
tuple 〈P0,O0,SP0,SO0〉 is set to 〈{A},∅,{A},∅〉 (or 〈S,∅,S,∅〉, resp.) because the proponent starts
the dispute by putting forwards A (or S, resp.). However, in some cases we also want to answer the
credulous refutation question of ‘Can the proponent admissibly attack a set O of arguments proposed
by the opponent?’ by setting 〈P0,O0,SP0,SO0〉 to 〈∅,O,∅,∅〉.
Definition 4
Given a selection function, a partial credulous dispute derivation is a possibly infinite sequence of
tuples 〈P0,O0,SP0,SO0〉 ... 〈Pn,On,SPn,SOn〉 ... where:

1. Pi,Oi,SPi and SOi are argument sets
2. 〈P0,O0,SP0,SO0〉 is one of the forms

(a) 〈S,∅,S,∅〉 for some non-empty set S⊆A or

(b) 〈∅,O,∅,∅〉 for some non-empty set O⊆A.

3. Let B be the argument selected at step i

[11:43 26/6/2009 exp032.tex] LogCom: Journal of Logic and Computation Page: 10 1–39

10 Dialectical Proof Procedures in Abstract Argumentation

(a) If B∈Pi and AttackB∩SPi=∅ then
Pi+1=Pi \{B}
Oi+1=Oi∪(AttackB\SOi)
SPi+1=SPi
SOi+1=SOi

(b) If B∈Oi then there exists some argument C∈AttackB\(SOi∪Oi) such that
Pi+1=Pi∪{C} if C 	∈SPi, otherwise Pi+1=Pi
Oi+1=Oi \AttackedC
SPi+1=SPi∪{C}
SOi+1=SOi∪(AttackedC∩Oi) (Note that B∈AttackedC∩Oi)

In Step 3a, it is required that AttackB∩SPi=∅ since otherwise the proponent arguments would
be conflicting. The expression Oi+1=Oi∪(AttackB\SOi) excludes arguments belonging to SOi
from Oi+1, thus every opponent’s argument is counterattacked only once. The condition C∈
AttackB\(SOi∪Oi) of Step 3b allows the proponent to select an argument among possibly many
arguments in AttackB to counterattack B while keeping the dispute tree admissible. Also in Step 3b,
Oi+1=Oi \AttackedC because the proponent does not need to counterattack those arguments in Oi
that are attacked by C. These filtering mechanisms effectively reduce the cost of constructing the
implicit dispute tree without affecting its correctness under the credulous semantics. We define several
restricted forms of partial credulous dispute derivations with meaningful input–output behaviours.

Definition 5
1. A full credulous dispute derivation is a finite partial credulous dispute derivation:
〈P0,O0,SP0,SO0〉...〈Pn,On,SPn,SOn〉
such that Pn=On=∅. SPn is called the defense set of the dispute derivation.

2. A credulous dispute derivation for an argument A is a full credulous dispute derivation:
〈P0,O0,SP0,SO0〉...〈Pn,On,SPn,SOn〉
such that 〈P0,O0,SP0,SO0〉=〈{A},∅,{A},∅〉.

3. Acredulous dispute derivation against a set O of arguments is a full credulous dispute derivation:
〈P0,O0,SP0,SO0〉...〈Pn,On,SPn,SOn〉
such that 〈P0,O0,SP0,SO0〉=〈∅,O,∅,∅〉

Example 5 (Continue Example 2)
A construction of a credulous dispute derivation for A is presented in Figure 5, where the notation X
means that X is selected. It shows that A is credulously accepted and the set {A, D} is admissible.
Let ti=〈Pi,Oi,SPi,SOi〉. Filtering O3=O2∪(AttackD\SO2) in the transition from t2 to t3 prevents
the opponent from presenting argument C again, thus folding the infinite dispute tree (on the right)
into this finite derivation.

Since our purpose is to develop effective proof procedures, we want to restrict our attention to
dispute derivations of finite length. Thus the following result is interesting.

Theorem 3
There is no infinite partial credulous dispute derivation for finite argumentation frameworks.

Theorem 3 follows from the fact that in the Definition 4, SO component remains unchanged by
Step 3a but monotonically increases by Step 3b; and any selection function must interleave between
Step 3a and 3b (as step 3a cannot be applied infinitely because it reduces the P component). So the

[11:43 26/6/2009 exp032.tex] LogCom: Journal of Logic and Computation Page: 11 1–39

Dialectical Proof Procedures in Abstract Argumentation 11

Figure 5. A credulous dispute derivation for A.

Figure 6. An infinite framework.

number of steps of any dispute derivation is finite if there is a finite upper bound for SO. Naturally
for finite argumentation frameworks, this is the set of all arguments.

The proof procedures given in Definitions 4 and 5 are sound and complete not only for finite
argumentation frameworks, but also for finitary argumentation frameworks that could be infinite.
Consider the infinite argumentation framework in Figure 6. This framework admits a unique preferred
extension consisting of arguments A0,A2, ... ,A2n,… . It is obvious that for each argument A2n there
is a credulous dispute derivation for A2n because all directed paths to A2n are finite. In the following,
we introduce the class of finitary argumentation frameworks generalizing this property.

Let AF=(A, att) and A∈A. The environment of A denoted by ENVA is the set of all arguments
B in A such that there is a directed path from B to A in the graph of AF (i.e. there is a sequence
B1,B2, ... ,Bn such that Bi attacks Bi+1 and B = B1 and A = Bn). Let AFA= (ENVA,attA), where attA
is the restriction of att to ENVA.

Definition 6
An argumentation framework is said to be finitary if for each argument A, AFA is finite.3

Lemma 2
1. If S is an admissible set of arguments in AF , then for any argument A, S∩ENVA is also

admissible in both AF and AFA.

3It is not difficult to see that finitary argumentation frameworks are finite branching. But the reverse does not hold.

[11:43 26/6/2009 exp032.tex] LogCom: Journal of Logic and Computation Page: 12 1–39

12 Dialectical Proof Procedures in Abstract Argumentation

2. If S⊆ENVA is an admissible set in AFA for some argument A, then S is also admissible
in AF .

From Lemma 2, it is obvious that:

Corollary 1
A is credulously accepted in AF iff A is credulously accepted in AFA.

A generalized version of Theorem 3 is as follows.

Theorem 4
There is no infinite partial credulous dispute derivation for finitary argumentation frameworks if the
sets in the initial tuple are finite.

The following theorem establishes the soundness and completeness of credulous dispute
derivations for finitary argumentation frameworks.

Theorem 5
1. Suppose 〈P0,O0,SP0,SO0〉...〈Pn,On,SPn,SOn〉with P0={A} is a credulous dispute derivation

for an argument A. Then SPn is admissible and A∈SPn.
2. Let AF be a finitary argumentation framework, and let A be an argument of AF . If A belongs

to an admissible set S, then for any selection function there is a credulous dispute derivation
for A, whose defense set is a subset of S.

Similarly, credulous dispute derivation against a set of arguments is a sound and complete proof
procedure for credulous refutation.

Theorem 6
1. Suppose 〈P0,O0,SP0,SO0〉...〈Pn,On,SPn,SOn〉 with O0=O is a credulous dispute derivation

against a set O of arguments. Then SPn is an admissible set attacking every elements of O.
2. Let AF be a finitary argumentation framework, and let O be a finite set of arguments of AF .

If there is an admissible set S attacking every elements of O, then for any selection function
there is a credulous dispute derivation against O, whose defense set is a subset of S.

The AB-dispute derivation of Dung et al. [23] for computing admissible beliefs, which improves
on the dispute derivation developed by Dung et al. in [21], could be viewed as an adaptation of our
credulous dispute derivation to assumption-based argumentation frameworks [11].

A variant of credulous dispute derivations with weaker filtering drops all filtering at Step 3b of
Definition 4, i.e. changes it to ‘there exists some argument C such that Pi+1=Pi∪{C};Oi+1=
Oi \{B};SPi+1=SPi∪{C};SOi+1=SOi∪{B}’. In finitary frameworks, proof procedures based on
this variant always terminate since Theorem 4 still holds.

A variant with stronger filtering modifies Definition 4 as follows. In 3a, Oi+1=Oi∪(AttackB\
X), where X contains arguments attacked by SPi. In 3b, C∈AttackB\(SPi∪X∪Y∪Ref), where Y
contains arguments attacking SPi and Ref contains self-attacking arguments (note that SOi and SOi∪
Oi, respectively, approximate X and Y). These mechanisms, respectively, implement two rules: (i)
the opponents are not allowed to present arguments that are attacked by arguments already presented
by the proponent; and (ii) the proponents are not allowed to repeat or present arguments that induce
conflicts between his arguments. This variant captures the filtering in the sequential argument game
φ1 of Cayrol et al. [14]. Though it is conceptually attractive, it is not clear how to compute sets X
and Y in contexts where arguments are not given explicitly and need to be constructed. In contrast,

[11:43 26/6/2009 exp032.tex] LogCom: Journal of Logic and Computation Page: 13 1–39

Dialectical Proof Procedures in Abstract Argumentation 13

the filtering in our framework does not have this problem since it involves only arguments already
identified and cached in the data structure.

Filtering may improve efficiency. But stronger filtering does not necessarily lead to more efficiency
since filtering may require extra data structure and hence may slow down the main computation.
In logic programming, for example, Prolog does not have any filtering at all, but is efficient. But
here termination is pushed towards users. In otherwords, users are responsible to ‘filter’ out the
redundancies in their programs.

Instead of constructing dispute trees directly, other dialectical proof procedures may construct
them via argument games. In informal terms, an argument game consists of disputes concerning
a common argument. Different procedures differ mainly in their rules specifying legal moves in a
dispute or capabilities of players to open a new dispute within a game. In TPI-dispute of Vreeswijk and
Prakken [59], a legal move presents an argument attacking the argument presented in the most recent
move. Thus its disputes correspond to branches in our dispute trees, and its games correspond to
depth-first expansions of dispute trees. Since disputes interleave, TPI mechanisms for filtering across
disputes are not as comprehensive as those in our credulous dispute derivations which, like their
predecessors, integrate winning strategies and filtering mechanisms both within and across disputes.
Moreover, while in TPI-dispute the search strategy is mixed with winning strategies, it is excluded
from our credulous dispute derivation and modelled later by the notion of base derivation. In this
aspect, our credulous dispute derivations are closer to the argument games of Cayrol et al. [14], which
are based on the dialectical framework of Jakobovits and Vermeir [35]. In particular, their φ1 game
is a sequentialization of our variant. As discussed at the end of Section 2.2, such sequentialization is
impractical for many argument-based systems where arguments have to be generated.

2.4 Ground dispute derivations

Theorem 1 characterizes grounded acceptance in terms of finite dispute tree. Theorem 2 reduces the
problem of search for a finite dispute tree to the problem of searching for a full simple dispute
derivations; unfortunately, as shown by Example 4 simple dispute derivations may be infinite,
resulting in a possible non-termination proof procedure. On the other hand, credulous dispute
derivations are complete (at least for finitary argumentation frameworks in which they are always
finite) and sound for credulous acceptance, but in general cannot be used for grounded acceptance
as shown below.

Example 6
In the argumentation framework in Figure 7, it would be incorrect to infer from the depicted credulous
dispute derivation that A is groundedly accepted as the grounded extension is empty. Note that the
dispute tree for A is infinite.

Credulous dispute derivation is not sound for grounded acceptance. Since all dispute trees of an
argument that is credulously accepted but not groundedly accepted are infinite (Theorem 1), we
could detect this situation by checking if constructed dispute trees are infinite. This motivates us to
introduce the following notion of non-redundant dispute trees.

Definition 7
Given an admissible dispute tree T , the graph GT ={(A,B) | there is a node labelled by B with a child
node labelled by A in T } is said to be induced by T . T is said to be non-redundant iff GT is acyclic4.
T is redundant if it is not non-redundant.

4There is no finite sequence of arguments A1,A2, ... ,An such that (Ai+1,Ai)∈GT ,1≤ i≤ (n−1) and A1=An.

[11:43 26/6/2009 exp032.tex] LogCom: Journal of Logic and Computation Page: 14 1–39

14 Dialectical Proof Procedures in Abstract Argumentation

Figure 7. A credulous dispute derivation constructs an infinite dispute tree for A.

Figure 8. A redundant finite dispute tree T .

It is easy to see that:

Lemma 3
For finitary argumentation framework, infinite dispute trees are redundant.

It follows by contraposition that non-redundant dispute trees are all finite. The dispute tree in
Figure 8 shows that the set of non-redundant dispute trees is a proper subset of the set of finite
dispute trees. Non-redundant dispute trees still represent complete proofs for grounded acceptance
for not only finitary but also finite-branching argumentation frameworks, as shown by the following
lemma.

Lemma 4
An argument A in a finite-branching argumentation framework is groundedly accepted iff there exists
a non-redundant dispute tree for A.

Thus, Lemma 4 provides a method to modify credulous dispute derivation for grounded acceptance.
This modification requires more than an incorporation of a check whether the induced graphs are
acyclic since even credulous dispute derivation with such a check may not find non-redundant dispute
trees although such trees exist. To illustrate this, suppose that Definition 4 is modified by inserting
at the end of steps 3a and 3b, a check to ensure that the induced graph GT is acyclic. Consider
the credulous dispute derivation in Example 5 recalled in Figure 9. It is easy to see that T3 is

[11:43 26/6/2009 exp032.tex] LogCom: Journal of Logic and Computation Page: 15 1–39

Dialectical Proof Procedures in Abstract Argumentation 15

Figure 9. A credulous dispute derivation for A.

redundant as there is a loop between C and D. In fact, for any credulous dispute derivation whose
selection function selects B instead C from t1 like this one, the selection of D to counterattack B
defeats C as well. This unintended defeat of C is due to the filtering at Step 3b of Definition 4:
Oi+1=Oi \AttackedD=Oi \{B,C}. While this defeat is good for credulous acceptance because it
keeps the admissible set under construction small, it introduces a loop between D and C. Inserting
a check for acyclicity will turn this derivation into a failure. In otherwords, the completeness of the
procedure depends on the selection function, a bad feature. Thus, credulous dispute derivation needs
to be modified at two points: (i) inserting a check for acyclicity; (ii) modifying filtering mechanisms
to avoid introducing loops in induced graphs. Among those in our credulous dispute derivation, the
filtering mechanism just observed is the only one that influences the construction of induced graphs.
So it is the only one that needs modifying for our purpose.

Definition 8
Given a selection function, a partial ground dispute derivation for an argument A in an argumentation
framework AF= (A,att) is a possibly infinite sequence of tuples
〈P0,O0, SP0,SO0,G0〉,...,〈Pn,On,SPn,SOn,Gn〉...,
where:

1. Pi,Oi,SPi,SOi are argument sets, Gi⊆A×A
2. P0=SP0={A}, SO0=O0=G0=∅
3. Let B be the argument selected at step i

(a) If B∈Pi and AttackB∩SPi=∅ then
Pi+1=Pi \{B}
Oi+1=Oi∪(AttackB\SOi)

[11:43 26/6/2009 exp032.tex] LogCom: Journal of Logic and Computation Page: 16 1–39

16 Dialectical Proof Procedures in Abstract Argumentation

Figure 10. A ground dispute derivation for A.

SPi+1=SPi
SOi+1=SOi
Gi+1=Gi∪{(C,B) |C∈AttackB} and Gi+1 is acyclic

(b) If B∈Oi then there exists some argument C∈AttackB\(SOi∪Oi) such that
Pi+1=Pi∪{C} if C 	∈SPi, otherwise Pi+1=Pi
Oi+1=Oi \{B}5
SPi+1=SPi∪{C}
SOi+1=SOi∪{B}
Gi+1=Gi∪{(C,B)} and Gi+1 is acyclic.

A full ground dispute derivation for an argument A is a finite partial ground dispute derivation for A
ended with tuple 〈∅,∅,SPn,SOn,Gn〉.
Example 7 (Continue Example 5)
Figure 10 depicts a ground dispute derivation for argument A which constructs a non-redundant
dispute tree by using the same selection function as in Example 5. Note that at t3, attackC={E,D},
but selecting D would produce a redundant dispute tree, i.e. G4 would be non-acyclic.

We obtain results similar to those in credulous dispute derivation.

Theorem 7
1. Suppose 〈P0,O0,SP0,SO0,G0〉...〈Pn,On,SPn,SOn,Gn〉 with P0={A} is a full ground dispute

derivation for A. Then SPn is an admissible subset of the grounded extension and A∈SPn.

5Note that here AttackedC is replaced by {B} to exclude all unintended defeats.

[11:43 26/6/2009 exp032.tex] LogCom: Journal of Logic and Computation Page: 17 1–39

Dialectical Proof Procedures in Abstract Argumentation 17

2. Let AF be a finitary argumentation framework, and let A be an argument of AF . If A belongs
to the grounded extension of AF , then there exists a full ground dispute derivation for A.

Theorem 8
There is no infinite partial ground dispute derivation for finitary argumentation frameworks.

Our ground dispute derivation improves on the GB-dispute derivation of [23] computing
grounded beliefs in assumption-based argumentation frameworks, by incorporating two more filtering
mechanisms Oi+1=Oi∪(AttackB\SOi) and Pi+1=Pi∪{C} if C /∈SPi (in 3a and 3b, respectively) to
construct non-redundant dispute trees instead of finite dispute trees. As a result, our ground dispute
derivation is complete for finitary argumentation frameworks, while the GB-dispute derivation is not
so. For example, for an assumption-based argumentation framework consisting of two inference rules
p←q;q←p which corresponds to an argumentation framework with two arguments attacking each
other, GB-dispute derivation is trapped in a loop while our ground dispute derivation can break it.

Argument games for grounded acceptance φG1 , φG2 and φG3 of [42] guarantee the finiteness
of constructed dispute trees by preventing the proponent from repeating arguments. Like in TPI-
disputes [29, 59], players in these games follow up in attacking each other’s most recent argument.
A new dispute is opened only if the existing one is over. Thus filtering across them is not possible.
The proponent may also have wasteful re-attacks within a dispute since the opponent can repeat
arguments already defeated. These games correspond to Definition 8 with weaker filtering.

The intuition of component G in our ground dispute derivations is that in order to prevent filtering
from inducing unsoundness, it is necessary to examine the internal of disputes, not just their frontiers
like in the first two versions of credulous dispute derivations. Further, it shows that filtering may
affect the semantics to be captured. For credulous acceptance, filtering could be as comprehensive as
possible, like the filtering of argument game φ1 involves all attacks relating to presented arguments.
But for grounded acceptance, it is necessary to exclude unintended defeats following the spirit of our
ground dispute derivation.

3 Computing sceptical semantics

This section presents proof procedures for computing the ideal and sceptical preferred semantics by
introducing the notion of base derivation.

3.1 Computing sceptical-preferred semantics

An argument A is sceptically preferred accepted iff every preferred extensions contains A. This
motivates the following definitions, recalled from [24], of a base of an argument and the completion
of such a base.

Definition 9
Let A be an argument, and let B be a set of admissible sets of arguments such that each element of
B contains A.

1. If for each preferred extension E such that A∈ E, there exists an admissible set S ∈B such that
S⊆E then B is called a base of A.

2. A base B of A is said to be complete if for each preferred extension E, there is a set S∈B such
that S ⊆ E

[11:43 26/6/2009 exp032.tex] LogCom: Journal of Logic and Computation Page: 18 1–39

18 Dialectical Proof Procedures in Abstract Argumentation

Lemma 5 (Sceptical lemma)
An argument A is sceptically accepted iff there exists a complete base B of A.

The proof of this lemma and of all other results in this section are given in Appendix B.
Thus the sceptical lemma suggests that a proof procedure for showing that A is sceptically preferred

accepted, could proceed in two steps:

1. generate a base B for A and
2. verify that B is complete base of A.

3.1.1 Generating a base
The following definition of base derivation shows how to construct such a base incrementally.

Definition 10
Given a selection function, a partial base derivation is a possibly infinite sequence T0,T1, ... ,Tn, ...

where

1. Ti is a set of tuples of the form 〈P,O,SP,SO〉 defined as in Definition 4 Step 1.
2. For every i, one tuple t=〈P,O,SP,SO〉 is selected from Ti and one argument B is selected from

P or O.

(a) If B is selected from P, then: Ti+1= (Ti \{t})∪{t′} where t′ is computed from t as in
Definition 4 Step 3a.

(b) If B is selected from O then: Ti+1= (Ti \{t})∪{t′ | t′ is computed from t as in Definition 4
Step 3b for some argument C∈AttackB\(SO∪O)}.

Like dispute derivations, we define some restricted forms of partial base derivations (in
Definitions 11 and 13). Definition 11 presents two key uses of base derivation set out in the abstract
and introduction: a successful base derivation represents backtracking in the search for a dispute
derivation of a given argument, and a full base derivation characterizes all preferred extensions
containing it.

Definition 11
– A partial base derivation for an argument A is a partial base derivation T0,T1,...,Tn,... such

that T0={〈{A},∅,{A},∅〉}.
– A successful base derivation for an argument A is a finite partial base derivation T0,T1,...,Tn

for A such that Tn contains at least one tuple of the form 〈∅,∅,SP,SO〉.
– A full base derivation for an argument A is a finite partial base derivation T0,T1,...,Tn for A

such that Tn contains only tuples of the form 〈∅,∅,SP,SO〉.6
It follows immediately from Theorem 4.

Theorem 9
For finitary argumentation frameworks, there is no infinite partial base derivation if the sets in the
tuple of T0 are finite and T0 is finite.

Theorem 5 reduces the credulous acceptance problem to the problem of searching for a credulous
dispute derivation. Part 1 of the following theorem reduces this search to the problem of constructing

6Note that Tn could be empty.

[11:43 26/6/2009 exp032.tex] LogCom: Journal of Logic and Computation Page: 19 1–39

Dialectical Proof Procedures in Abstract Argumentation 19

Figure 11. A full base derivation for A.

a successful base derivation for the given argument. Parts 2 and 3 provide a sound and complete
procedure for generating bases.

Theorem 10
Let A be an argument in an argumentation framework AF

1. For finitary argumentation framework A is credulously accepted iff there exists a successful
base derivation for A.

2. For finitary argumentation framework there exists a full base derivation for A.
3. If T0,T1,...,Tn is a full base derivation for A, then the set {SP | 〈∅,∅,SP,SO〉∈Tn} is a base of A.

Example 8
The argumentation framework AF=(A,att) depicted on the right of Figure 11 has two preferred
extensions {A,E} and {A,F}. The sequence {t0},{t1},{t2,t3},{t4,t3},{t4,t5},{t4,t7} and {t6,t7}
depicted on the left is a full base derivation for A. Hence {{A,E},{A,F}} is a base of A. The notation
t means t is selected.

3.1.2 Verifying the completion of a base
Intuitively a base B is not complete iff there is a preferred extension E which is not superset of any
admissible set S∈B. The following lemma suggests a way to verify this condition.

Lemma 6
If E is a preferred extension and S is a non-empty admissible set of arguments but not a subset of E,
then E attacks S (and S also attacks E).

Thus it is easy to see that:

Lemma 7
A base B for an argument A is complete iff it is not empty and there is no admissible set of arguments
attacking every elements of B.

[11:43 26/6/2009 exp032.tex] LogCom: Journal of Logic and Computation Page: 20 1–39

20 Dialectical Proof Procedures in Abstract Argumentation

Figure 12. A full base derivation against {{A}, {E,F}}.

Lemma 8 re-states Lemma 7 by means of Definition 12.

Definition 12
Given a base B for A, let XB={O |O is a minimal (under set inclusion) set of arguments such that
∀S∈B, O∩S 	=∅}.
Lemma 8
Let B be a base of A in an argumentation framework. B is a complete base of A iff B is not empty
and for each O∈XB there is no admissible set attacking every elements of O.

To verify that there is no admissible set attacking every elements of a set O of arguments, we
re-state Theorem 6 in terms of base derivation as follows.

Definition 13
A full base derivation against a set X of argument sets is a partial base derivation T0,T1,...,Tn such
that T0={〈∅,O,∅,∅〉|O∈X }, and Tn=∅.
Lemma 9
Let AF be a finitary argumentation framework, and O be a finite set of arguments of AF . There is
no admissible set attacking every elements in O iff there exists a full base derivation against {O}.

Combining Lemmas 8 and 9, the following lemma reduces the problem of verifying the completion
of a base to an application of base derivation.

Lemma 10
1. Suppose B is a base of A. If there is a full base derivation against XB, then B is a complete base

of A.
2. If AF is finitary and B is a finite complete base of A such that each element of B is finite, then

there exists a full base derivation against XB.

Example 9 (Continue Example 8)
A base B of A is {{E,A},{F,A}}. Hence XB = {{A},{E,F}}. As depicted in Figure 12, the sequence:
{t0,t1},{t2,t0},{t3,t0},{t0},{} is a full base derivation against XB (The notion of ‘fails’means a partial
dispute derivation failed to extend to a full dispute derivation). Hence B is a complete base of A.

Combining Theorem 10 parts 2, 3 and Lemma 10 leads to a sound and complete proof procedure
for sceptical preferred acceptance in finitary argumentation frameworks.

[11:43 26/6/2009 exp032.tex] LogCom: Journal of Logic and Computation Page: 21 1–39

Dialectical Proof Procedures in Abstract Argumentation 21

Figure 13. A full base derivation for A.

Figure 14. A full base derivation against {{A}, {E}}.

Theorem 11
1. Let A be an argument in an argumentation framework AF . If there exists a full base derivation

for A that results in a non-empty base B, and a full base derivation against XB, then A is
sceptically preferred accepted.

2. Let A be a sceptically preferred accepted argument in a finitary argumentation framework AF .
There exist a full base derivation for A resulting in a non-empty base B, and a full base derivation
against XB.

Example 10 (Continue Examples 8 and 9)
A is sceptically preferred accepted.

Example 11
The argumentation framework depicted on the left of Figure 13 has two preferred extensions {F},
{A,E}. A construction of a full base derivation for A is presented on the right with Tn={t5}, resulting
in a base B={{A,E}} of A. Hence XB={{A},{E}}. A full base derivation against XB attempted in
Figure 14 fails because of tuple 〈∅,∅,{F},{E}〉, which replaces tuple 〈∅,{E},∅,∅〉 in the initial set
after some steps. Thus A is not sceptically preferred accepted.

[11:43 26/6/2009 exp032.tex] LogCom: Journal of Logic and Computation Page: 22 1–39

22 Dialectical Proof Procedures in Abstract Argumentation

We are not aware of any dialectical proof procedures computing the sceptical preferred semantics
in general cases as ours. However, there are a number of existing tools for argumentation frameworks
satisfying specific constraints. For example, the sceptical TPI-dispute procedure [59] is defined in
terms of the credulous TPI-dispute procedure, relying on the following proposition [14, 28, 59]: an
argument A is sceptically accepted if A is credulously accepted and there exists no admissible set
attacking A. This procedure is proven to be sound and complete for coherent frameworks [29, 59],
i.e. frameworks where each preferred extension is also stable. In Example 11, although argument A
is credulously accepted and there exists no admissible set attacking it, A is not sceptically accepted.
However, the sceptical TPI-dispute procedure cannot give this answer.

The algorithm in [14] computes the sceptical preferred semantics as follows. Given an argument A,
the algorithm proceeds in two separate steps: it first checks that A is not attacked by any admissible
set. In the second step, it looks for an admissible set that cannot be extended into a bigger one
containing A. Failure to find such a set implies that A is included in each preferred extension. In other
words, the algorithm represents an indirect way of proving that A is sceptically preferred based on
the idea that failure to show that A is not sceptical preferred implies the contrary. Though the idea is
intuitive, no formal proof for the soundness of the algorithm is given.

3.2 Computing ideal semantics

An argument A is ideally accepted if it can be defended by an admissible set S that is subset of every
preferred extensions. Hence there is no preferred extensions attacking S (Lemma 6). The reference
[23] puts this formally.

Lemma 11
An argument A is ideally accepted iff there is an admissible set S containing A such that for any
argument in S there is no admissible set of arguments attacking it.

Thus the following theorem provides sound and complete proof procedure for ideal acceptance in
finitary argumentation frameworks.

Theorem 12
1. Let A be an argument in an argumentation framework AF . If there exists a dispute derivation

for A ended by 〈∅,∅,SPn,SOn〉, and a full base derivation against {{B} |B∈SPn}, then A is
ideally accepted.

2. Let A be an ideally accepted argument in a finitary argumentation framework AF . For every
selection function, there exist a dispute derivation for A ended by 〈∅,∅,SPn,SOn〉, and a full
base derivation against {{B} |B∈SPn}.

The reference [23] presents an algorithm computing the ideal extension both abstract
and assumption-based argumentation frameworks based on Lemma 11. However, for abstract
argumentation it is defined in terms of ideal dispute trees, i.e. admissible dispute trees that for no
opponent node there exists an admissible dispute trees rooted at it. Hence, it involves two steps (not
necessarily separated). In the first step, it searches for an admissible dispute tree and in the second
step it verifies that this tree is ideal. Following Theorem 12, our proof procedure replaces the first
step by a search for a credulous dispute derivation, and the second step by an application of base
derivation.

[11:43 26/6/2009 exp032.tex] LogCom: Journal of Logic and Computation Page: 23 1–39

Dialectical Proof Procedures in Abstract Argumentation 23

4 Algorithmic issues

The vehicle for implementation is full/successful base derivations. For flexibility, we implement
versions slightly modified from Definition 11 to allow the initial set to contain more than one tuple.

Definition 14
– A successful base derivation for an initial set T0 is a finite partial base derivation T0,T1,...,Tn

such that Tn contains at least one tuple of the form 〈∅,∅,SP,SO〉.
– A full base derivation for an initial set T0 is a finite partial base derivation T0,T1,...,Tn such

that Tn contains only tuples of the form 〈∅,∅,SP,SO〉.
Algorithm 1 (FullBaseDerivation(T0))
To construct a full base derivation for an initial set T0, let
T :=T0
while not (all tuples of T have the form 〈∅,∅,SP,SO〉)

select t=〈P,O,SP,SO〉∈T , and B∈P or B∈O
remove t from T
if B∈P, and AttackB∩SP=∅, then

add 〈P\{B},O∪(AttackB\SO),SP,SO〉 to T
if B∈O, then

for each C∈AttackB\(SO∪O)
add 〈P∪{C},O\AttackedC,SP∪{C},SO∪(AttackedC∩O)〉 to T

return T

Algorithm 2 (SuccessfulBaseDerivation(T0))
To construct a successful base derivation for an initial set T0, let
T :=T0
while not (a tuple of T has the form 〈∅,∅,SP,SO〉)7

select t=〈P,O,SP,SO〉∈T , and B∈P or B∈O
remove t from T
if B∈P, and AttackB∩SP=∅, then

add 〈P\{B},O∪(AttackB\SO),SP,SO〉 to T
if B∈O, then

for each C∈AttackB\(SO∪O)
add 〈P∪{C},O\AttackedC,SP∪{C},SO∪(AttackedC∩O)〉 to T

return T

4.1 Computing credulous semantics

According to Theorem 10 part 1, the proof procedure for credulous acceptance needs to construct a
successful base derivation for a given argument.

Algorithm 3 (CredulousAcceptance(A))
To answer the credulous acceptance of an argument A, let
T :=SuccessfulBaseDerivation({〈{A},∅,{A},∅〉})
if T 	=∅ return true else return false

7This algorithm and Algorithm 1 differ only in this line.

[11:43 26/6/2009 exp032.tex] LogCom: Journal of Logic and Computation Page: 24 1–39

24 Dialectical Proof Procedures in Abstract Argumentation

Figure 15. Two–step transitivity correction.

4.2 Computing grounded semantics

We define the notion of partial/successful ground base derivation similarly to the notion of
partial/successful credulous base derivation in Definition 10 by applying ground dispute derivation
(Definition 8) instead of credulous dispute derivation (Definition 4). Thus the following theorem is
analogous to Theorem 9.

Theorem 13
There is no infinite partial ground base derivation for finitary argumentation framework.

The proof of this theorem and of all other results in this section are given in Appendix C.
Theorem 7 reduces the grounded acceptance problem to the problem of searching for a ground

dispute derivation. The following theorem reduces this search problem to the problem of constructing
a successful ground base derivation.

Theorem 14
Let AF be a finitary argumentation framework, and A be an argument of AF . A is groundedly
accepted iff there exists a successful ground base derivation for A.

To implement successful ground base derivation, we need to check if induced graphs are acyclic.
As a graph is acyclic iff its transitive closure does not contain any self-loop, this check can rely on
an algorithm computing transitive closures8 stepwise as follows. Suppose at step i of a derivation,
the dispute tree induces a graph G, and its transitive closure G+ has been computed. The dispute
tree at step i+1 induces a new graph R=G∪ where ={(C,B) |C∈E} with E consists of newly
presented arguments (i.e. E=AttackB if B is selected from Pi and E={C} if B is selected from Oi in
the Definition 8). Given G+,B,E as input, the algorithm computes R+, by first setting R+=G+∪,
then correcting triples (X,Y ,Z) that violate transitivity, i.e. (X,Y),(Y ,Z)∈R+ but (X,Z) 	∈R+. The
correction proceeds in two steps, illustrated in Figure 15.

– Step 1: Connect X to Z due to new edge (Y ,Z)∈.
– Step 2: Connect X to Z due to X and B have just been connected by Step 1 or by .

So the algorithm consists of two loops, respectively, performing two steps.

Algorithm 4 (TransitiveClosure(G+,B,E))
R+ :=G+∪E ;
for each Y ∈E

for each node X appearing in R

8Our algorithm is motivated by the n3 algorithm in [39, p. 36] computing transitive closures bottom-up.

[11:43 26/6/2009 exp032.tex] LogCom: Journal of Logic and Computation Page: 25 1–39

Dialectical Proof Procedures in Abstract Argumentation 25

if (X,Y)∈R+ but (X,B) 	∈R+ then add (X,B) to R+
for each node X of R

for each node Z of R
if (X,B),(B,Z)∈R+ but (X,Z) 	∈R+ then add (X,Z) to R+

return R+

The correctness follows from the fact that the precise order in which triples (X,Y ,Z) is examined in
both loops is immaterial because the introduction of a new edge (X,Z) does not induce violations of
triples already considered.

Lemma 12
TransitiveClosure (G+,B,E) computes the transitive closure of G∪{(B,C) |C∈E} in at most n2 steps.

Using the above algorithm, the definition of successful ground base derivation can be rewritten as
an algorithm as follows.
Algorithm 5 (SuccessfulGroundBaseDerivation(T0))
To construct a successful ground base derivation from an initial set T0, let
T :=T0
while not(a tuple of T has the form 〈∅,∅,SP,SO,G+〉)

select t=〈P,O,SP,SO,G+〉∈T , and B∈P or B∈O
remove t from T
if B∈P, and AttackB∩SP=∅, then

R+ :=TransitiveClosure(G+,B,AttackB)
if R+ is acyclic, then

add 〈P\{B},O∪(AttackB\SO),SP,SO,R+〉 to T
if B∈O, then

for each C∈AttackB\(SO∪O)
R+ :=TransitiveClosure(G+,B,{C})
if R+ is acyclic, then

add 〈P∪{C},O\{B},SP∪{C},SO∪{B},R+〉 to T
return T

According to Theorem 14, the proof procedure for grounded acceptance needs to construct a
successful ground base derivation for the argument given.

Algorithm 6 (GroundedAcceptance(A))
To answer the grounded acceptance of an argument A, let
T :=SuccessfulGroundBaseDerivation({〈{A},∅,{A},∅,∅〉})
if T 	=∅ return true else return false

4.3 Computing sceptical-preferred semantics

According to Theorem 11, the proof procedure answering the sceptical-preferred acceptance of
argument A needs to construct a full base derivation for A, which results in some base B, and a
full base derivation against XB. Failure to construct either full base derivations confirms that A is not
sceptically preferred accepted.

Algorithm 7 (ScepticalPreferredAcceptance(A))
To answer the sceptical preferred acceptance of an argument A, let
T :=FullBaseDerivation({〈{A},∅,{A},∅〉})

[11:43 26/6/2009 exp032.tex] LogCom: Journal of Logic and Computation Page: 26 1–39

26 Dialectical Proof Procedures in Abstract Argumentation

if T=∅ then return false
else

B :={SP | 〈∅,∅,SP,SO〉∈T}
J0 :={〈∅,O,∅,∅〉|O∈XB}
J :=FullBaseDerivation(J0)
if J=∅ then return true else return false

4.4 Computing ideal semantics

According to Theorem 10 part 1 and Theorem 12, the proof procedure answering the ideal acceptance
of argument A needs to construct a successful base derivation for A to find an admissible set SP
defending A, then constructs a full base derivation against {{B} |B∈SP}. If it fails in the second step,
it needs to resume the first step to find another admissible set defending A. If the first step collectively
constructs a full base derivation for A but no full base derivation is successfully constructed in the
second step, then A is not ideally accepted.

Algorithm 8 (IdealAcceptance(A))
To answer the ideal acceptance of an argument A, let
T0 :={〈{A},∅,{A},∅〉}
while T0 	=∅

T :=SuccessfulBaseDerivation(T0)
if T=∅ then return false
else

find a tuple t=〈∅,∅,SP,SO〉∈T
J0 :={〈∅,{B},∅,∅〉|B∈SP}
J :=FullBaseDerivation(J0)
if J=∅ then return true
else T0 :=T \{t}

For finitary argumentation frameworks, all algorithms terminate due to there being no infinite
partial base derivations as stated by Theorems 9, 13.

Theorem 15
For finitary argumentation frameworks, algorithms 3, 6, 7, 8 terminate.

5 Conclusions

In the last decade, the theory of abstract argumentation has been extended in three directions.Anumber
of authors develops systems that are instances of the abstract argumentation framework to deal with
the question of how to build arguments and identify attacks. For example, in assumption-based
argumentation framework [11], arguments are obtained by reasoning backwards using a set of rules
in an underlying logic from conclusions to assumptions, and attacks are defined in terms of a notion
of contrary of assumptions. In the second line of work, new semantics are proposed to overcome
certain shortcomings of the semantics studied in [20]. Notably are the CF2 semantics introduced
by Baroni et al. [3, 6] which deals with some problematic behaviours of preferred semantics in
occurrences of odd-length cycles; the semi-stable semantics of Caminada [12] which improves on
the stable semantics in that semi-stable extensions always exist, and are stable if stable extensions
exist; and the prudent semantics of Coste-Marquis et al. [15] which forbids indirect attacks within

[11:43 26/6/2009 exp032.tex] LogCom: Journal of Logic and Computation Page: 27 1–39

Dialectical Proof Procedures in Abstract Argumentation 27

its extensions. Readers are referred to papers of Baroni and Giacomin, such as [4] proposing a set
of criteria for evaluating proposals of new semantics, [5] classifying argumentation frameworks
where different semantics coincide. In the third line of work, the framework is extended to deal
with new features. Work done by Bench-Capon in [7, 8] dealt with social values that arguments
promote, providing a natural basis for legal case-based reasoning [2, 9, 10]. Amgoud and Cayrol in
[1] augmented the abstract argumentation framework with a preference relation between arguments,
resulting in a preference-based argumentation framework in which an attack (A,B) only succeeds if
B is not preferred to A. Recently Modgil in [41] extends [20] to provide a framework accommodating
both values and preferences.

Therefore there is a need for a common framework to develop proof procedures for all three kinds
of extensions. The common framework presented in this article captures dialectical proof procedures
for four different semantics for abstract argumentation frameworks. The framework consists of only
two notions of dispute derivations and base derivations. Dispute derivation is a dialectical notion
for computing the credulous and grounded semantics. Base derivation, introduced in this article for
the first time, characterizes a preferred extension containing some given argument by constructing a
dispute derivation for it. However, a novel role of base derivation is to represent backtracking in the
search for dispute derivations, and represent proofs for argument acceptance under the ideal/sceptical-
preferred semantics. Thus, this notion becomes the centre of our framework, in that it not only shows
the relationship between different proof procedures, but also offers itself a vehicle for implementation.
We prove the soundness of obtained proof procedures for any argumentation frameworks and their
completeness for a general class of finitary argumentation frameworks containing the class of finite
argumentation frameworks as a subclass. We obtained algorithmic forms of all proof procedures,
independent from selection functions. This is a nice feature because it leaves the room for players to
engage in any active debate, opening an opportunity to make use of such heuristics as focusing on
arguments with less attacks.

It remains a question of how the proposed framework could be used to develop proof procedures for
extensions of the abstract argumentation framework. Some work has been done for the assumption-
based argumentation framework. Concretely, dispute derivation has been used to compute admissible,
ideal and grounded beliefs [21, 23] and has been implemented in CASAPI system [31]. Since CASAPI
system (version v4.3 [32]) supports frameworks that are hybrid between abstract and assumption-
based argumentation, it could be naturally augmented with base derivation for computing sceptical-
preferred beliefs. The proposed framework could also be naturally applied to the extension of Modgil
[41]. Though this extended framework does not bring any new power since it can be translated back to
the abstract framework, this application would be appealling to those who find that defining problems
in [41] is more convenient.

In contrast to the dialectical approach, Vreeswijk [58] presents an algorithm computing
simultaneously the relevant part of the grounded extension and all relevant parts of the preferred
extensions defending a given argument. The algorithm works by enforcing a labelling (in, out,
undecided) on each argument encountered during computation and performs filtering in order to
terminate early. The algorithm of Verheij in [56] for credulous acceptance, though presented in terms
of labelling, can be clearly analysed by our framework because its two mutual recursive functions,
ExtendByAttack and ExtendByDefence, respectively, can be seen as concrete implementations of
steps 3a and 3b of our credulous dispute derivation. The labelling approach also includes the
algorithm of Caminada [13] for finding all preferred extensions. Nieves et al. in [44] provide a
mapping that constructs a disjunctive logic program P from an argumentation framework AF such
that the preferred extensions of AF corresponds to the stable models of P. Then they show how
to infer preferred extensions by using UNSAT algorithms and disjunctive stable model solvers.

[11:43 26/6/2009 exp032.tex] LogCom: Journal of Logic and Computation Page: 28 1–39

28 Dialectical Proof Procedures in Abstract Argumentation

Figure 16. A framework with strongly connected components.

As noted by [58], argumentation systems where arguments are constructed dynamically can only
rely on query-based algorithms like ours.

It is a well-known result from [27, 28] that credulous acceptance is NP, ideal acceptance is CO-

NP-hard, and sceptical-preferred acceptance is
∏(p)

2 -complete. Therefore in worst cases, computing
sceptical acceptance is not polynomial. Concrete complexity analysis of our presented algorithms is
still open, however to certain extent, is reflected in how frequent base derivation is used to represent
proofs for acceptance under corresponding semantics. Hence, optimization could focus around base
derivation. For example, a further transformation could be applied in step 2a of Definition 10 to
increase efficiency as follows: if Ti+1 contains any tuple t of which the O component contains the
selected argument B, then apply 2b recursively to Ti+1 as if B was selected from t until there is no
such tuple. However, this transformation requires an occur check which could decrease efficiency
if such occurrences are only infrequent. To see another opportunity for optimization, consider the
argumentation framework in Figure 16.

Using a full base derivation for A, we would be able to generate a base B = {{A,E,C},
{A,E,D},{A,F,C},{A,F,D}}. Looking at the subgraph consisting of only E, F, we could realize that
if there is any attack against E or F, it should come from within this subgraph. Similarly for C, D.
Hence, it would be enough if in the second part of the proof showing the sceptically preferred
acceptance of A, we consider only a full base derivation against {A},{E,F},{C,D}. Structuring
argumentation frameworks into strongly connected component like in [6] would facilitate optimizing
the computation of sceptical preferred acceptance in this direction.

We plan to expand the presented framework to other semantics like semi-stable or CF2.

Acknowledgements

We thank the referees for constructive comments and criticisms.

Funding

Sixth Framework IST program of the European Commission under the 035200 ARGUGRID project.

References
[1] L. Amgoud and C. Cayrol. A reasoning model based on the production of acceptable arguments.

Annals of Mathematics and Artificial Intelligence, 34, 197–215, 2002.
[2] K. Atkinson and T. J. M. Bench-Capon. Legal case-based reasoning as practical reasoning.

Artificial Intelligence and Law, 13, 93–131, 2005.

[11:43 26/6/2009 exp032.tex] LogCom: Journal of Logic and Computation Page: 29 1–39

Dialectical Proof Procedures in Abstract Argumentation 29

[3] P. Baroni and M. Giacomin. Solving semantic problems with odd-length cycles in argumen-
tation. In ECSQARU, vol. 2711 of Lecture Notes in Computer Science, T. D. Nielsen and
N. L. Zhang, eds, pp. 440–451. Springer, 2003.

[4] P. Baroni and M. Giacomin. On principle-based evaluation of extension-based argumentation
semantics. Artificial Intelligence, 171, 675–700, 2007.

[5] P. Baroni and M. Giacomin. A systematic classification of argumentation frameworks where
semantics agree. In Computational Models of Argument: Proceedings of COMMA 2008,
Toulouse, France, May 28–30, 2008, vol. 172 of Frontiers in Artificial Intelligence and
Applications, P. Besnard, S. Doutre and A. Hunter, eds, pp. 37–48. IOS Press, 2008.

[6] P. Baroni, M. Giacomin and G. Guida. Scc-recursiveness: a general schema for argumentation
semantics. Artificial Intelligence, 168, 162–210, 2005.

[7] T. J. M. Bench-Capon. Agreeing to differ: modelling persuasive dialogue between parties with
different values. Informal Logic, 22, 2002, 2003.

[8] T. J. M. Bench-Capon. Persuasion in practical argument using value-based argumentation
frameworks. Journal of Logic and Computation, 13, 429–448, 2003.

[9] T. J. M. Bench-Capon, K. Atkinson and A. Chorley. Persuasion and value in legal argument.
Journal of Logic and Computation, 15, 1075–1097, 2005.

[10] T. J. M. Bench-Capon and G. Sartor.Amodel of legal reasoning with cases incorporating theories
and values. Artificial Intelligence, 150, 97–143, 2003.

[11] A. Bondarenko, P. M. Dung, R. A. Kowalski and F. Toni. An abstract, argumentation-theoretic
approach to default reasoning. Artificial Intelligence, 93, 63–101, 1997.

[12] M. Caminada. Semi-stable semantics. In COMMA, vol. 144 of Frontiers in Artificial Intelligence
and Applications, P. E. Dunne and T. J. M. Bench-Capon, eds, pp. 121–130. IOS Press, 2006.

[13] M. Caminada. An algorithm for computing semi-stable semantics. Technical Report UU-CS-
2007-010. Department of Information and Computing Sciences, Utrecht University, 2007.

[14] C. Cayrol, S. Doutre and J. Mengin. On decision problems related to the preferred semantics
for argumentation frameworks. Journal of Logic and Computation, 13, 377–403, 2003.

[15] S. Coste-Marquis, C. Devred and P. Marquis. Prudent semantics for argumentation frameworks.
In Proceedings of the 17th IEEE International Conference on Tools with Artificial Intelligence
(ICTAI 2005), pp. 568–572. IEEE Computer Society, 2005.

[16] S. Doutre and J. Mengin. Preferred extensions of argumentation frameworks: query answering
and computation. In First International Joint Conference Automated Reasoning (IJCAR 2001),
vol. of 2083 Lecture Notes in Artificial Intelligence, pp. 272–288, Springer, 2001.

[17] P. M. Dung. Negations as hypotheses: an abductive foundation for logic programming. In
Proceedings of the Eighth International Conference on Logic Programming, pp. 3–17, 1991.

[18] P. M. Dung. Logic programming as dialogue games. Technical report. Division of Computer
Science, Asian Institute of Technology, Bangkok, 1993.

[19] P. M. Dung. An argumentation theoretic foundation for logic programming. Journal of Logic
Programming, 22, 151–177, 1995.

[20] P. M. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artificial Intelligence, 77, 321–358, 1995.

[21] P. M. Dung, R. A. Kowalski and F. Toni. Dialectic proof procedures for assumption-based,
admissible argumentation. Artificial Intelligence, 170, 114–159, 2006.

[22] P. M. Dung, R. A. Kowalski and F. Toni. Assumption-based argumentation. In Argumentation
in AI, I. Rahwan and G. Simari, eds. Springer, 2009.

[23] P. M. Dung, P. Mancarella and F. Toni. Computing ideal sceptical argumentation. Artificial
Intelligence, 171, 642–674, 2007.

[11:43 26/6/2009 exp032.tex] LogCom: Journal of Logic and Computation Page: 30 1–39

30 Dialectical Proof Procedures in Abstract Argumentation

[24] P. M. Dung and P. M. Thang. A sound and complete dialectical proof procedure for
skeptical preferred argumentation. In proceedings LPNMR-Workshop on Argumentation and
Non-monotonic Reasoning (ArgNMR07), Arizona, 2007.

[25] P. M. Dung and P. M. Thang. Towards an argument-based model of legal doctrines in common
law of contracts. In 9th International Workshop on Computational Logic in Multi-Agent Systems
(CLIMA), September 2008.

[26] P. M. Dung, P. M. Thang and F. Toni. Towards argumentation-based contract negotiation.
In International Conference on Computational Models of Argument, pp. 134–146. 2008.

[27] P. E. Dunne. The computational complexity of ideal semantics I: Abstract argumentation
frameworks. In Computational Models of Argument: Proceedings of COMMA 2008, Toulouse,
France, May 28–30, 2008, vol. 172 of Frontiers in Artificial Intelligence and Applications,
P. Besnard, S. Doutre and A. Hunter, eds, pp. 147–158. IOS Press, 2008.

[28] P. E. Dunne and T. J. M. Bench-Capon. Coherence in finite argument systems. Artificial
Intelligence, 141, 187–203, 2002.

[29] P. E. Dunne and T. J. M. Bench-Capon. Two party immediate response disputes: properties and
efficiency. Artificial Intelligence, 149, 221–250, 2003.

[30] K. Eshghi and R. A. Kowalski. Abduction compared with negation by failure. In Logic
Programming: Proceedings of the Sixth International Conference, pp. 234–254. The MIT Press,
1989.

[31] D. Gaertner and F. Toni. CaSAPI - a system for credulous and sceptical argumentation. In First
International Workshop on Argumentation and Nonmonotonic Reasoning, Arizona, USA, 2007.

[32] D. Gaertner and F. Toni. Hybrid argumentation and its properties. In Proceedings of the 2nd
International Conference on Computational Models of Argument (COMMA08), pp. 183–195.
IOS Press, 2008.

[33] A. J. García and G. R. Simari. Defeasible logic programming: an argumentative approach.
Theory and Practice of Logic Programming, 4, 95–138, 2004.

[34] G. Governatori, M. J. Maher, G. Antoniou and D. Billington. Argumentation semantics for
defeasible logic. Journal of Logic and Computation, 14, 675–702, 2004.

[35] H. Jakobovits and D. Vermeir. Dialectic semantics for argumentation frameworks. In
Proceedings of the 7th International Conference on Artificial Intelligence and Law, pp. 53–62.
1999.

[36] A. Kakas, R. Kowalski and F. Toni. Abductive logic programming. Journal of Logic and
Computation, 6, 719–770, 1993.

[37] A. Kakas and F. Toni. Computing argumentation in logic programming. Journal of Logic and
Computation, 9, 515–562, 1999.

[38] S. Kraus, K. P. Sycara and A. Evenchik. Reaching agreements through argumentation: a logical
model and implementation. Artificial Intelligence, 104, 1–69, 1998.

[39] H. R. Lewis and C. Papadimitriou. Elements of the Theory of Computation. Prentice-Hall, 1998.
[40] F. Lin and Y. Shoham. Argument systems: a uniform basis for nonmonotonic reasoning. In

Proceedings First International Conference on Principles of Knowledge Representation and
Reasoning, pp. 245–255. Morgan Kaufmann Publishers Inc., SanFrancisco, 1989.

[41] S. Modgil. Reasoning about preferences in argumentation frameworks. Artificial Intelligence,
173, 901–934, 2009.

[11:43 26/6/2009 exp032.tex] LogCom: Journal of Logic and Computation Page: 31 1–39

Dialectical Proof Procedures in Abstract Argumentation 31

[42] S. Modgil and M. Caminada. Proof theories and algorithms for abstract argumentation
frameworks. In Argumentation in AI, I. Rahwan and G. Simari. eds. Springer, 2009.

[43] M. Morge. Computing argumentation for decision making in legal disputes. In Computable
Models of the Law: Languages, Dialogue, Games, Ontologies, vol. 4884 of Lecture Notes in
Artificial Intelligence, pp. 203–216. Springer, 2008.

[44] J. C. Nieves, U. Cortés and M. Osorio. Preferred extensions as stable models. Theory and
Practice of Logic Programming, 8, 527–543, 2008.

[45] S. Parson, C. Sierra and N. Jennings. Agent that reason and negotiate by arguing. Journal of
Logic and Computation, 3, 261–292, 1998.

[46] J. L. Pollock. Defeasible reasoning. Cognitive Science, 11, 481–518, 1987.
[47] H. Prakken. Relating protocols for dynamic dispute with logics for defeasible argumentation.

Synthese, 127, 2001.
[48] H. Prakken. Coherence and flexibility in dialogue games for argumentation. Journal of Logic

and Computation, 15, 1009–1040, 2005.
[49] H. Prakken and G. Sartor. A system for defeasible argumentation, with defeasible priorities.

In Proceedings of the International Conference on Formal and Applied Practical Reasoning,
pp. 510–524. 1996.

[50] H. Prakken and G. Sartor. Argument-based extended logic programming with defeasible
priorities. Journal of Applied Non-Classical Logics, 7, 25–75, 1997.

[51] I. Rahwan, L. Sonenberg and F. Dignum. Towards interest-based negotiation. In Proceedings
of the second international joint conference on Autonomous agents and multiagent systems,
pp. 773–780. 2003.

[52] I. Rahwan, S. D. Ramchurn, N. R. Jennings, P. McBurney, S. Parsons and L. Sonen-
berg. Argumentation-based negotiation. The Knowledge Engineering Review, 4, 343–375,
2003.

[53] N. Rescher. Dialectics: A Controversy-Oriented Approach to the Theory of Knowledge. State
University of New York Press, 1978.

[54] G. R. Simari and R. P. Loui. A mathematical treatment of defeasible reasoning and its
implementation. Artificial Intelligence, 53, 125–157, 1992.

[55] F. Toni and A. C. Kakas. Computing the acceptability semantics. Lecture Notes in Computer
Science, 928, 401–415, 1995.

[56] B. Verheij.A labeling approach to the computation of credulous acceptance in argumentation. In
IJCAI 2007, Proceedings of the 20th International Joint Conference on Artificial Intelligence,
Hyderabad, India, January 6–12, 2007, M. M. Veloso, ed., pp. 623–628. 2007.

[57] G. Vreeswijk. Studies in defeasible argumentation. PhD thesis, Vrije University, Amsterdam,
Holland, 1993.

[58] G. Vreeswijk. An algorithm to compute minimally grounded and admissible defence sets
in argument systems. In International Conference on Computational Models of Argument,
pp. 109–120. 2006.

[59] G. Vreeswijk and H. Prakken. Credulous and sceptical argument games for preferred semantics.
In Proceedings of the European Workshop on Logics in Artificial Intelligence, pp. 239–253.
2000.

[60] M. Wooldridge. An Introduction to Multiagent Systems. John Wiley & Sons, 2002.

[11:43 26/6/2009 exp032.tex] LogCom: Journal of Logic and Computation Page: 32 1–39

32 Dialectical Proof Procedures in Abstract Argumentation

Appendix

A Credulous and grounded semantics

A.1 Proof of Theorem 1

1. If part: the height of a finite dispute tree is 2k. We prove that (in any frameworks) the defense
set of a finite dispute tree is a subset of the grounded extension GE by induction on k, using
two observations: (i) if S1, S2 are admissible subsets of GE, then so is S1∪S2; (ii) if argument
A is acceptable w.r.t. S1, then S1∪{A} is also an admissible subset of GE.
k=0 corresponds to dispute trees containing a single node labelled by an argument that
is attacked by no arguments. So its defense set containing only that argument is a subset
of GE.
Assume the assertion holds for all finite dispute trees of height smaller than 2k. Let T be a
dispute tree of height 2k with root labelled by argument A. For each argument B attacking a
child of A, let TB be the subtree of T rooted at B. Obviously TB is a finite dispute tree with
height smaller than 2k. The union of defense sets of all TB is a subset of GE, and admissibly
defends A. So the defense set of T is an admissible subset of GE.

2. Only if part: to construct a finite dispute tree for a groundedly accepted argument in a finite-
branching argumentation framework, we need the following lemma.

Lemma 13
In a finite-branching argumentation framework, the grounded extension equals ∅∪F(∅)∪
F2(∅)∪ This lemma follows immediately from two features, proven in [20], of the
characteristic function F :

(a) (Lemma 19 [20]): F is monotonic w.r.t. set inclusion.

(b) (Lemma 28 [20]): If AF is finite-branching, then F is ω-continuous.

Thus each argument A∈GE could be ranked by a natural number r(A) such that A∈F r(A)(∅)\
F r(A)−1(∅). So, {A∈GE |r(A)=1} represents the set of arguments that are attacked by no other
arguments, {A∈GE |r(A)=2} represents the set of arguments defended by {A∈GE |r(A)≤1},
and so on. For each argument B attacking GE, let r(B)=min{r(A) |A∈GE and A attacks B}.
Clearly, B does not attack any argument in GE of rank smaller than r(B).
Now given any argument A∈GE, we can build a dispute tree T for A as follows. The root
of T is labelled by A. For each B∈AttackA, we select argument C to counterattacks B such
that r(C)=r(B), then for each arguments D∈AttackC , we selects argument E to counterattack
D such that r(D)=r(E), and so on. So for each branch of T , the rank of a proponent node
is equal to that of its opponent parent node, but the rank of an opponent node is smaller
than that of its parent proponent node. In otherwords, ranking decreases downwards. So all
branches of T are of finite length. Since AF is finite-branching, T is finite in breath. Thus T
is finite.

A.2 Proof of Theorem 2

1. If part: let SD=〈P0,O0〉...〈Pn,On〉with P0={A} and O0=On=Pn=∅ be a full simple dispute
derivation for A. A finite dispute tree T for A can be built by a sequence of partial dispute trees
T0,T1,...,Tn with T =Tn as follows.

(a) T0 is a partial dispute tree consisting of only one node labelled by A

[11:43 26/6/2009 exp032.tex] LogCom: Journal of Logic and Computation Page: 33 1–39

Dialectical Proof Procedures in Abstract Argumentation 33

(b) let B be the argument selected at step i in SD
i. if B∈Pi then Ti is expanded into Ti+1 by adding, for each C∈AttackB, an opponent child

labelled by C, to any frontier proponent node labelled by B
ii. if B∈Oi and C is selected from AttackB, then Ti is expanded into Ti+1 by adding a

proponent child labelled by C, to any frontier opponent node labelled by B

Clearly Tn is a finite dispute tree for A. From Theorem 1 A is groundedly accepted.
2. Only if part: let A be a groundedly accepted argument in a finite argumentation framework AF .

So there exists a finite dispute tree T for A (Theorem 1). It is easy to see that for any selection
function sl, a full simple dispute derivation for A can be built by a traversal on T using sl to
select the next node to visit.

A.3 Proof of Theorem 3

As elaborated in the paragraph following this theorem, we just need to prove that in 3b of Definition 4,
SOi �SOi+1. This follows from two observations:

1. AttackedC∩Oi 	=∅. Obviously since B∈AttackedC∩Oi
2. (AttackedC∩Oi)∩SOi=∅. We indeed prove that for any step j of a derivation, Oj∩SOj=∅ as

follows

(a) if j=0, it is clear that O0∩SO0=∅∩∅=∅
(b) Suppose the assertion holds for all j≤k. If step k+1 of the derivation is

computed from step k by 3a, then Ok+1∩SOk+1= (Ok∪(AttackB\SOk))∩SOk=
(Ok∩SOk)∪((AttackB\SOk)∩SOk)=∅∪∅=∅. Otherwise, Ok+1∩SOk+1=
(Ok \AttackedC)∩(SOk∪(AttackedC∩Ok))⊆ (Ok \AttackedC)∩(SOk∪AttackedC)=
((Ok \AttackedC)∩SOk)∪((Ok \AttackedC)∩AttackedC)=∅∪∅=∅.

A.4 Proof of Lemma 2

1. Let R=S∩ENVA. S is conflict-free thus so is R. Let B be an argument attacking R. There is
C∈S such that C attacks B because B also attacks S. Obviously B∈ENVA, thus C∈ENVA. So
C∈R. Hence R is admissible in both AF and AFA.

2. It is clear that S is conflict-free in AF . Let B be an argument attacks S in AF . Obviously
B∈ENVA. Hence S attacks B in AFA. So S attacks B in AF .

A.5 Proof of Theorem 4

Let D=〈P0,O0,SP0,SO0〉...〈Pn,On,SPn,SOn〉..., where X=P0∪O0 is finite set, be a partial
credulous dispute derivation in a finitary argumentation framework AF ,

For any B∈A\(⋃

A∈X
{ENVA}), there is no direct path from B to A in the graph of AF . Thus D is also a

partial credulous dispute derivation in AFX= (AX ,attX), where AX= ⋃

A∈X
{ENVA}, attX= ⋃

A∈X
{attA}

(attA is the restriction of att to ENVA). Because AFX is finite, D is finite (Theorem 3).

[11:43 26/6/2009 exp032.tex] LogCom: Journal of Logic and Computation Page: 34 1–39

34 Dialectical Proof Procedures in Abstract Argumentation

A.6 Proof of Theorem 5

1. By Step 2 (of Definition 4) A∈SP0. By Step 3b SP0⊆SP1⊆ ...⊆SPn. Thus A∈SPn. To prove
SPn is admissible, we shall prove (in a) that it is conflict-free and (in b) that for all B∈SPn, B
is acceptable w.r.t. SPn.

(a) SP0={A} is conflict-free. Suppose SPi is conflict-free and C is an argument added to SP at
step i (of the derivation), that is SPi+1=SPi∪{C} by Step 3b.
i. C does not attack SPi. This is because if C attacks SPi, it must attack some D∈Pi

(Note that C 	∈SOi∪Oi, the set of all arguments attacking SPi \Pi). Since Pn=∅, D is
selected at some step l> i of the derivation. Then C∈AttackD∩SPl, contradicting with
the condition that AttackD∩SPl=∅ (according to Step 3a).

ii. SPi does not attack C. Assume the contrary, then there exists D∈SPi such that D attacks
C. Because C∈Pi+1, it will be selected in some step j≥ i+1. Then D∈AttackC∩SPj,
contradicting with the condition that AttackC∩SPj=∅.

Thus SPn is conflict-free.

(b) Let B∈SPn. B is admitted to SPn in some step i<n by Step 3b. So B∈Pi+1. B is selected in
some step j> i+1. Let D be an argument attacking B
i. if D∈SOj, then D is attacked by SPj (because by Step 3b SPj attacks every element of

SOj). So D is attacked by SPn
ii. if D 	∈SOj, then by Step 3a. D∈Oj+1. Since On=∅, D is selected in some step k > j+1.

By Step 3b an argument C∈AttackD is selected to be admitted to SPk+1. So SPk+1
attacks D. SPn attacks D accordingly.

Thus B is acceptable w.r.t. SPn

2. By Lemma 1 there is an admissible dispute tree T for A with defense set S′ such that
S′ ⊆S. Given a selection function sl, we can build a credulous dispute derivation for A:
〈{A},∅,{A},∅〉...〈∅,∅,SPn,SOn〉 such that SPn⊆S′ by a traversal on T using sl to select the next
node to visit. Furthermore for each i, constructed tuple ti satisfies the following properties:

(a) SPi⊆P , where P is the defense set of T
(b) SOi⊆O, where O is the set of arguments labeling opponent nodes of T
(c) for each X∈Pi, there is a proponent node of T labelled by X

(d) for each X∈Oi, there is an opponent node of T labelled by X

For the first tuple t0=〈{A},∅,{A},∅〉, properties (a)–(d) clearly hold. Suppose we have
constructed the derivation until step i, and above properties holds for ti. If Pi∪Oi 	=∅, we
can construct ti+1=〈Pi+1,Oi+1,SPi+1,SOi+1〉 as follows
– If B∈Pi is selected. From property (c) AttackB⊆O. Thus AttackB∩SPi=∅ because

otherwise ∅� (AttackB∩SPi)⊆O∩P , making T not admissible. So ti+1 can be constructed
from ti by Step 3a of Definition 4. It is easy to verify that properties (a)–(d) also hold
for ti+1

– If B∈Oi is selected. From property (d) there is an argument C labelling the proponent child
node of the opponent node labelled by B. It is clearly that ti+1 is constructable from ti by
Step 3b of Definition 4 and properties (a)–(d) hold for ti+1.

Because there is no infinite credulous dispute derivation (shown by Theorem 4) the construction
must finish after a finite number of steps.

[11:43 26/6/2009 exp032.tex] LogCom: Journal of Logic and Computation Page: 35 1–39

Dialectical Proof Procedures in Abstract Argumentation 35

A.7 Proof of Theorem 6

Given a finitary argumentation framework AF= (A,att) and a finite set of arguments O⊆A,
let AFO be the finitary framework formed by adding a new argument TO to A, and a set of
attacks {(B,TO) |B∈O} to att. In AFO, for each credulous dispute derivation against O: D=
〈P0,O0,SP0,SO0〉...〈Pn,On,SPn,SOn〉 with O0=O, there is a corresponding credulous dispute
derivation for TO:

D′ =〈{TO},∅,{TO},∅〉〈P0∪{TO},O0,SP0∪{TO},SO0〉...〈Pn∪{TO},On,SPn∪{TO},SOn〉. Note
that D is also a credulous dispute derivation against O in AF .

1. Only if part: let D=〈P0,O0,SP0,SO0〉...〈Pn,On,SPn,SOn〉with O0=O be a credulous dispute
derivation against O.
By Theorem 5 the credulous dispute derivation D′ formed from D as above results in an
admissible set SPn∪{TO} defending TO. Since TO is attacked by every elements of O and TO
attacks no arguments, SPn attacks every elements of O.

2. If part: let S be admissible and attack every elements of O
S∪TO is admissible set in AFO because TO is acceptable w.r.t. S. Also by Theorem 5 there
is a credulous dispute derivation D′ for TO in AFO. Then D formed from D′ is a credulous
dispute derivation against O in AF .

A.8 Proof of Lemma 3

Assume there is T , a non-redundant and infinite dispute tree in a finitary argumentation framework
AF . So either T has some node with an infinite number of children or has some branch of infinite
length. Due to AF is finitary, the first scenario is not possible. Let A1,A2,...,An,... be an infinite
branch of T . It is obvious that Ai∈ENVA1 , which is a finite set. So an argument must be repeated
in this sequence, contradicting with the assumption that T is non-redundant. So if a dispute tree is
infinite, it must be redundant.

A.9 Proof of Lemma 4

1. If part: let T be a non-redundant dispute tree for an argument A. From Lemma 3, T is finite.
From Theorem 1, A is groundedly accepted.

2. Only if part: let A be a groundedly accepted argument in a finite-branching argumentation
framework. Consider the finite dispute tree T for A constructed in the proof of Theorem 1. The
graph induced by T is acyclic, since otherwise there would be a finite sequence of arguments
A1,A2,...,An with A1=An labelling a path in this graph, resulting in a contradiction that two
nodes labelled by A1 on a corresponding branch of T are ranked equally. Thus T is also
non-redundant.

A.10 Proof of Theorem 7

1. Let GD=〈P0,O0,SP0,SO0,G0〉,...,〈Pn,On,SPn,SOn,Gn〉 be a full ground dispute derivation
for an argument A. Following the method in the proof of Theorem 5, we can prove that SPn is
admissible and A∈SPn.
For each node X∈Gn, we define a dispute tree TX as follows.

[11:43 26/6/2009 exp032.tex] LogCom: Journal of Logic and Computation Page: 36 1–39

36 Dialectical Proof Procedures in Abstract Argumentation

(a) the root of TX is a node labelled by p :X (resp., o :X) if X is presented by the proponent
(resp., opponent).

(b) for each Y such that (Y ,X)∈Gn, TY is a subtree of TX . If X is presented by the proponent
(resp., opponent), then TY is rooted as o :Y (resp., p :Y) which is a child node of p :X (resp.,
o :X).

For all X presented by the proponent, it is easy to verify that TX is finite. The defense set of TA
is SPn. So SPn is an subset of the grounded extension GE (see the proof of Theorem 1)

2. Let A be a groundedly accepted argument. By Lemma 4 there is a non-redundant dispute tree T
for A . Like in the proof for Theorem 5, given a selection function, a ground dispute derivation
for A can be constructed by a traversal on T using the selection function to select nodes to visit.
For any step i during construction, Gi is acyclic because it is just a part of the acyclic graph
induced by T .

A.11 Proof of Theorem 8

Similar to proofs of Theorems 3, 4 (with AttackedC replaced by {B})

B Sceptical semantics

B.1 Proof of Lemma 5

1. If part
Let B be a complete base of A. For any preferred extension E there exists a set S∈B such that
S⊆E . Since A∈S, A∈E. In otherwords, A is sceptically accepted.

2. Only if part
The set of all preferred extensions is a complete base of A.

B.2 Proof of Theorem 9

Let AF be the finitary argumentation framework we are considering. A tuple t is said to be a
descendant of a tuple s if there exists a partial dispute derivation t1,..,tn such that t1=s, tn= t.
If n=2, then t is said to be a child of s. Let D(t) denote the set of all descendants of t. Because there
is no infinite partial dispute derivations in AF , and for any tuple there is a finite number of children,
D(t) is finite for any t.

Let BD=T0,T1,...,Tn,... be a partial base derivation. It is easy to see that each step i of BD
represents a selection of a tuple t∈Ti and its replacement by its children. So if a tuple t is selected
sometimes in BD, then t∈ ⋃

s∈T0

{D(s)}, a finite set. Moreover, there is a finite number of occurrences

of t in BD since t 	∈D(t). In otherwords, BD is finite.

B.3 Proof of Theorem 10

1. (a) If part: let A be a credulously accepted argument in a finitary argumentation framework
AF . By Theorem 5 there is a credulous dispute derivation for A: t0,t1,...,tn with t0=
〈{A},∅,{A},∅〉, tn=〈∅,∅,_,_〉. Consider a partial base derivation for A containing just one
set T0={t0}. By Theorem 9 there is a finite base derivation T0,...,Tm that cannot be expanded
into a longer derivation. Since no tuples in Tm could be selected as required by Definition 10,

[11:43 26/6/2009 exp032.tex] LogCom: Journal of Logic and Computation Page: 37 1–39

Dialectical Proof Procedures in Abstract Argumentation 37

either Tm=∅ or Tm contains only (more than one) tuples of the form 〈∅,∅,SP,SO〉. It must
be the later case since tn∈Tm. In otherwords, T0,...,Tm is a successful base derivation for A.

(b) Only if part: let T0,T1,...,Tm be a successful base derivation for A. There is 〈∅,∅,SP,SO〉∈
Tm. Thus there is a credulous dispute derivation for A. By Theorem 5, A is credulously
accepted.

2. A finite partial base derivation specified as in part 1 (If part) T0,...,Tm is a full base derivation
for A since either Tm=∅ or Tm contains only tuples of the form 〈∅,∅,SP,SO〉.

3. Let E be any preferred extension containing A. E is an admissible set itself, so by Theorem 5
there is a credulous dispute derivation for A:
〈{A},∅,{A},∅〉...〈∅,∅,SPn,SOn〉 such that SPn⊆E. By definition 10 and 11, Tn contains
〈∅,∅,SPn,SOn〉. Thus SPn∈B. So B is a base of A.

B.4 Proof of Lemma 6

It is clear that if E attacks S then S also attacks E and vice versa. Assume that S,E do not attack each
other. Then C=S∪E is conflict-free. For each argument A∈C if there is an argument B attacking A
then B is attacked by S or by E since A is in either S or E. So B is attacked by C. Hence each argument
in C is acceptable w.r.t. C. Then C is admissible and contains E and there exists an argument G in C
which is not in E because S is not subset of E. Contradiction since E is a preferred extension.

B.5 Proof of Lemma 7

1. If part: let B be a base of A such that there is no admissible set attacking every elements of B.
Let E be a preferred extension. Hence there is an admissible set S∈B that is not attacked by
E. From Lemma 6, S⊆E. So B must be complete.

2. Only if part: let B be a complete base of A. If there is an admissible set attacking every elements
of B, then it can be extended to a preferred extension E attacking every elements of B. So for
any S∈B, E attacks S. From Lemma 6 S 	⊆E, contradicting with the completion of B.

B.6 Proof of Lemma 8

This lemma follows immediately from Lemma 7 and the fact that an admissible set attacks every
elements of some O∈XB iff it attacks every elements of B.

B.7 Proof of Lemma 9

Let AF be a finitary argumentation framework, and O be a finite set of arguments in AF .

1. If part: suppose there is no admissible set attacking every elements of O. Consider a partial
base derivation containing just one set T0={〈∅,O,∅,∅〉}. By Theorem 9 there is finite base
derivation T0,T1,...,Tn that cannot be expanded into a longer derivation. So either Tn=∅ or Tn
contains only (more than one) tuples of the form 〈∅,∅,SP,SO〉. The later case cannot happen
since there is no credulous dispute derivation against O (Theorem 6). Thus Tn=∅, in otherwords
T0,T1,...,Tn is a full base derivation against {O}

2. Only if part: suppose T0,T1,...,Tn with T0={〈∅,O,∅,∅〉}, Tn=∅ is a full base derivation
against {O}. So there is no dispute derivation against O. By Theorem 6, there is no admissible
set attacking every elements of O.

[11:43 26/6/2009 exp032.tex] LogCom: Journal of Logic and Computation Page: 38 1–39

38 Dialectical Proof Procedures in Abstract Argumentation

Figure C1.

B.8 Proof of Lemma 10

1. Let B be base of A and BD=T0,...,Tn be a full base derivation against XB. For each O∈XB
there is no admissible set attacking every elements of O because otherwise there is no full base
derivation against {O} (Lemma 9), contradicting with the existence of BD. By Lemma 8, B is
complete.

2. Let B be a finite complete base of A in a finitary AF . So XB is finite and all its elements are
also finite. Let O be an element of XB. From the completion of B, there is no admissible set
attacking every elements of O (Lemma 8). From Lemma 9 there is a full base derivation against
{O}. It follows that there is a full base derivation against XB.

B.9 Proof of Theorem 11

1. From Lemma 10, B is complete base of A. Hence A is sceptically accepted (Lemma 5).
2. Since A is sceptically accepted, there is a full base derivation for A (Theorem 10) that results

in a complete base B. Due to Lemma 10, there is a full base derivation against XB.

B.10 Proof of Theorem 12

1. It can be inferred from the credulous dispute derivation that SPn is admissible and A∈SPn
(Theorem 5). From the full base derivation against {{B} |B∈SPn} it follows that for any B∈SPn
there is a full base derivation against {{B}}. From Lemma 9 there is no admissible set attacking
B. Thus it follows from Lemma 11 that A is ideally accepted.

2. Because A is ideally accepted, by Lemma 11 there is an admissible set S containing A (property 1)
such that there is no admissible set attacking any argument of S (property 2). From (1) and
Theorem 5, for any selection function there is a credulous dispute derivation for A ended by
〈∅,∅,SPn,SOn〉 such that SPn⊆S. From (2) and Lemma 9, there is a full base derivation against
{{B} |B∈SPn}.

C Algorithmic issue

C.1 Proof of Theorem 13

This proof is the same as that of Theorem 9.

[11:43 26/6/2009 exp032.tex] LogCom: Journal of Logic and Computation Page: 39 1–39

Dialectical Proof Procedures in Abstract Argumentation 39

C.2 Proof of Theorem 14

Similarly to Theorem 10 by applying Theorem 7 instead of Theorem 5.

C.3 Proof of Lemma 12

It is obvious that the complexity of the algorithm is n2. To prove its correctness, we prove that after
each loop, no violations could be found if the loop is run again. Figure C1 illustrates our proof.

– First loop:
Let (X1,Y ,B) be a violation, which is found at some step of this loop. Suppose after this loop there
is a violated triple (X2,X1,B) due to the introduction of (X1,B). So X1 	=B because otherwise
(X2,X1,B) is not a violation. This leads to (X2,X1)∈G+ because this loop only adds edges
coming to B. From triple (X2,X1,Y) it must be that (X2,Y)∈G+. So triple (X2,Y ,B) must be
found as a violation at some step of the loop, and (X2,B) is introduced accordingly. So (X2,X1,B)
cannot be a violation after the loop.

– Second loop:
Suppose X1 is connected to Z1 due to triple (X1,B,Z1) which is found to be a violation at
some step of this loop. Consider tuple (X2,B,Z2). If X2 needs to be connected to Z2 due to the
introduction of (X1,Z1), then there is a path from X2 to Z2 going through B exactly one time.
In otherwords, there is a path from X2 to B, and a path from B to Z2, both not going through B
any times. So edges (X2,B),(B,Z2) must be available after the first loop. Thus the violation of
triple (X2,B,Z2) could also be detected in this second loop.

C.4 Proof of Theorem 15

Obviously.

	Towards a Common Framework for Dialectical Proof Procedures in Abstract Argumentation
	1 Introduction
	2 A dialectical framework for proof procedures in abstract argumentation
	3 Computing sceptical semantics
	4 Algorithmic issues
	5 Conclusions
	A Credulous and grounded semantics
	B Sceptical semantics
	C Algorithmic issue

