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Abstract. Many computer vision algorithms rely on the assumption of
the pinhole camera model, but lens distortion with off-the-shelf cam-
eras is significant enough to violate this assumption. Many methods for
radial distortion estimation have been proposed, but they all have limi-
tations. Robust automatic radial distortion estimation from a single nat-
ural image would be extremely useful for some applications. We propose
a new method for radial distortion estimation based on the plumb-line
approach. The method works from a single image and does not require
a special calibration pattern. It is based on Fitzgibbon’s division model,
robust estimation of circular arcs, and robust estimation of distortion
parameters. In a series of experiments on synthetic and real images, we
demonstrate the method’s ability to accurately identify distortion pa-
rameters and remove radial distortion from images.

1 Introduction

Most computer vision algorithms, particularly structure from motion algorithms,
rely on the assumption of a linear pinhole camera model. However, most com-
mercially available cameras introduce sufficiently severe optical distortion that
the pinhole assumption is invalid, making distortion correction a must.

Radial distortion is the most significant type of distortion in today’s cameras
[1, 2]. It is most evident in images produced with low-cost, wide-angle lenses.
Such lenses are being widely deployed, for example, in automotive applications
such as assisting drivers to view a vehicle’s blind spots [3, 4]. But it is also signif-
icant enough in higher-quality cameras to introduce error into 3D reconstruction
processes. Radial distortion bends straight lines into circular arcs [2, 5], violating
the main invariance preserved in the pinhole camera model, that straight lines in
the world map to straight lines in the image plane [6, 7]. Radial distortion may
appear as barrel distortion, usually arising at short focal lengths, or pincushion
distortion, usually arising at longer focal lengths.

Methods for radial distortion estimation fall into three major categories: point
correspondence [8, 1, 9], multiple view autocalibration [10–14], and plumb-line.
Plumb-line methods are the most promising for robust distortion estimation from
a single image or a small number of images. Rather than using a known pattern
or sequence of images under camera motion, they estimate distortion parameters
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directly from distorted straight lines in one or more images. Straight lines are
frequent enough in most human-made environments to make distortion estima-
tion from a single image possible [2, 5, 15]. However, existing methods require
human intervention [16–18], do not use all available lines for distortion estima-
tion despite the fact that additional lines could minimize estimation error [15, 2,
5], or assume the distortion center as the center of the image [2, 19], which is in
contrast to recommendations [11, 20]. The Devernay and Faugeras [6] method is
the only existing method that overcomes these limitations. However, it requires
a complex process of polygonal approximation of the distorted lines. As we shall
see, the distorted line detection process can be dramatically simplified by using
an alternative distortion model.

In this paper, we propose a new method based on the plumb-line approach
that addresses these limitations. The method works from a single image if the
image contains a sufficient number of distorted straight lines. It does not require
a calibration pattern or human intervention. We use Fitzgibbon’s division model
of radial distortion [12] with a single parameter. Our estimator is similar to that
of Strand and Hayman [2] and Wang et al. [5] in that we estimate the parameters
of the distortion model from the parameters of circular arcs identified in the
distorted image, based on the fact that distorted straight lines can be modeled
as circular under the single parameter division model [10]. Our contribution is
to make the process fully automatic and robust to outliers using a two-step
random sampling process. For the first step, we introduce a sampling algorithm
to search the input image for subsequences of contours that can be modeled as
circular arcs. For the second step, we introduce a sampling algorithm that finds
the distortion parameters consistent with the largest number of arcs. Based on
these parameters, we undistort the input image.

To evaluate the new algorithm, we perform a quantitative study of its per-
formance on distorted synthetic images and provide an example of its ability
to remove distortion from a real image. We find that the algorithm performs
very well, with excellent reconstruction of the original image even under severe
distortion, and that it is able to eliminate the visible distortion in real images.

2 Mathematical Model

In this section, we outline the mathematical model of radial distortion assumed
in the rest of the paper and show how to estimate the parameters of this model.

2.1 Distortion model

Although the most commonly used radial distortion model is the even-order
polynomial model, we use Fitzgibbon’s division model, which is thought to be a
more accurate approximation to the typical camera’s true distortion function:

xu =
xd

1 + λ1r2d + λ2r4d + . . .
yu =

xd
1 + λ1r2d + λ2r4d + . . .

.
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(xu, yu) and (xd, yd) are the corresponding coordinates of an undistorted point
and a distorted point, respectively. rd is the Euclidean distance of the distorted
point to the distortion center; if the distortion center is the origin of the distorted
image, we can write r2d = x2d + y2d or otherwise if (x0, y0) is the center, we
write r2d = (xd − x0)2 + (yd − y0)2. λ1, λ2, λ3, . . . are the distortion parameters,
which must be estimated from image measurements. We use the single parameter
division model (fixing λ2 = λ3 = . . . = 0), because for most cameras, a single
term is sufficient [12, 5].

2.2 Distortion of a line under the single-parameter division model

Wang et al. [5] show that under the single-parameter division model, the dis-
torted image of a straight line is a circular arc. However, they use the slope-
y-intercept form of the equation of a line, which we avoid due to its inability
to model vertical lines and its undesirable numerical properties [21]. It can be
shown (details omitted) that the general line

axu + byu + c = 0 (1)

is imaged as a circular arc on the circle

x2d + y2d +
a

cλ
xd +

b

cλ
yd +

1

λ
= 0, (2)

under the single parameter division model. It is also possible to come to the same
conclusion using the parametric form of a straight line [2]. When the distortion
model includes a center of distortion that is not the image center, we obtain a
more complex equation that still defines a circle.

2.3 Estimating distortion parameters from circular arcs

Strand and Hayman [2] and Wang et al. [5] show that it is possible to estimate λ
from the parameters of circular arcs identified in an image. However, Rezazade-
gan and Reza [20] have found that modeling the distortion center in addition to
the radial distortion parameter(s) can increase the accuracy of the calibration
process. Wang et al. [5] thus further show how both λ and the distortion center (if
not assumed to be the center of the image) can be estimated from the parameters
of three circular arcs identified in an image. We use their formulation. For each
arc i ∈ {1, 2, 3}, we rewrite Equation 2 in the form x2d+y2d+Aixd+Biyd+Ci = 0.
Then the distortion center can be found by solving the linear system

(A1 −A2)x0 + (B1 −B2)y0 + (C1 − C2) = 0

(A1 −A3)x0 + (B1 −B3)y0 + (C1 − C3) = 0 (3)

(A2 −A3)x0 + (B2 −B3)y0 + (C2 − C3) = 0,

and λ can be estimated from
1

λ
= x20 + y20 +Ax0 +By0 + C, (4)

using any of the three circular arcs’ parameters in place of (A,B,C). See Wang
et al. [5] for details.
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3 Robust Radial Distortion Estimation

In this section, we provide the details of our approach, which is based on robust
estimation and the mathematical model introduced in Section 2.

3.1 Identifying circular arcs

The first step is to robustly identify as many circular arcs as possible in the
image. Given an input image, we first extract Canny edges and link adjacent edge
pixels into contours. We discard any contour whose length is below a threshold.
For each remaining contour, we then attempt to find long pixel subsequences
that can be fit by circular arcs. Our method is based on random sampling and
inspired by RANSAC [22], but, rather than finding a single model for all the
data, we preserve all models (candidate circular arcs) that are not overlapping
with other arcs in the same contour that have more support. The termination
criterion is to stop once the probability that an arc of minimal length has not
yet been found is small. The detailed algorithm is presented in Section 3.5.

3.2 Refining circular arc estimates

After the initial arc identification process is complete, each resulting arc, whose
parameters have been calculated directly from the minimum sample of three
points, is refined using the inlier pixel contour subsegment supporting that
model. The gold standard objective function for circle fitting is

Ω(xc, yc, r) =

N∑
i=1

d(xi, yi, xc, yc, r)
2, (5)

where (xc, yc) is the center of the circle, r is its radius, and d(x, y, xc, yc, r) is the
orthogonal distance of the measured point (x, y) to the hypothetical circle. Since
there is no closed-form solution minimizing this objective function [23], we use
an initial guess and the Levenberg-Marquardt nonlinear least squares method to
find a local minimum.

As the initial estimate of the circle’s parameters, we use either the parameters
calculated during the sampling procedure or Taubin’s method [24], which is based
on algebraic error minimization.

3.3 Estimating distortion parameters

Once we have obtained a set of circular arcs as candidate distorted straight lines,
we use the estimator of Equations 3 and 4 and a standard RANSAC procedure to
find a set of distortion parameters with maximal support. In the sampling loop,
we sample three arcs, calculate the model, and count the number of arcs that
are inliers by first undistorting them using the estimated distortion parameters
then testing for straightness using orthogonal regression. The detailed algorithm
is presented in Section 3.6.
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Require: Contours C1, C2, . . .
Ensure: A is the output arc set
1: A← ∅
2: for each contour Ci do
3: if |Ci| ≥ lmin then
4: N ← f(lmin, |Ci|)
5: for n = 1 to N do
6: Sample three points x1,x2,x3 from Ci.
7: if x1,x2,x3 are not collinear then
8: Calculate xc, yc, r from x1,x2,x3.
9: Anew ← arc for longest subsequence of Ci consistent with xc, yc, r

10: if |Anew| ≥ lmin then
11: if Anew does not overlap with any arc in A then
12: A← A ∪ {Anew}
13: else if Anew is longer than every overlapping arc in A then
14: Remove arcs overlapping with Anew from A
15: A← A ∪ {Anew}
16: end if
17: end if
18: end if
19: end for
20: end if
21: end for

Algorithm 1: Robust arc identification.

3.4 Undistortion

The last step in our procedure is to undistort the input image. We use the
optimal distortion parameters and the inverse of the distortion model

xd = x0 + (1 + λr2u)xu yd = y0 + (1 + λr2u)yu

with bilinear interpolation and appropriate translation and scale factors to pro-
duce the output undistorted image.

3.5 Robust arc identification algorithm

In Algorithm 1, we provide the details of our sampling-based arc identification
method. To determine the number of iterations required, the algorithm uses a
function f(l, n), which gives the number of trials required to ensure that the
probability of not sampling three of l inliers from a set of n points is small. This
ensures that we sample a sufficient number of times to find, with high probability,
all arcs with sufficient length in each contour.

3.6 Robust distortion parameter estimation algorithm

In Algorithm 2, we describe our estimation procedure in detail. Once a set of
candidate arcs has been identified per Algorithm 1, distortion parameter esti-
mation is a straightforward application of RANSAC [22]. In the sampling loop,
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Require: Arc set A
Ensure: λ∗, x∗0, y

∗
0 are the output distortion parameters

1: (λ∗, x∗0, y
∗
0)← (∅, ∅, ∅)

2: if |A| ≥ 3 then
3: N ← 0
4: s← 0
5: loop
6: N ← N + 1
7: Sample three distinct arcs A1, A2, A3

8: Estimate λ, x0, y0 from A1, A2, A3 per Equations 3 and 4
9: if support for (λ, x0, y0) is greater than s then

10: s← support for (λ, x0, y0)
11: (λ∗, x∗0, y

∗
0)← (λ, x0, y0)

12: end if
13: if N ≥ f(s, |A|) then
14: break
15: end if
16: end loop
17: end if

Algorithm 2: Robust distortion parameter estimation.

we use adaptive calculation of the number of iterations required based on the
number of inlier arcs [7]. The termination criterion uses the same function f(l, n)
to determine the number of trials required to ensure that the probability of not
sampling three of l inliers from n items is small. An arc is judged to be an inlier
if, after undistortion using the candidate distortion parameters λ, x0, and y0, the
pixels of the arc form a straight line, as measured by orthogonal regression.

4 Experimental Evaluation

In this section, we describe a detailed quantitative study of the performance of
our method on synthetic images and show qualitative results with real images. A
sample of the images we used with results is shown in Fig. 1. We used the same
original image (Fig. 1(a)) for all experiments. In each experiment, we distort the
original image using particular ground truth values of λ, x0, and y0 (Fig. 1(b)),
identify circular arcs in the image (Fig. 1(c)), estimate the distortion parameters,
and use those parameters to undistort the image (Fig. 1(d)).

We describe two series of experiments with synthetic images. In both cases,
we used OpenCV’s Canny and contour extraction algorithms with a low gradient
threshold of 50 and a high gradient threshold of 150. We fixed the minimum con-
tour length at 150 pixels. For each contour of sufficient length, our arc extraction
procedure (Algorithm 1) pre-calculates the number N of point sampling steps
to perform using assuming a minimum number lmin = 50 of inlier pixels.

In a first series of runs, we varied λ while keeping the distortion center fixed
at (x0, y0) = (320, 240), the image center. In a second series of runs, we kept the
distortion level fixed (λ = −10−6) while varying the distortion center. In every
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(a) (b) (c) (d)

Fig. 1: Example experiment with synthetic image size 640 × 480. (a) Original
image. (b) Distorted image with λ = −10−6, (x0, y0) = (320, 240) (the image
center). (c) Estimated arcs. (d) Undistorted image using estimated values of
λ = −9.8097−7,x0 = 319.632, and y0 = 247.75. Using true distortion parameters,
RMSE = 3.74103 and using estimated parameters, RMSE = 3.79212.

case, we estimated all three parameters of the distortion model. We compare
four methods for arc estimation. The results for varying λ are shown in Fig. 2,
and the results for varying distortion center are shown in Fig. 3. The “Ransac”
method means we accept the circular arc model computed from three sample
points, without any refinement after calculating the inliers. “Ransac-Taubin”
is the result of using the Taubin method to refine the arc model computed
from three sample points. “Ransac-LM” is the result of applying the Levenberg-
Marquardt method directly to the model computed from three sample points.
Under the hypothesis that starting LM from the sample-based estimate might
not work as well as an initial estimate closer to the optimum, we also performed
one series of experiments in which we first applied the Taubin method to the
sample-based model then applied LM to the Taubin estimate. The results from
this method are shown as “Ransac-Taubin-LM.”

Over the two series of runs, we observe variability between the actual and
estimated parameter values with all of the circle fitting methods, but the per-
formance of the method in terms of RMSE is quite good. The “Ransac-LM”
method provides the most stable performance over different levels of distortion
and distortion center parameters. Even in the case of severe barrel distortion
(λ = 10−5), the RMSE error introduced when undistorting using the parame-
ters estimated by Ransac-LM is only about 30.06% more than that introduced
when using the true distortion parameters.

Finally, in Fig. 4, we provide an example of the proposed method’s ability
to identify distortion parameters and undistort a real image [25]. The robust
arc selection and parameter estimation method is able to find a consensus set
corresponding to distorted straight lines and is successful at removing most of
the radial distortion from the image.
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Fig. 2: Results of synthetic image experiments with varying λ. Distortion center
is fixed at image center (x0, y0) = (320, 240). (a) Noise in the undistorted image
relative to the original image, measured by the ratio of the RMSE using esti-
mated parameters to the RMSE using true parameters. (b) Error in estimating
λ. Each point is an average over the same 10 runs shown in part (a). Each point
is an average over 10 runs. Error bars denote 95% confidence intervals.

5 Conclusion

In this paper, we have introduced a new algorithm for radial distortion estima-
tion and removal based on the plumb-line approach. The method works from
a single image and does not require a special calibration pattern. It is based
on Fitzgibbon’s division model, robust estimation of circular arcs, and robust
estimation of distortion parameters. In a series of experiments on synthetic and
real images, we have demonstrated the method’s ability to accurately identify
distortion parameters and remove radial distortion from images.

The main limitation of the current implementation is that some parameters,
especially the thresholds for Canny edge extraction, random sampling inlier cal-
culations, and minimum contour length must be specified manually. In future
work, we will improve the method to address these limitations.
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