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Abstract e 

W e  present a system to detect passenger cars in  aerial im- 
ages ,whe,re cmrs appear as small objects. W e  pose this as a 
3D object recognition problem to account f o r  the uariation 
in  viezupoint and the shadow. W e  started from. psychologi- 
cal tests t o  find important features fo r  human detection of 
cars. Based on these observations, we selected the bound- 
ary of the car body, the boundary of the front windshield, 
and the shadow as the features. Some of these features 
are affected by the intensity of the car and whether or 
not there is a shad0.w along it. This information is 'rep- 
resented in the structure of the Bayesian network that 

* 

we use to  ziitegrate al l  feutures. Experzments show very 
promzsing results euen on some very challengang zmages. We need to  account for all these difficulties t o  get a 

reasonable good system. 

Cars can be of any intensity in the image, from the 
darkest to  the lightest. And some cars' intensity is 
very close to the road. 
The image quality varies. The brightness, contrast 
and sharpness of the images change due to  factors in- 
cluding illumination, focusing and atmospheric tur- 
bulence. 
The expected features of a car differ with its intensity 
and the existence of shadow. For a simple example, 
whether or not the boundary of a gray car can be 
detected depends heavily on its shadow. (See 4.1 for 
more detail.) 

require integration of multiple cues. The aerial images we 
used are grayscale images taken mostly from a vertical or 
slightly oblique viewpoint,. The length of a typical car 
is around 26 pixels in image. The camera calibration is 
known as well as the sunlight direction. 

Detection from aerial image is easier than from detec- 
tion from an  arbitrary viewpoint in that the viewpoint 
is constrained. However, it is still not as easy as it may 
seem to  be. Example images are shown in Fig.1. The 
main difficulties lie in the following: 

e Although the viewpoint is constrained, there are still 
variations that  make the cars look different. 

0 The image resolution is low so not many details are 
visible. 

e Some cars are heavily interfered with the envirbn- 
ment in the images, mostly tree branches. (Fig.1.b) 
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Figure 1: Two patches of images and their Canny results. 
(a) is clean but some edges are not all like our perception. 
(b) is heavily interfered with the tree branches and the 
cars are hardly visible in the edge map. 

1-1 
The detection of vehicles has been receiving attention 

in the conlputer vision community because vehicles are 
such a significant part of our life. A lot of car detection 
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work is done for a single viewpoint, such as [8] [ll]. Some 
arbitrary viewpoint car detection [12] is done by detecting 
in a number of viewpoints and then combining the results. 

There is not much literature on detecting vehicles in 
aerial images. In [l] [7], a vehicle is modeled as a rectangle 
of a range of sizes. Canny like edge detector is applied and 
GHT (Generalized Hough Transform) [l] or convolution 
with edge masks [7] are used to extract the four sides 
of the rectangular boundary. [5] uses average gray-level 
and average gradient level of the inside/outside/along the 
sides of the vehicle as features and learning the feature 
distribution for recognition. All of them treat vehicles as 
2D objects and their primary evidence is the boundary 
of the car. This approach may be good for their da ta  
(Fort Hood, a military site) where the vehicles are mostly 
of dark color, but may have problems when applied on 
urban scenes and the performance may degenerate when 
the viewpoint changes. Besides, the shadow cue can not 
be utilized. 

1.2 Our approach 

We formulate the problem as a 3D object recognition 
problem to accommodate the change of viewpoint and 
make use of the shadow cues. A sketch of our  approach 
is described below. 

In this work, we are only interested in detecting cars 
aligned with road direction. First the directions of the 
roads are estimated by clustering straight lines in an im- 
age considering the fact that most lines in urban images 
are aligned with the direction of roads. From a psycho- 
logical test we performed and analogue to  aerial image 
building detection system [4], we decide to  use four sides 
of the boundary of the car; four sides of the front wind- 
shield; two sides of outer boundary of t,he shadow and 
the intensity of the shadow area (when exist) as features 
(Fig.3.b). With a generic model of a car, the expected 
features are predicted. The image features are computed 
at  each pixel and verified with the expected ones. We ob- 
serve that some of the feature distributions are affected by 
the intensity of the car and whether or not there is shadow 
along it.  We embody this knowledge in the structure of 
the Bayesian network which is used to  combine all fea- 
tures. The parameters of the Bayesian network are learnt 
from examples. Finally a decision of a car’s existence is 
made using a Bayesian minimum risk classifier. 

This paper is organized as follows. Section 2 outlines 
the psychological test we carried out mainly to  discover 
how human recognizes cars in aerial images. Section 3 
describes how the features are predicted and computed. 
Section 4 covers how the multiple features are combined 
with a Bayesians network. Section 5 presents the de- 
tection and post-processing. We show some results in 
Section 6,  and finally reach the conclusion in Section 7. 

2 A Psychological Test 
The fact that  human are very good a t  recognizing cars 

motivates us to  do this informal psychological test t o  gain 
some insight on how humans achieve this capability. First 
we asked a number of testers t o  retrospect after seeing the 
aerial images about the factors that  help them make the 
decision of the presence of a car. The factors most people 
mentioned are: 

0 The rectangular shape and size of the car. 

0 The layout of the visible windshields. 

0 The visible sides of the car when viewed obliquely. 

0 The shadow the car cast on the ground. 

0 The road and other environmental evidences. 

g h i j k I 

Figure 2: An example of the da ta  used in psychologi- 
cal test. (a) original image of a car; (b) visible sides 
removed; (c) shadow removed; (d)  windsheids removed; 
(e) both shadow and sides removed; ( f )  both shadow and 
windshields removed; (g)-(I) repeating (a)-(f) with car 
put in a neutral surrounding. 

Then we listed the relative significance of the above 
factors by removing a factor from t8he images and have the 
testers re-classify what they see (Fig.2). The conclusions 
are the following: 

The rectangular or almost rectangular shape is the 
most important cue of a car. 

The layout of the windshields (frontal and rear ones) 
is an important factor for human detection. 

The car shadow, when it exists, can make the detec- 
tion easier but it generally does not affect the deci- 
sion. 

The environment also affects the detection. The 
presence of a parking lot, road or an assembly of 
cars is a stroiig supportive evidence that  a rectan- 
gular object of appropriate size is a car although its 
other features are not salient. 
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3 Feature Extraction 
3.1 Clustering of road directions 

The vertical view aerial images of an urban area gen- 
erally exhibit a few ma.jor directions. These directions 
are made by the parallel roads and the buildings and 
other structures aligned with them. These directions of 
interest (DOI) can be discovered from the images since a 
large number of straight lines are aligned with these direc- 
tions. We obtain the DO1 of a local part of a city (say 8 
blocks square) by simply computing the histogram of the 
directions of the straight lines weighted by their length. 
The straight lines are fitted by LMS method from Canny 
edges. The histograms have sharp peaks a t  tjhe major 
directions. Peaks above some threshold are declared to  
be DOIs of this local patch of image. 

When the viewpoint is oblique and cannot be appros- 
imated with a vertical view, the image is re-projected 
onto a plane parallel to  the imaging plane to  remove the 
perspective effect on parallel lines. The image patch is 
rotated to  make the DO1 vertical in image. If one image 
has more than one DOI, we rotate it t o  form multiple im- 
ages and then combine the result later. I n  fact, we rotate 
the image into twice the number of the DOIs to  handle 
two-way traffic. 
3.2 Features used for detection 

t o  use the following features (Fig.3.b). 
From the psychological test and analysis, we decided 

The boundary of the car. The boundary of the car is 
mostly rectangular, but the two long sides may turn 
into curves under certain sit,uations (see the differ- 
ence of the two cars in Fig.3.c). 
The boundary of front windshield. We use only the 
front windshield because its shape, size and location 
in the car are relatively constant. It is always as- 
sumed to be rectangular. 
The outer boundary of the shadow area when shadow 
exists. The shadow is an important evidence to  dif- 
ferentiate cars from other planar rectangular struc- 
tures. In the case of very oblique sun angle, this cue 
will not be used since the shadow boundaries are far 
from the car and less reliable. 
(optional) The intensity of the shadow area when 
shadow exist,s. It is optional because it is expensive 
to  compute when the area is large and its contribu- 
tion to  detection is not as significant as others. 

As can be seen, the features we use are mostly gradi- 
ent features. To extract this information, two methods 
can be used - symbolic edges (e.g. extracted by Canny 
edge detector) [l] or responses of gradient filters of cer- 
tain shapes [7]. We chose the latter due to the following 
reasons. Firstly, due to the small size of car and inter- 
ference in image, edges of the car may be lost or become 

fragmented therefore cannot be extracted robustly (see 
Fig.1). Secondly, some features are not always linear. 
Thirdly, the response of gradient filter has better resolu- 
tion than the binary valued edge detector. 

Therefore the features are represented as thin gradi- 
ent (horizontal or vertical) masks. These masks are con- 
volved with the images to  get the value of corresponding 
features. The convolution masks are generated by the 
feature prediction module described below. 

(a) (b) (c) 
Figure 3:  (a) Wire-frame car model. (b)  izll features 
used for detection, including boundary of the car body 
( in  dark line), boundary of the front windshield (in white 
line), outer boundary of shadow area (in dotted line) and 
the intensity of shadow area (dark area). (c) Predicted 
features overlaid on the image. 

3.3 Model-based feature prediction 
To detect cars with t8he above features, we need to  

know the shape (for tjwo sides of car body boundary 
only), the location relative to  the center, and the es- 
pectecl strength of the features. Therefore, we use a 
coarse generic car model to predict the above inforniation 
to  verify i n  the input image. The generic model includes 
a wire-frame geometrical model and a surface reflectance 
model. 

We use a generic wire-frame car model [6] coas shown 
in Fig.3.a to  predict the 2D location of edges of the car. 
This is done by projection to the ground plane. The cars 
are far away from the camera and the depth of the cars 
in the view direction is small, so the perspective effect is 
hardly visible. Therefore, we use a scaled ort,liographic 
camera model. 

We use a subset of the edges in the wire-frame model 
as features. Frontal windshield and shadow are approxi- 
mately planar so there is no ambiguity about their bound- 
ary. But for the boundary of the car body itself, it is a 
little more complicated. For each of the four sides, there 
are always two edges (upper and lower) that may appear 
in the image. We assume that  only one significant edge 
per side will appear in the image. For the case where the 
lower edge is occluded, the upper one is used. But for 
the case where both edges are visible, we choose the edge 
along which the two intensities have greater difference. 
For example, if the intensity difference of the hood and 
the front of the car is less than the intensity difference of 
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the front and the ground (or shadow if there is shadow 
along i t ) ,  the lower front edge will be chosen. Therefore, 
we need a reflectance model of the car to  determine the 
intensity of the planes of the car body in the image under 
the known illumination. We use the following modified 
Lambertian model. 

I = Iamb + I s p e c  

k a ( a o t h e r s  + a g r o u n d !  i f S . N < o ;  
k a ( a o t h e r s  + a g r o u f i d s  * fi) if j. ‘ fi >= 0. 

~~ 

{ Iamb = 

Ispee = -k,sS . N 
where N is the surface unit normal, S is the unit normal 
of sun direction, s is sun light intensity, a g r o u n d r a o t h e r s  

are ambient light intensity from the ground and other 
places respectively, k d  is reflectance to  directional light, 
ka is reflectance to ambient light. 

The empirical modification is intended to take into ac- 
count the light reflected by the road affecting the sides 
of the car. The parameters k a , k ,  are obtained directly 
by measuring the images for each car intensity, and s, 
a g r o u n d  and a o t h e r s  are averaged from examples. Since 
we don’t need very accurate values, the simple model 
works quite well. We are not modeling highlights on the 
car because they are sensitive to the subtle curvature on 
the car. 

4 Multi-feature Integration 
4.1 Parameterization of the features 

The distributions of some of the features are influenced 
by the factors including the intensity of the car and the 
shadow along them, as can be seen in Fig.4. More specif- 
ically, the values of four boundary edges of the car body 
are affected by both the car intensity i and the shadow 
along that edge s; the two short vertical edges of the 
front windshield are affected by both i and s since they 
are close to the boundary; the two horizontal edges of 
the front windshield are affected by i; and the shadow 
features are not affected by either s or i .  The factors 
are quantized into discreet values for the simplicity of 
processing in the future. s is quantized into no shadow, 
thzn shadow, and wade shadow, and i is quantized into 
dark colored, gray colored and lzght colored. These depen- 
dencies are important information that should be taken 
advantage of. We will show next how they are used to  
decide the structure of the Bayesian network. 
4.2 Integration through a Bayesian network 

Considering all the available evidence, we may have as 
many as 11 features to use. We need to  combine these 
features to get a final decision (probability) of a car’s ex- 
istence. Bayesian networks (BN) provide an optimal way 
to integrate multiple cues for a decision if the conditional 
distributions are known [9]. They have been used in var- 
ious applications in computer vision research and shown 

Figure 4: An image patch and its X/Y gradient maps. 
(in gradient maps, mid gray - 0, white - positive, black - 
negative) Expected feature values vary with the intensity 
of the car and shadow. Comparing the bottom three cars, 
all the features of the white car are clear; the top and 
right boundaries of the black car are invisible; the left 
boundary of the gray car is faint; the windshields of the 
black car and white car exhibit different sign in gradient 
maps. 

promising performance [3]. We use a BN to  integrate 
all available evidences with the structure shown in Fig.5. 
The factors i and s are made parent nodes of some of the 
evidence nodes according to  the parameterization above. 
The posterior probability P(car lF,  i, s) of the node ”car” 
(where F = [fl , fi, f n ]  is all available features) is the one 
to  be evaluated. The values of the evidence nodes are 
measured from the image. The parameter node s is com- 
puted with the model, view angle and sun angle. The 
parameter node i is obtained by getting the median of 
the intensities of a small region around the pixel. Each 
of the evidence nodes has a conditional probability table 
(CPT) associated with it which is indexed by the value 
combination of its parents and itself. For example, the 
C P T  of the node BU is in the form of P ( f s u  Icar, i, s). 

Figure 5: The Bayesian network used for detection. Dot- 
ted line shows not always available. B = body boundary 
/ W = front windshield / S = shadow / U = rear / D = 
front / L = left / R = right / I = intensity. Evidences in 
dotted circles are used only when available. 

It should be noted that the BN assumes conditional in- 
dependency. In our case, although we introduced two pa- 
rameter nodes to decrease the correlation of the evidence 
nodes, the correlation due to other factors still remains. 
However, [a] shows the reason why simple Bayesian clas- 
sifier shows good result even in the presence of correlation 
of features which also applies here. 
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4.3 Handcrafted BN parameters 
Having the network structure, human knowledge and 

experience can be used to  fill in the parameters. An ex- 
ample is shown in Tab.1. The value of the features is 
quantized to binary (exists or not) using thresholds be- 
cause it is hard for human to  deal with continuous value 
directly. The parameters are designed considering the 
following empirical guidelines as well as measuring some 
examples in images: 

0 For light and g r a y  cars, the probability to  detect an 
edge along a shadow is higher than no shadow (s 
is quantized into shadow and no shadow in hand- 
crafted BN); 
For dark colored cars, the probability to  detect an 
edge along a shadow is much lower than no shadow; 

0 For dark colored cars, the probability to  detect the 
windshield boundary edges is low; 

0 Light colored cars has higher probability to  have a 
body boundary / windshield boundary edge detected 
than gray colored cars; 

0 Short edges are more likely to  be made noisy than 
Iong edges; 

0 The left/right edges are more likely to be made noisy 
than front/rear edges. 

cur 
cur 
cur 

cur I dark I 
cur dark 1 wide 1 0.15 0.85 

I I 

gray no 0.6 0.4 
gray thin 0.7 0.3 
erav wide 0.8 0.2 

car 1 light I thin I 0.9 
I cur I lieht I no I 0.8 I 0.2 I 

0.1 

Table 1: A hand crafted C P T  for front boundary of car 
body. 

4.4 Learning the parameters 

aspects. 
Handcrafting the parameters is limited in the following 

0 Humans' qualitative experience may not reflect every 
part of the problem domain. 

0 It  is not easy to  transform humans' subjective quali- 
tative experience into objective numerical quantities 

0 Studying a large number of examples is a tedious job 
requiring the familiarity with vision.algorithms. 

Therefore, learning the parameters of the BN from ex- 
amples by the computer will be ideal. In this way, we can 
model the sensory da ta  with much finer resolution (we are 
using 64 quantization levels). A common way to  repre- 
sent a distribution is to fit it with some known parametric 
distribution forms, among which Gaussian density is the 
most commonly used. But here, some of the distribu- 
tions display multiple modes, thus non-Gaussian. It can 
be modeled as a mixture of Gaussians, but for simplicity, 
we use non-parametric technique instead. We tried KNN 
(k-nearest neighbor) and Parzen Window with Gaussian 
kernel. The results showed the latter outperformed the 
former a little. 

Since there are no hidden nodes ip  the network, learn- 
ing the C P T  requires just calculating the histogram. By 
the conditional independence assumption, the C P T  of 
each evidence node can be learnt independently. We col- 
lected around 200 cars manually from 25 patches of im- 
ages for training as positive samples and other parts of' 
the images are served as negative samples. Only the car 
boundary is specified on the images and the locations of' 
other evidences are computed by the feature prediction 
module. Fig.6 shows some of the learnt CPTs; the dis- 
tribution contains the guidelines of human experience as 
well as other aspects not noticed by human observer. 

We use it as human knowledge a t  first that  the value 
of the features are affected by the factors i and s. With, 
the learnt distributions, we proved that the parameter- 
ization is efficient by showing Kullback-Leibler diver- 
gence of P(f , lcar)  and P ( f , l f u c t o r ,  cur)  is large, where 
fac tor  = i ,  s. 

I) 25 r - Plf,lnoncar, no shad) ---- P(f,llclr.llpht.no rhadl 
Pff,lear,pmy,no ahad) --- * P(f,lcar,darlr,no shad) 

n 2- 

t.0 I<- - 
f 01. 

fCPtkrC ,&Le 

Figure 6: Learnt C P T  of the front boundary of car 
body when there is no shadow along it ( P ( f ~ u  Jcar,  i ,  s == 
noshadow)) .  The distribution exhibits large difference 
for different i .  

for computation. 

plex numerical relationships, such as distributions, 5.1 Detection 

5 Detection and Post-processing 
0 Since humans are not good a t  dealing with com- 

the quantization from continuous distribution to hi- 
nary value loses information that could have been 
utilized. 

After the BN is constructed and learnt, we can use it 
to detect cars in other images. First the available fea,- 
ture maps are computed. The values of the features are 
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retrieved from corresponding feature maps a t  the loca- 
tions computed by the feature prediction module. And 
then the car existence P(curlF, i ,  s )  a t  each image pixel 
is taken to  be the maximum of the probability of all sizes 
(mini, compact, full-size, and luxury). 

A minimum risk classifier instead of a minimum error 
rate classifier is used to make the final decision. It is 
more suitable here for the user can conveniently specify 
their preference on false alarms or mis-detections by a 
risk matrix C: 

= ( ::: ::: ) 
where 0 means car and 1 means cur.  col means the cost 
to misclassify a cur to  be a car, and so on. 

The decision rule for classifying a car in minimum error 
rate classifier P(cur (F ,  i, s) > P ( S l F ,  i, s) is replaced 
by R(curlF, i ,  s )  < R ( E l F ,  i, s )  where R is the expected 
risk. i and s are omitted in the derivation below. 

R(cur1F) < R ( E F l F )  
* - P (Flcar)P(caT)(col - c11) > P(F1car)P (CoT)(ClO - coo) 

P ( F  /cur)  P’( cur) > P ( F  I-) P’ (car) 
P car C 0 1 - C l l )  

where P’(cur) = P ( c a r ) ( c o l ~ c l I ~ + P ( ~ ) ( c l o - c o o )  1 and 
P ’ ( E )  = 1 - P’(car). 

It is equivalent to  adjusting the prior probability 
P(cur) and P ( S ) .  In our case, COO and c11 are set to 0 
and col is set to 1. c10 is the only free parameter for the 
user to  specify. 
5.2 Post-processing 

Generally a number of pixels around the center of a car 
will all have a high probability value, thus many will be 
classified as cars. Besides, the coincidental alignment of 
boundary lines and shadow lines as well as the coinciden- 
tal alignment of features of adjacent cars may also create 
high probability spots which are close to the true center 
of the car. (See Fig.7.a for example.) Overlap resolution 
is needed to remove the redundant results. 

First we find the connected regions in t,he probability 
map. Then for each connected component, the accumu- 
lated probability and weighed centroid are computed. We 
assume that the true detections have higher accumulated 
probability than false alarms around it ,  which in most 
time is true in our experiments. The connected compo- 
nents are sorted by their accumulated probability. Valid 
detections are chosen from the front of the queue. For 

each connected region, if it does not overlap with any of 
the previous chosen valid detections, it is identified as a 
valid detection, otherwise discarded. 

(4 (b) 
Figure 7: Before(a) and after(b) overlap resolution. 

As mentioned in [7], false alarms will appear when the 
sunlight creates shadow with the similar width as a car. 
I t  may also happen in our system especially when the 
car features are not perfect to  suppress it in the previous 
step. This is also taken care of in our overlap resolution. 
A result example is shown in Fig.7.b. 

6 Result and Discussion 
6.1 Result 

We tested our system on 12 image patches of a Wash- 
ington DC image set containing 320 cars, with different 
sun angles, view angles, image quality and against differ- 
ent backgrounds (Fig.9). Some of the images present very 
difficult conditions due to  cars hidden in tree branches 
(Fig.S.c,h), shadow having similar width as a car (Fig.9.a) 
and oblique viewpoint of some images (Fig.9.i). With all 
these difficulties, our detector still showed very promising 
results. 

We find that most cars with good features have been 
detected, while some of the difficult ones also got de- 
tected with appropriate choice of the c10 value. Although 
aimed a t  only detecting regular passenger cars, it also de- 
tected some other vehicles (vans, SUVs) sharing similar 
feature placement. Both the mis-detection rate and the 
false alarm rate of dark colored cars are higher than others 
because under most situations they don’t have as salient 
features as lzghtor gray coloredones. Most false alarms re- 
sult from the coincidental alignment of rectangular shape 
and other lines of structures in buildings, foliage of trees 
or road markings. 

For a detector, there is always a tradeoff between 
false alarm rate and mis-detection rate. ROC (receiver- 
operating-characteristic) curve is drawn in Fig.8. Be- 
sides the regular ROC curve, ROC curve not considering 
the off-road part is also given because in some applica- 
tions such as vehicle counting, when the coarse knowledge 
about location the road is known, we are especially inter- 
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ested in the false alarm rate on the road. 

1 

Figure 8: ROC curve. 

6.2 Computation 
The computation time is proportional to the number 

of pixels processed. Convolution takes the greatest share 
of time. We use convolution decomposition to  accelerate 
the computation by separating the gradient and the shape 
of the feature. And since the convolution is with binary 
mask, all the multiplication operations are replaced by 
integer logic operations. Evaluation of the probability 
of car a t  each pixel also takes a big share of time. We 
also used a simple preliminary screening procedure to  cut 
down 80% of the evaluation without noticeably affecting 
the result. After all these techniques, a 1000 t 870 image 
takes about 30 seconds for one DO1 on a PI1 4 0 0 M H z  
PC. All the operations are carried out to  each pixel of the 
image, sosit is suitable for highly parallel processing. 

7 Conclusion 
We have described a car detection system for aerial 

images. Different from pervious work, we can deal with 
vertical and slightly oblique viewpoints since we formu- 
late it as a 3D object recognition problem. We analyze 
shadows explicitly to make them a useful cue for detection 
instead of a source of problems as has been the case in 
some previous work [7]. We used the response of gradient 
mask filters as feature t o  account for the low resolution 
and noise in aerial image and this makes it more robust 
than using edge detector. We introduced car intensity i 
and shadow s as parameters and they were proven to  be 
effective. A Bayesian network is used to  combine multi- 
ple features with learning and the only hand given pa- 
rameter is to  make a balance over false alarms and mis- 
detections. Most importantly, in testing we found it gave 
very promising result even in very difficult situations. 

Machine learning is gaining popularity in computer vi- 
sion community. In this work, we showed a good example 
on how human knowledge and learning can be balanced. 
The generic car model and the parameterization of the 
features which are difficult if not impossible to  learn from 
statistical data  are introduced as prior knowledge and the 
parameters of the Bayesian network are learnt from ex- 
amples. We believe that similar approaches can also be 

useful for other object detection and recognition tasks. 
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Figure 9: Detection results. (d)(e)  are the close-up (ro- 
tated to  fit in page) of ( c ) ;  (11) is the results of Fig.1.b. 
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