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Abstract

A common trend in object recognition is to detect and lever-
age the use of sparse, informative feature points. The use
of such features makes the problem more manageable while
providing increased robustness to noise and pose variation.
In this work we develop an extension of these ideas to the
spatio-temporal case. For this purpose, we show that the
direct 3D counterparts to commonly used 2D interest point
detectors are inadequate, and we propose an alternative.
Anchoring off of these interest points, we devise a recogni-
tion algorithm based on spatio-temporally windowed data.
We present recognition results on a variety of datasets in-
cluding both human and rodent behavior.

1. Introduction

In this work we develop a general framework for detecting
and characterizing behavior from video sequences, making
few underlying assumptions about the domain and subjects
under observation. Consider some of the well known diffi-
culties faced in behavior recognition. Subjects under ob-
servation can vary in posture, appearance and size. Oc-
clusions and complex backgrounds can impede observation,
and variations in the environment, such as in illumination,
can further make observations difficult. Moreover, there are
variations in the behaviors themselves.

Many of the problems described above have counter-
parts in object recognition. The inspiration for our approach
comes from approaches to object recognition that rely on
sparsely detected features in a particular arrangement to
characterize an object, e.g. [6, 1, 18]. Such approaches tend
to be robust to pose, image clutter, occlusion, object vari-
ation, and the imprecise nature of the feature detectors. In
short they can provide a robust descriptor for objects with-
out relying on too many assumptions.

We propose to characterize behavior through the use of
spatio-temporal feature points (see figure 1). A spatio-
temporal feature is a short, local video sequence such as

Figure 1: Visualization of cuboid based behavior recognition. Spatio-
temporal volume of mouse footage shown at top. We apply a spatio-
temporal interest point detector to find local regions of interest in space
and time (cuboids) which serve as the substrate for behavior recognition.

an eye opening or a knee bending, or for a mouse a paw
rapidly moving back and forth. A behavior is then fully de-
scribed in terms of the types and locations of feature points
present. The motivation is that an eye opening can be char-
acterized as such regardless of global appearance, posture,
nearby motion or occlusion and so forth, for example, see
figure 2. The complexity of discerning whether two behav-
iors are similar is shifted to the detection and description of
a rich set of features.

Although the method is inspired by approaches to object
recognition that rely on spatial features, video and images
have distinct properties. The third dimension is temporal,
not spatial, and must be treated accordingly. Detection of
objects in 3D spatial volumes is a distinct problem, see for
example [8].

In this work we show that direct 3D counterparts to com-
monly used 2D interest point detectors are inadequate for
detection of spatio-temporal feature points and propose an
alternative. We also develop and test a number of descrip-
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Figure 2: Example of six cuboids extracted from each of two different
sequences of grooming, a single frame shown from each original sequence.
Each cuboid is shown flattened with respect to time. Note that although
the posture of the mouse is quite different in the two cases, three of the
six cuboids (shown in the top three rows) for each mouse are quite similar.
The other three have no obvious correspondences although its very hard to
perceive what these are without motion.

tors to characterize the cuboids of spatio-temporally win-
dowed data surrounding a feature point. Cuboids extracted
from a number of sample behaviors from a given domain
are clustered to form a dictionary of cuboid prototypes. The
only information kept from all subsequent video data is the
location and type of the cuboid prototypes present. We ar-
gue that such a representation is sufficient for recognition
and robust with respect to variations in the data. We show
applications of this framework, utilizing a simple behavior
descriptor, to three datasets containing human and mouse
behaviors, and show superior results over a number of ex-
isting algorithms.

The structure of the paper is as follows. In Section 2 we
discuss related work. We describe our algorithm in Section
3. In Section 4 we present a detailed comparison of the
performance of our algorithm versus existing methods on
various datasets. We conclude in Section 5.

2. Related Work
Tracking and behavior recognition are closely related prob-
lems, and in fact many traditional approaches to behavior
recognition are based on tracking models of varying sophis-
tication, from paradigms that use explicit shape models in
either 2D or 3D to those that rely on tracked features; for
a broad overview see [9]. The basic idea is that given a
tracked feature or object, its time series provides a descrip-
tor that can be used in a general recognition framework.

In the domain of human behavior recognition for exam-
ple, an entire class of approaches for recognition is based
on first recovering the location and pose of body parts, see
for example [29, 3]. However, it is unclear how to extend
paradigms that rely on articulated models in either 2D or
3D to domains where behavior is not based on changes in

configurations of rigid parts, as is the case for recognition
of rodent behavior. Perhaps more fundamental, however, is
that even in domains where explicit shape models are ap-
plicable, it is often very difficult to fit the models to the data
accurately.

Another class of approaches performs recognition by
first tracking a number of spatial features. [27] use spa-
tial arrangements of tracked points to distinguish between
walking and biking, using the intuition that people can iden-
tify such behaviors from Johansson displays. [24] use view
invariant aspects of the trajectory of a tracked hand to differ-
entiate between actions such as opening a cabinet or picking
up an object. Recognition can also proceed from tracked
contours, such as in [13].

In response to the practical difficulties of feature and
contour tracking, [23] and [28] introduced the framework
of ‘tracking as repeated recognition,’ in which the recovery
of pose and body configuration emerges as a byproduct of
frame-by-frame recognition using a hand labeled dataset of
canonical poses. These approaches are based on the com-
parison of Canny edges. While the assumptions of edge
detection are less restrictive than those of feature or contour
tracking, it is still unreliable in domains with cluttered or
textured backgrounds or in which the object of interest has
poor contrast.

The work of Efros et al. [5] focuses on the case of low
resolution video of human behaviors, targeting what they
refer to as ‘the 30 pixel man.’ In this setting they propose
a spatio-temporal descriptor based on optical flow measure-
ments, and apply it to recognize actions on ballet, tennis and
football datasets. Our proposed method bears some similar-
ity to this approach, but is categorically different in that it
uses local features rather than a global measurement. Ear-
lier approaches in this vein are those of [30] and [4]. In [30]
for example, Zelnik-Manor and Irani use descriptors based
on global histograms of image gradients at multiple tem-
poral scales. The approach shows promise for coarse video
indexing of highly visually distinct actions. We examine the
approaches of [30] and [5] in more detail in section 4.3.

Most closely related to our work is that of [26], who also
use sparsely detected spatio-temporal features for recog-
nition, building on the work on spatio-temporal feature
detectors by [17]. They show promising results in hu-
man behavior recognition, demonstrating the potential of
a method based on spatio-temporal features in a domain
where explicit shape models have traditionally been used.
The spatio-temporal detector, feature descriptor and behav-
ior descriptor employed in their approach differ from ours.
Their method assumes fixed length behaviors, and the sim-
ilarity between a pair of behaviors is found using a greedy
match of the features where multiple features can map to
the same corresponding feature.
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3. Proposed Algorithm
In the following sections we describe our algorithm in de-
tail. In Section 3.1 we talk about detection of spatial in-
terest points and extensions to the spatio-temporal domain.
We describe cuboids in more detail in Section 3.2, and in
Section 3.3 we describe the use and importance of cuboid
prototypes. We describe the very simple behavior descriptor
used in all of our experiments in Section 3.4.

3.1. Feature Detection
A variety of methods exist to detect interest points in the
spatial domain, for an extensive review and comparison of
methods see [25]. Typically, a response function is calcu-
lated at every location in the image and feature points cor-
respond to local maxima.

One of the most popular approaches to interest point de-
tection in the spatial domain is based on the detection of
corners, such as [11, 7]. Corners are defined as regions
where the local gradient vectors point in orthogonal di-
rections. The gradient vectors are obtained by taking the
first order derivatives of a smoothed imageL(x, y, σ) =
I(x, y) ∗ g(x, y, σ), whereg is the Gaussian smoothing ker-
nel. σ controls the spatial scale at which corners are de-
tected. The response strength at each point is then based on
the rank of the covariance matrix of the gradient calculated
in a local window. Different measures of the rank lead to
slightly different algorithms.

Another common approach is to use the Laplacian of
Gaussian (LoG) for the response function. For example,
Lowe [19] proposes to use an approximation of the LoG
based on the difference of the image smoothed at differ-
ent scales. Specifically, his response function isD =
(g(·; kσ) − g(·;σ)) ∗ I = L(·; kσ) − L(·;σ) wherek is
a parameter that controls the accuracy of the approxima-
tion; D tends to the scale normalized LoG ask goes to1.
Under varying conditions either the LoG or Harris detec-
tor may have better performance; [21] proposes a technique
that incorporates both approaches.

Kadir and Brady [14] approach feature detection with
the specific goal of detecting features for object recognition.
They define a local measure of patch complexity and look
for points the maximize this measure spatially and across
scales. Motivation for this type of approach is that salient
point are precisely those which maximize discriminability
between the objects. This feature detector was used by [6]
in their object recognition framework.

3.1.1. Extensions to the Spatio-Temporal Case

The general idea of interest point detection in the spatio-
temporal case is similar to the spatial case. Instead of an
imageI(x, y), interest point detection must operate on a
stack of images denoted byI(x, y, t). Localization must

proceed not only along the spatial dimensionsx andy but
also the temporal dimensiont. Likewise, detected features
also have temporal extent.

The only spatio-temporal interest point operator that we
know of is an extension of the Harris corner detect to the 3D
case, which has been studied quite extensively by Laptev
and Lindeberg (for a recent work see [17]). The basic idea is
simple and elegant. Gradients can be found not only along
x andy, but also alongt, and spatio-temporal corners are
defined as regions where the local gradient vectors point
in orthogonal directions spanningx, y and t. Intuitively,
a spatio-temporal corner is an image region containing a
spatial corner whose velocity vector is reversing direction.
The second moment matrix is now a3 × 3 matrix, and the
response function is again based on the rank of this matrix.

The generalized Harris detector described above has
many interesting mathematical properties, and in practice
it is quite effective at detecting spatio-temporal corners. As
mentioned [26] used spatio-temporal features detected by
the generalized Harris detector to build a system that distin-
guishes between certain human behaviors. The behaviors
their method can discriminate amongst, including walking,
jogging, running, boxing, clapping and waving, are in fact
well characterized by the reversal in the direction of motion
of arms and legs. Hence these behaviors give rise to spatio-
temporal corners, so the technique is well suited for dealing
with their dataset.

In certain problem domains, e.g., rodent behavior recog-
nition or facial expressions, we have observed that true
spatio-temporal corners are quite rare, even when seemingly
interesting motion is occurring. Sparseness is desirable to
an extent, but features that are too rare can prove troubling
in a recognition framework, as observed by Lowe [19].

In addition to the rarity of spatio-temporal corners, a
more general question that remains unanswered is whether
spatio-temporal corners are in fact the features one needs for
general behavior recognition. Analogous to useful features
for object recognition, we are interested in precisely those
features that maximize discrimination between behaviors.
Consider two examples, the jaw of a horse chewing on hay
and the spinning wheel of a bicycle. Neither example gives
rise to a spatio-temporal corner as the motions are subtle
and gradually changing, yet both seem like particularly rel-
evant features for behavior recognition.

We propose an alternative spatio-temporal feature detec-
tor for our behavior recognition framework. We have ex-
plicitly designed the detector to err on the side of detecting
too many features rather than too few, noting that object
recognition schemes based on spatial interest points deal
well with irrelevant and possibly misleading features gen-
erated by scene clutter and imperfect detectors [19]. The
resulting representation is still orders of magnitude sparser
than a direct pixel representation.
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Like much of the work on interest point detectors, our
response function is calculated by application of separable
linear filters. We assume a stationary camera or a process
that can account for camera motion. The response function
has the formR = (I ∗ g ∗ hev)2 + (I ∗ g ∗ hod)2 where
g(x, y;σ) is the 2D Gaussian smoothing kernel, applied
only along the spatial dimensions, andhev andhod are a
quadrature pair [10] of 1D Gabor filters applied temporally.
These are defined ashev(t; τ, ω) = − cos(2πtω)e−t2/τ2

andhod(t; τ, ω) = − sin(2πtω)e−t2/τ2
. In all cases we use

ω = 4/τ , effectively giving the response functionR two
parametersσ and τ , corresponding roughly to the spatial
and temporal scale of the detector.

The detector is tuned to fire whenever variations in lo-
cal image intensities contain periodic frequency compo-
nents. In general there is no reason to believe that only pe-
riodic motions are interesting. Periodic motions, such as a
bird flapping its wings, will indeed evoke the strongest re-
sponses, however, the detector responds strongly to a range
of other motions, including at spatio-temporal corners. In
general, any region with spatially distinguishing character-
istics undergoing a complex motion can induce a strong re-
sponse. Areas undergoing pure translational motion will in
general not induce a response, as a moving, smoothed edge
will cause only a gradual change in intensity at a given spa-
tial location. Areas without spatially distinguishing features
cannot induce a response.

3.2. Cuboids
At each interest point (local maxima of the response func-
tion defined above), a cuboid is extracted which contains
the spatio-temporally windowed pixel values. The size of
the cuboid is set to contain most of the volume of data that
contributed to the response function at that interest point;
specifically, cuboids have a side length of approximately six
times the scale at which they were detected.

To compare two cuboids, a notion of similarity needs to
be defined. Given the large number of cuboids we deal with
in some of the datasets (on the order of105), we opted to use
a descriptor that could be computed once for each cuboid
and compare using Euclidean distance.

The simplest cuboid descriptor is a vector of flattened
cuboid values. More generally, a transformation can be ap-
plied to the cuboid, such as normalization of the pixel val-
ues, and given the transformed cuboid, various methods can
be employed to create a feature vector, such as histogram-
ming. The goal of both phases is to create a descriptor with
invariance to small translations, slight variation in appear-
ance or motion, changes in lighting, and so on, while retain-
ing the descriptor’s discriminative power. Instead of trying
to predict the right balance between invariance and discrim-
inative power, we design a number of descriptors and test
each in our recognition framework.
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Figure 3: Shown is the intra and inter class performance of our recogni-
tion method on the face dataset using different cuboid descriptors. The full
algorithm, dataset and methodology are discussed later, the sole purpose
of this figure is to give a sense of the relative performance of the various
cuboid descriptors. Recall that the descriptors we use involve first trans-
forming the cuboid into: (1) normalized brightness, (2) gradient, or (3)
windowed optical flow, followed by a conversion into a vector by (1) flat-
tening, (2) global histogramming, or (3) local histogramming, for a total of
nine methods, along with multi-dimensional histograms when they apply.
Using the gradient in any form gave very reliable results, as did using the
flattened vector of normalized brightness values.

The transformations we apply to each cuboid include:
(1) normalized pixel values, (2) the brightness gradient, and
(3) windowed optical flow. The brightness gradient is cal-
culated at each spatio-temporal location(x, y, t), giving rise
to three channels(Gx, Gy, Gt) each the same size as the
cuboid. To extract motion information we calculate Lucas-
Kanade optical flow [20] between each pair of consecutive
frames, creating two channels(Vx, Vy). Each channel is the
same size as the cuboid, minus one frame.

We use one of three methods to create a feature vector
given the transformed cuboid (or multiple resulting cuboids
when using the gradient or optical flow). The simplest
method involves flattening the cuboid into a vector, al-
though the resulting vector is potentially sensitive to small
cuboid perturbations. The second method involves his-
togramming the values in the cuboid. Such a representation
is robust to perturbations but also discards all positional in-
formation (spatial and temporal). Local histograms, used as
part of Lowe’s 2D SIFT descriptor [19], provide a compro-
mise solution. The cuboid is divided into a number of re-
gions and a local histogram is created for each region. The
goal is to introduce robustness to small perturbations while
retaining some positional information. For all the methods,
to reduce the dimensionality of the final descriptors we use
PCA [12].

Many of the above choices were motivated by research in
descriptors for 2D features (image patches). For a detailed
review of 2D descriptors see [22]. Other spatio-temporal
descriptors are possible. For example, al. [26] used differen-
tial descriptors [16] for their spatio-temporal interest points,
however, among the descriptors examined for 2D features,
differential descriptors are not particularly robust.

We tested the performance of our overall algorithm
changing only the cuboid descriptor on a dataset described
later in this paper. Results are shown in figure 3. His-
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tograms, both local and global did not provide improved
performance; apparently the added benefit of increased ro-
bustness was offset by the loss of positional information.
In all experiments reported later in the paper we used the
flattened gradient as the descriptor, which is essentially a
generalization of the PCA-SIFT descriptor [15].

3.3. Cuboid Prototypes
Our approach is based on the idea that although two in-
stances of the same behavior may vary significantly in terms
of their overall appearance and motion, many of the inter-
est points they give rise to are similar. Under this assump-
tion, even though the number of possible cuboids is virtu-
ally unlimited, the number of differenttypesof cuboids is
relatively small. In terms of recognition the exact form of a
cuboid becomes unimportant, only its type matters.

We create a library of cuboid prototypes by clustering a
large number of cuboids extracted from the training data.
We cluster using the k-means algorithm. The library of
cuboid prototypes is generated separately for each dataset
since the cuboids types are very different in each (mouse
cuboids are quite distinct from face cuboids). Clusters of
cuboids tend to be perceptually meaningful.

Using cluster prototypes is a very simple yet powerful
method for reducing variability of the data while maintain-
ing its richness. After the training phase, each cuboid de-
tected is either assumed to be one of the known types or
rejected as an outlier.

Intuitively the prototypes serve a similar function as
parts do in object recognition. The definition of parts varies
widely in the literature on object recognition, the analogy
here is most applicable to the work of [6] and especially [1],
who refer to the local neighborhoods of spatially detected
interest points as parts. In the case of static face detection,
these might include the eyes or hairline features.

3.4. Behavior Descriptor
After extraction of the cuboids the original clip is discarded.
The rationale for this is that once the interest points have
been detected, together their local neighborhoods contain
all the information necessary to characterize a behavior.
Each cuboid is assigned a type by mapping it to the clos-
est prototype vector, at which point the cuboids themselves
are discarded and only their type is kept.

We use a histogram of the cuboid types as the behav-
ior descriptor. Distance between the behavior descriptors
(histograms) can be calculated by using the Euclidean or
χ2 distance. When more training data is available, we use
the behavior descriptor and class labels in a classification
framework.

The relative positions of the cuboids are currently not
used. Previously mentioned algorithms for object recogni-

(a) (b) (c)

Figure 4: Representative frames from clips in each domain: (a) facial
expressions, (b) mouse behavior, and (c) human activity.

tion, such as [6] or [1] could be used as models for how to
incorporate positional information.

4. Experiments
We explore results in three representative domains: facial
expressions, mouse behavior and human activity. Repre-
sentative frames are shown in figure 4. To judge the per-
formance of our algorithm, we compare to results obtained
using three other general activity recognition algorithms on
these datasets. Each domain presents its own challenges
and demonstrates various strengths and weaknesses of each
algorithm tested.

We describe each dataset in detail in the following sec-
tion, training and testing methodology in Section 4.2, the
algorithms used for comparison in Section 4.3, and finally
detailed results in Section 4.4.

4.1. Datasets
We compiled the facial expressions and mouse behav-
ior datasets ourselves, they are available for download
at http://vision.ucsd.edu . The human activity
dataset was collected by [26] and is available online.

The face data involves 2 individuals, each expressing 6
different emotions under 2 lighting setups. The expressions
are anger, disgust, fear, joy, sadness and surprise. Certain
expressions are quite distinct, such as sadness and joy, oth-
ers are fairly similar, such as fear and surprise. Under each
lighting setup, each individual was asked to repeat each of
the 6 expressions 8 times. The subject always starts with
a neutral expression, expresses an emotion, and returns to
neutral, all in about 2 seconds.

The mouse data includes clips taken from seven fifteen
minute videos of the same mouse filmed at different points
in the day. The set of behaviors includes drinking, eating,
exploring, grooming and sleeping. The number of occur-
rences and characteristics of each behavior vary substan-
tially for each of the seven videos; clips extracted from each
video are kept separate. A total of 406 clips were extracted
ranging from 14 occurrences of drinking to 159 occurrences
of exploring, each lasting between 1 and 10 seconds. Typ-
ical mouse diameter is approximately 120 pixels although
the mouse can stretch or compress substantially. All film-
ing was done in the vivarium in which the mice are housed.
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The videos were collected with help from veterinarians at
the UCSD Animal Care Program, who also advised on how
to classify and label the data by hand.

In order to be able to do a full comparison of methods,
we also created a greatly simplified, small scale version of
the mouse dataset. While the mouse eats, it tends to sit
still, and on occasion when it explores it sniffs around but
remains stationary. From two different mouse videos we
extracted a number of examples of these two behaviors, all
of the same (short) duration, and made sure the mouse is
spatially centered in each. Data in this form does not benefit
our algorithm in any way, however, it is necessary to get
results for some of the methods we test against.

The human activity data comes from the dataset col-
lected by [26]. There are 25 individuals engaged in the fol-
lowing activities: walking, jogging, boxing, clapping and
waving. We use a subset of the dataset which includes each
person repeating each activity 8 times for about 4 seconds
each, wearing different clothing (referred to scenarioss1
ands3), for a total of almost 1,200 clips. The clips have
been sub-sampled (people are approximately 80 pixels in
height) and contain compression artifacts (this is the ver-
sion of the dataset available online).

4.2. Methodology
We divide each dataset into groups. The groups we chose
for the datasets discussed above are as follows: face clips
are divided into 4 groups, one group per person per lighting
setup; mouse clips are divided into 7 groups, correspond-
ing to each of the source videos; human activity clips are
divided into 25 groups, one per person. We analyze the per-
formance of various algorithms trained on a subset of the
groups and tested on a different subset. Often, because of
the limited amount of data, we use leave one out cross vali-
dation to get an estimate of performance.

All algorithms have parameters that need tuning. In all
cases that we report results we report the best performance
achieved by a given algorithm – parameter sweeps were
done for all the algorithms. As can be seen in figure 5
our method is not very sensitive to the exact parameter set-
tings, in fact, aside from the scale of the cuboids we used
the same parameter settings on all three datasets. Some of
the algorithms also have a random component (for example
a clustering phase), in this case any experiment reported is
averaged over 20 runs.

When applicable, we focus on reporting relative perfor-
mance of the algorithms so as to avoid questions of the ab-
solute difficulty of a given dataset.

4.3. Algorithms for Comparison
We compare our approach to three other methods. Each of
these is a general purpose behavior recognition algorithm
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Figure 5: We tested how sensitive the performance of our method is to
various parameter settings on the face dataset. In each of the above curves
we plot classification error for 10 different settings of a given parameter
with all other parameters kept constant at default, ‘reasonable’ values. The
thing to note is that the overall shape of each curve is very smooth and
tends to be bowl shaped. The four parameters shown are: k,50 < k <
500, the number of clusters prototypes,n, 10 ≤ n ≤ 200 the number of
cuboids detected per face clips,ω, 0 < ω < 1 the overlap allowed between
cuboids, andσ, .2 < σ < 9, the spatial scale of the detector (which also
determines the size of the cuboid). Optimal settings were approximately:
k = 250, n = 30, ω = .9 andσ = 2.

that is capable of dealing with low resolution and noisy
data. We implement the algorithms of Efros et al. [5] and
Zelnik-Manor and Irani [30], we refer to these asEFROS

andZMI , respectively. We also use a variation of our frame-
work based on the Harris 3D corner detector, described pre-
viously. We refer to our framework asCUBOIDS and to the
variation using the Harris detector asCUBOIDS+HARRIS1.
Unless otherwise specified we use 1-nearest neighbor clas-
sifier with theχ2 distance on top of the cuboid representa-
tion. We describeEFROSandZMI in more detail below.

EFROSis used to calculate the similarity of the activity of
two subjects using a version of normalized cross correlation
on optical flow measurements. Subjects must be tracked
and stabilized. If the background is non uniform this can
also require figure-ground segmentation. However, when
these requirements are satisfied the method has been shown
to work well for human activity recognition and has been
tested on ballet, tennis and football datasets2. EFROStends
to be particularly robust to changes in appearance and has
shown impressive results even on very low resolution video.

ZMI works by histogramming normalized gradient mea-
surements from a spatio-temporal volume at various tempo-
ral scales, resulting in a coarse descriptor of activity. No
assumptions are made about the data nor is tracking or sta-
bilization required. The method’s strength lies in distin-
guishing motions that are grossly different; promising re-
sults have been shown on human activities such as running,
waving, rolling or hopping. In some senseZMI andEFROS

are complementary algorithms and we could expect one to

1This algorithm is very different from the work of [26], the only simi-
larity is that both use features detected by the Harris corner detector.

2Unfortunately, these datasets are no longer available.
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Figure 6: FACE DATASET Top row: We investigated how identity
and lighting affect each algorithm’s performance. In all casesCUBOIDS

gave the best results.EFROSand CUBOIDS+HARRIS had approximately
equal error rates, except thatEFROStended to perform better under changes
in illumination. ZMI was not well suited to discriminating between facial
expressions, performing only slightly better than chance . Random guess-
ing would result in 83% error. All algorithms were ran with optimal pa-
rameters.Bottom row: Inter-class confusion matrices obtained using our
method under the first illumination setup on the face data. A majority of
the error is caused by anger being confused with other expressions. Sub-
jectively, the two subjects’ expression of anger is quite different.

perform well when the other does not.

4.4. Results
In the following sections we show results on the datasets
described above: facial expressions, human activity and
mouse behavior. In all experiments on all datasets,
CUBOIDS had the highest recognition rate, often by a wide
margin. Typically the error is reduced by at least a third
from the second best method.

4.4.1. Facial Expression

In each experiment, training is done on a single subject un-
der one of the two lighting setups and tested on: (1) the
same subject under the same illumination3, (2) the same
subject under different illumination, (3) a different subject
under the same illumination, and (4) a different subject un-
der different illumination. Results are shown in figure 6. In
all casesCUBOIDS had the highest recognition rates.

4.4.2. Mouse Behavior

The mouse data presents a highly challenging behavior
recognition problem. Differences between behaviors can

3In this case we use leave one out cross validation.
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Figure 7: MOUSE DATASET Left: Confusion matrix generated by
CUBOIDS on the full mouse dataset. As mentioned, this dataset presents
a challenging recognition problem. Except for a few difficult categories,
recognition rates using our method were fairly high.Right: Due to the
form of the data, a full comparison of algorithms was not possible. Instead,
we created a simple small scale experiment and ran all four algorithms on
it. CUBOIDS had the lowest error rates,ZMI was a near second on intra-
class error. .

be subtle, optical flow calculations tend to be inaccurate,
the mouse blends in with the bedding of the cage, and there
are no easily trackable features on the mice themselves (the
eyes of the mouse are frequently occluded or closed). The
pose of the mouse w.r.t. the camera also varies significantly.

Results on the full dataset are presented in figure 7, on
the left. The overall recognition rate is around 72%. As
mentioned, we also used a simplified, small scale version
of the mouse dataset in order to do a full comparison of
methods4. In both experimentsCUBOIDS had the lowest
errors, see figure 7, on the right.

4.4.3. Human Activity

For the human activity dataset we used leave one out cross
validation to get the overall classification error. Due to the
large size of this dataset, we did not attempt a comparison
with other methods5. Rather, we provide results only to
show that our algorithm works well on a diverse range of
data. Confusion matrices for the six categories of behavior
are shown in figure 8; the overall recognition rate was over
80%.

5. Conclusion
In this work we have shown the viability of doing behavior
recognition by characterizing behavior in terms of spatio-
temporal features. A new spatio-temporal interest point de-
tector was presented, and a number of cuboid descriptors
were analyzed. We showed how the use of cuboid proto-
types gave rise to an efficient and robust behavior descrip-

4EFROS requires a stabilized figure, and with a non-uniform back-
ground stabilization requires figure-ground segmentation, a non-trivial
task.

5Although the confusion matrices in figure 8 are better than those re-
ported in [26], the results are not directly comparable because the method-
ologies are different
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Figure 8: HUMAN ACTIVITY DATASET Shown are confusion
matrices generated byCUBOIDS. Two classifiers were used: 1-nearest
neighbor and Support Vector Machines with radial basis functions [12].
Using SVMs resulted in a slight reduction of the error. Note that most
of the confusion occurs between jogging and walking or running, and be-
tween boxing and clapping, most other activities are easily distinguished.

tor. We tested our algorithm in a number of domains against
well established algorithms, and in all tests showed the best
results.

Throughout we have tried to establish the link between
the domains of behavior recognition and object recognition,
creating the potential to bring in a range of established tech-
niques from the spatial domain to that of behavior recogni-
tion.

Future extensions include using the spatio-temporal lay-
out of the features, extending such approaches as [2] or [1]
to the spatio-temporal domain. Using features detected at
multiple scales should also improve performance. Another
possible direction of future work is to incorporate a dynamic
model on top of our representation.
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