
A Unified Framework for Representation and Development of Dialectical Proof
Procedures in Argumentation

P.M. Dung P.M. Thang
Department of Computer Science
Asian Institute of Technology

dung@cs.ait.ac.th thangfm@ait.ac.th

Abstract
We present an unified methodology for represen-
tation and development of dialectical proof proce-
dures in abstract argumentation based on the no-
tions of legal environments and dispute derivations.
A legal environment specifies the legal moves of
the dispute parties while a dispute derivation de-
scribes the procedure structure. A key insight of
this paper is that the opponent moves determine
the soundness of a dispute while the completeness
of a dispute procedure depends on the proponent
moves.

1 Introduction
Argumentation is a form of reasoning, that could be viewed
as a dispute resolution, in which the participants present their
arguments to establish, defend or attack certain propositions.
The probably most abstract among the well-known

formalisms for argumentation is the abstract argumenta-
tion framework [Dung, 1995b] (or abstract argumenta-
tion for short) consisting simply of a set of ”atomic” ar-
guments together with a binary relation representing at-
tack relation between them. There is extensive research
on dialectical proof procedures for abstract argumenta-
tion [Cayrol,Doutre,Mengin, 2003; Dunne,Bench-Capon,
2003; Modgil,Caminada, 2009; Vreeswijk,Prakken, 2000;
Jakobovits,Vermeir, 1999; Vreeswijk, 2006; Verheij, 2007 ].
Though clearly related, their formal and precise relationship
remains unexplored. We address this problem by providing
an unified framework for representing dialectical proof pro-
cedures based on the notions of legal enviroments and dispute
derivation trees. A key insight of this paper is that the oppo-
nent moves determine the soundness of a dispute while the
completeness depends on the proponent moves.

2 Abstract Argumentation: Preliminaries
An abstract argumentation framework [Dung, 1995b] is a pair
AF = (A, att), whereA is a set of arguments, and att is a bi-
nary relation over A representing the attack relation between
the arguments (att ⊆ A×A) with (A, B) ∈ att meaning A
attacks B. For simplicity, we restrict ourself on frameworks
with finite sets of arguments. A set S of arguments attacks

an argument A if some argument in S attacks A; S attacks
another set S ′ if S attacks some argument in S ′.
A set S of arguments is conflict-free iff it does not attack it-

self. ArgumentA is acceptablewith respect to S iff S attacks
each argument attacking A. S is admissible iff S is conflict-
free and each argument in S is acceptable with respect to S. S
is a preferred extension iff S is maximally (wrt set inclusion)
admissible.
The semantics of argumentation could also be charac-

terized by a fixpoint theory of the characteristic function
F(S) = {A ∈ A | A is acceptable wrt S}. It is easy to
see that S is admissible iff S is conflict free and S ⊆ F(S).
As F is monotonic , it follows that S is a preferred extension
iff S is a maximal fixpoint of F . The least fixed point of F is
defined as the grounded extension.
An argument A is said to be credulously accepted iff it is

contained in at least one preferred extension and groundedly
accepted iff it is contained in the grounded extension.
Given an argument B ∈ A, AttackB and AttackedB de-

note the set of arguments attacking B, i.e. AttackB = {A |
(A, B) ∈ att}, and attacked by B, i.e. AttackedB = {A |
(B, A) ∈ att}.

3 Dispute derivations
In a dispute, the proponent starts by putting forward an ini-
tial argument and then the proponent and opponent alternate
in attacking each other’s previous arguments. The proponent
wins if the opponent runs out of arguments to make a move.
A dispute is represented by a dispute derivation in which dis-
pute derivation trees are successively constructed by expand-
ing the previous one by adding children to some frontier (or
leaf) nodes following some legal move functions for the dis-
pute parties. The initial partial derivation tree consists of only
the root.

Definition 3.1 A dispute derivation tree (or simply deriva-
tion tree for short) T for an argumentA is defined as follows:
1. Every node of T is labeled by an argument and is as-

signed the status of proponent node or opponent node,
but not both. The status of a child node is different from
that of its parent. Arguments labeling children nodes at-
tack arguments labeling their parent node.

2. The root is a proponent node labeled by A.



For example, various derivation trees are given in figure 1.
Abusing the notation, for a node N labeled by A, we often

refer to AttackA by AttackN .
In the following, we introduce the notion of legal envi-

ronments generalizing the well-known notions of legal move
functions in the literature.

Definition 3.2 • A partial function F is called a propo-
nent (resp opponent) legal move function if F assigns
to pairs (N, T ) of a frontier opponent (resp. proponent)
node N in a derivation tree T a subset of AttackN . If
F (N, T ) is not defined, we write F (N, T ) = ⊥.

• A pair of proponent and opponent legal move functions
Φ = (ΦP , ΦO) is called a legal environment.

Examples of legal move functions are given in figure 1. For
simplicity, if it is clear from context, we often write Φ(N, T )
for ΦP (N, T ) if N is a opponent node, and for ΦO(N, T ) if
N is an proponent node. We often refer to the leaf nodes in a
derivation tree as frontier nodes to indicate that they are the
ones to be expanded later.

Definition 3.3 Given a legal environment Φ = (ΦP , ΦO)
and derivation trees T, T ′. We say that T ′ is obtained from
T by expansion of a frontier (leaf) node N in T wrt Φ if
Φ(N, T ) is defined and following condition holds:

• If N is an opponent node then a child node labeled by an
argument selected in ΦP (N, T ) is added to N

• If N is proponent node then a set of child nodes labeled
by arguments inΦO(N, T ) are added to N. There is one-
one correspondence between the children nodes of N and
the arguments in ΦO(N, T )

In our model of dispute, when the opponent moves against
a proponent argument, he delivers all attacks that are legal at
once. This assumption simplifies the formal framework with-
out affecting its generality. We discuss alternative strategies
later.

Definition 3.4 • A dispute derivation wrt legal environ-
ment Φ = (ΦP , ΦO) is a sequence T0, ..., Ti, ..., Tn of
derivation trees where T0 consists of a single node and
Ti+1 is obtained from Ti by expansion of a frontier node
N in Ti.

• A dispute derivation T0, . . . , Tn terminates if for each
frontier node N of the final tree Tn, Φ(N, Tn) = ∅

• A terminating dispute derivation is said to be successful
if all the frontier nodes of the final tree are proponent
nodes.

The sequence T0, T1, T2 in figure 1 is an example of a suc-
cessful dispute derivation.
For a derivation tree T, PRO(T), OPP(T) denote respec-

tively the sets of arguments labeling the proponent or oppo-
nent nodes in T. Arguments in PRO(T) or OPP(T) are often
called respectively proponent or opponent arguments.

Definition 3.5 1. A derivation tree T is consistent if there
is no argument labeling both a proponent node and an
opponent node.

Figure 1:

2. A derivation tree is successful wrt legal environment Φ
if it is the final tree of a successful dispute derivation wrt
Φ.

Consider a frontier proponent node N in a derivation tree
T such that AttackN ∩ PRO(T ) '= ∅. This implies imme-
diately that the set of proponent arguments is not conflict-
free as one of them attacks the argument labeling N. We cer-
tainly do not want to expand T at this node, i.e. ΦO(N, T )
should not be defined. Further in general, we want to con-
sider only those legal environments guaranteeing that an ex-
pansion of consistent derivation trees leads to consistent ones.
This requirement imposes that for frontier opponent node N,
ΦP (N, T ) ∩ OPP (T ) = ∅.
Definition 3.6 • A legal environment Φ is eligible iff fol-

lowing conditions are satisfied:
1. For each derivation tree T, and each frontier pro-

ponent node N of T, ΦO(N, T ) = ⊥ if AttackN ∩
PRO(T ) '= ∅.

2. If N is an opponent node then ΦP (N, T ) ⊆
AttackN \ OPP (T )

• An eligible legal environment is said to be fully defined
if the ”if” in the condition (1) above is replaced by ”iff”.

Examples of eligible legal environments are given in figure
2.

Figure 2:

It is not difficult to show that the eligibility of legal envi-
ronment guarantees that only consistent derivation trees are
generated in a dispute derivation.
Lemma 3.1 Let Φ = (ΦP , ΦO) be an eligible legal environ-
ment and T0, . . . , Tn be a dispute derivation wrt Φ. Then for
each i, Ti is consistent.



Proof By induction and left to the readers. !
Definition 3.7 Let Φ be a legal environment.
1. Φ is said to be credulously (resp. groundedly) sound if

the sets of proponent arguments of the successful deriva-
tion trees wrt Φ are admissible (resp. admissible subsets
of the grounded extension).

2. Φ is said to be credulously (resp. groundedly) complete
if for each credulously (resp. groundedly ) accepted ar-
gument there is a successful derivation tree wrt Φ whose
initial argument is A.

3. Φ is said to be terminating if there exists no infinite dis-
pute derivation wrt Φ.

4 Legal Environments for Credulous
Semantics

To ensure admissibility of proponent arguments, the legal en-
vironment should guarantee that all possible attacks against
proponent arguments are accounted for. This is the case if for
each proponent node N, ΦO(N, T ) = AttackN . But if some
arguments in AttackN have been defeated by the proponent
arguments then deploying them will not help the opponent
winning the case. The opponent also does not need to de-
ploy arguments already deployed by itself in previous steps.
This insight is formalized in the following theorem in which
a general class of credulously sound legal environments is in-
troduced.
Theorem 4.1 Let Φ = (ΦP , ΦO) be an eligible legal envi-
ronment such that for each derivation tree T, each proponent
node N in T

AttackN \ (AttackedPRO(T ) ∪ OPP (T )) ⊆ ΦO(N, T )

whenever ΦO(N, T ) is defined.
Then Φ is credulously sound .

Proof Let T0, . . . , Tn be a successful derivation wrt Φ. First
we want to show that PRO(Tn) counterattacks every attack
against it. Let A be an argument attacking an argument B ∈
PRO(Tn). Let N be a proponent node labelled by B. There
are two cases:
1. N is a leaf node in Tn. Hence ΦO(N, Tn) = ∅.
From AttackN \ (AttackedPRO(T ) ∪ OPP (Tn)) ⊆
ΦO(N, Tn), it followsAttackN \ (AttackedPRO(Tn)∪
OPP (T )) = ∅, i.e. AttackN ⊆ (AttackedPRO(Tn) ∪
OPP (Tn)) . Hence A ∈ (AttackedPRO(Tn) ∪
OPP (Tn)) . As all leaf nodes in Tn are proponent
nodes, it follows that OPP (Tn) ⊆ AttackedPRO(Tn).
A is hence attacked by PRO(Tn).

2. N is an internal node N in Tn. Let Ti be the tree at which
the opponent attacks N and expands T i into Ti+1. IfA ∈
ΦO(N, Ti) then A labels one of the opponent child of N.
As Tn is a successful tree, A has a proponent child in Tn.
Hence A is attacked by PRO(Tn). If A '∈ ΦO(N, Ti),
then A ∈ (AttackedPRO(Tn) ∪ OPP (Tn)). As each
opponent node in Tn has a proponent child, it follows
that A is attacked by PRO(Tn).

It remains to show that PRO(Tn) is conflict-free. Suppose
PRO(Tn) is not conflict-free. An argument A ∈ PRO(Tn)
is said to be controversial if A attacks or is attacked by some
argument in PRO(Tn). Hence the set of controversial argu-
ments in PRO(Tn) is not empty.
We first show that no such argument labels a leaf node in

Tn. Suppose the contrary that a controversial argument A la-
bels a leaf node N in Tn. As PRO(Tn) counterattacks every
attack against it, it follows that there is some proponent argu-
ment in Tn attacking A. Hence AttackN ∩ PRO(Tn) '= ∅.
Therefore ΦO(N, Tn) = ⊥ contradiction to the successful-
ness of Tn.
Therefore every controversial argument labels an internal

node in Tn. Let m be the maximum number such that Tm is
expanded at a proponent node N (by the opponent) labelled
by controversial argumentA. Further letB ∈ PRO(Tn) such
that B attacks A. From the definition of m, it follows that B la-
bels a proponent node in Tm. HenceAttackN∩PRO(Tm) '=
∅. Therefore ΦO(N, Tn) = ⊥ contradiction to the success-
fulness of Tn.
Therefore the set of controversial arguments is empty.

Contradiction. Hence PRO(Tn) is conflict-free.
!
Theorem 4.1 states formally that the soundness of a le-

gal environment will not be affected if filtering mecha-
nisms are deployed to filter out some or all arguments in
AttackedPRO(T ) ∪ OPP (T ). An important insight gained
from this theorem is that the soundness of a legal environ-
ment depends only on the legal moves of the opponent. The
following theorem shows that the legal moves of the propo-
nent determine the completeness.
Theorem 4.2 Let Φ = (ΦP , ΦO) be an eligible, credulously
sound and terminating legal environment. Further suppose
that Φ is fully defined and for each derivation tree T, each
opponent node N in T

AttackN \ Conf(T ) ⊆ ΦP (N, T )
where Conf(T ) consists of all self-attacking arguments and
all arguments attacking or being attacked by arguments in
PRO(T ).
Then Φ is credulously complete.

Proof Let A be a credulously accepted argument and S be
an admissible set of arguments and A ∈ S. We construct by
induction on i a successful derivationT0, . . . , Ti, . . . , Tn such
that A labels the root of the trees and PRO(Ti) ⊆ S.
If Ti is successful then we are done, the theorem is proved.

Suppose now that Ti is not successful. Select a frontier node
N of Ti.
Suppose N is a opponent node. Then from the admissibility

of S and PRO(Ti) ⊆ S, it follows that AttackN ∩ S '= ∅.
Because S is conflict-free and PRO(Ti) ⊆ S, it follows that
S∩Conf(Ti) = ∅. Therefore (AttackN \Conf(Ti))∩S '=
∅. Hence there is an argumentB ∈ S ∩ ΦP (N, Ti). Select B
and expand Ti by adding a child to N labelled by B.
Suppose N is a proponent node. As the argument labelling

N belongs to S and S is admisisble and PRO(Ti) ⊆ S, it
follows that AttackN ∩ PRO(Ti) = ∅. Sinc Φ is fully de-
fined, it follows that ΦO(N, Ti) '= ⊥. If ΦO(N, Ti) '= ∅ then
expand Ti at N.



As Φ is terminating, the process must stop sometimes. It
follows that all the frontier nodes are proponent nodes. The
theorem is proved.!
The following theorem shows that one can guarantee the

termination of dispute by not allowing the opponent to repeat
his moves.
Theorem 4.3 Let Φ = (ΦP , ΦO) be an eligible legal envi-
ronment such that

ΦO(N, T ) ⊆ AttackN \ AOPP (N, T )

where AOPP (N, T ) contains all arguments labeling op-
ponent nodes on the path from the root to N.
Then Φ is terminating.

Proof Suppose Φ is not terminating and
ΦO(N, T ) ⊆ AttackN \ AOPP (N, T ). Let T0, . . . , Ti, . . .
be a nonterminating derivation. Let T be the limit of this
sequence of trees. T is hence infinite. There is then an
infinite path in T. There are hence infinite opponent nodes
on this path. Since the set of arguments is finite, there
are many opponent nodes labelled by the same argument.
Contradition.!
As we have discussed, a key insight of theorems 4.1, 4.2

is that the credulous soundness of a legal environment is de-
termined by opponent legal moves while its completeness de-
pends on the legal moves of the proponent. This insight
is best illustrated by the special case where ΦO(N, T ) =
AttackN whenever it is defined. It turns out that in this case,
the legal environment is even groundedly sound.
Lemma 4.1 Let Φ be an eligible legal environment such that
ΦO(N, T ) = AttackN whenever ΦO(N, T ) is defined. Then
Φ is groundedly sound.
Proof Let Φ′ be a legal environment such that Φ ′

O(N, T ) =
AttackN whenever it is defined andΦ′

P (N, T ) = AttackN \
OPP (T ). It is easy to see that each successful derivation wrt
Φ is a successful derivation wrt Φ′. Let T be a successful
derivation tree wrt Φ′. It is easy to show by induction on the
hight of T that PRO(T ) is a subset of the grounded exten-
sion. !

5 Legal Environments for Grounded
Semantics

We are now turning our attention to legal environments for
grounded semantics. Lemma 4.1 points out that the opponent
could do nothing wrong if he/she keeps bringing up all pos-
sible counter-evidences to whatever the proponent says. The
legal environment is groundedly sound independent of what-
ever the proponent does. The best the proponent could do
in such cases is to make sure that it can win if the initial ar-
gument is groundedly accepted, i.e. to ensure that its legal
move function guarantees completeness. This is the case if
ΦP (N.T ) = AttackN \ OPP (T ). But this environment is
not terminating. It turns out that to ensure both termination
and completeness, the proponent should not repeat arguments
put forward by itself previously. Though the legal environ-
ment just described is groundedly sound, complete and ter-
minating, it could be quite inefficient as the opponent could

Figure 3:

repeat many arguments that have been defeated before as the
following example illustrates.
Consider the derivation tree T in figure 3. It would be

wasteful if argument D at node N should be defeated again.
We hence expect from an efficient legal environment that
ΦO(N, T ) = ∅. But in contrast to the credulous case, not
all previous opponent arguments could be filtered out as il-
lustrated by derivation tree T’ in figure 3. If the opponent
argument B is filtered out at N i.e. ΦO(N, T ) = ∅ then T ′

would be a successful derivation tree though A is not ground-
edly accepted.
The examples suggest that we should allow the opponent to

filter out previous opponent arguments except those lying on
the path from the root to the considered node, i.e. AttackN \
(OPP (T ) \ AOPP (N, T ) ) ⊆ ΦO(N, T ). Unfortunately,
this constraint is not strong enough to guarantee the grounded
soundness of the legal environment as the following example
shows:

Figure 4:

Note that when an argument labels exactly one node in a
derivation tree, we identify the argument and the node for
simplicity.
In figure 4, AOPP (E, T ) = {B}, AttackE =

{C}, OPP (T ) = {B, C}. Hence AttackE \ (OPP (T ) \
AOPP (E, T )) = ∅. AOPP (D, T ) = {C}, AttackD =
{B}. Hence AttackD \ (OPP (T ) \ AOPP (D, T )) = ∅.
HenceΦO(E, T ) = ΦO(D, T ) = ∅ satisfies the constraint. T
would be a successful derivation tree though A is not ground-
edly accepted. The reason is that B, E, C, D, B is a cycle



in the argumentation framework and this cycle makes the fil-
tering of B,C groundedly unsound. It turns out filtering is
groundedly sound if it avoids filtering out previous opponent
arguments lying in cycles like B, E, C, D, B. This motivates
the following definition.
Definition 5.1 Let T be a derivation tree.
1. Let N be a proponent node and M be an opponent node

and A be the argument of M. M is an adopted child of N
in T if A attacks the argument of N and N has no child
labelled by A 1.

2. A generalized path in T is a sequence of nodes
N0, . . . , Nk, k ≥ 1 such that Ni+1 is either a child or
an adopted child of Ni.

A generalized path is a cycle if the first and last nodes co-
incide.
In figure 3, E is an adopted child of N in T and the sequence

B,N,E is a generalized path. B,A,B is a cycle in T ′ while T
contains no cycle. In figure 4, the sequence B,E,C,D,B is a
cycle in T.
Definition 5.2 Let N be a frontier proponent node in T, and
A be an argument attacking N. A is said to be a taboo for
filtering out by opponent at N if there is an cycle N0, . . . , Nn

in T such that N = Ni and A labels Ni+1 for some i.
The set of taboos for filtering out at N by opponent in T is

denoted by TABOO(N,T).
In figure 3, TABOO(N, T ) = ∅. Hence it is possible

to filter out the argument E attacking D at node N. In con-
trast, TABOO(N, T ′) = {B}. Hence it is not possible
to filter out B at N. T ′ is hence not a successful derivation
tree while T is. Similarly, in figure 4, TABOO(E, T ) =
{C}, TABOO(D, T ) = {B}.
Theorem 5.1 Let Φ = (ΦP , ΦO) be an eligible legal envi-
ronment such that for each derivation tree T, each frontier
proponent node N labeled by A,

AttackN \ (OPP (T ) \ TABOO(N, T ) ) ⊆ ΦO(N, T )

whenever ΦO(N, T ) is defined.
Then Φ is groundedly sound.

Proof Let T0, . . . , Tn be a successful dispute derivation wrt
Φ. A cycle is said to be internal if it does not contain any
frontier node. We prove by induction that for each i,there is
no internal cycle in Ti.
Suppose that there is no internal cycle in T i but some in-

ternal cycles in Ti+1. Let Cyc = N0, . . . , Nn be an internal
cycle in Ti+1 labelled by A0, . . . , An. As there is no internal
cycle in Ti, Cyc must contain a frontier node in T i. Since
Cyc is an internal cycle in Ti+1, Cyc contains exactly one
frontier node in Ti that is the frontier node N at which Ti is
expanded. Let N = Nk. If N is an opponent node in Ti then
Nk+1 is a child of N. HenceNk+1 is a frontier node of Ti+1.
Contradiction to the assumption that Cyc is an internal cycle
in Ti+1.
Hence N must be a proponent node in T i. As Cyc is an

internal cycle, Nk+1 is not a frontier node in Ti+1. Hence
1Note that we do not define adopted children for opponent nodes

Nk+1 is an adopted child of N in Ti and Ti+1. From definition
5.2, it follows that Ak+1 ∈ TABOO(N, Ti).
As Nk+1 is an adopted child of N also in Ti+1, there

is no child of N in Ti+1 labelled by Ai+1. It follows
Ai+1 '∈ ΦO(N, Ti). From the properties of Φ, it follows
that Ai+1 '∈ AttackN \ (OPP (Ti) \ TABOO(N, Ti) ).
Therefore Ai+1 ∈ (OPP (T ) \ TABOO(N, Ti) ). Hence
Ai+1 '∈ TABOO(N, Ti). Contradiction.
We prove now that there is no cycle in Tn. Suppose

that there is a cycle Cyc in Tn. As Tn has no internal cy-
cle, Cyc must contains a frontier node, say N. Therefore
TABOO(N, Tn) '= ∅. Hence ΦO(N, Tn) '= ∅. Contra-
diction.
We prove now that for all nodes M in Tn, if M is a propo-

nent (resp opponent) node then the argument labelling M is
groundedly accepted (resp rejected, i.e. attacked by a ground-
edly accepted argument). The proof is by induction on the
rank of the nodes in Tn defined as follows..
The rank of nodes without any kind of children is 0. The

rank of a node M is equal 1 plus the maximum of the ranks of
the children or adopted children of M.
We show by induction that the nodes of even (resp odd)

ranks are proponent (resp. opponent) nodes. Obviously that
nodes of rank 0 are proponent nodes. Suppose now that the
property holds for all nodes of rank ≤ i. Let M be a node of
rank i + 1. As one of the children or adopted children of M
is of rank i, M is a proponent (resp opponent) node if i is odd
(resp even) from the induction hypothesis.
We could easily prove by induction now that nodes of

even (resp odd) ranks are groundedly accepted (resp rejected)
based on the following property:
Let N be proponent node in Tn. Then AttackN = {A | A

labels a child or an adopted child of N}.
Let Ti be the tree at which N is selected for expansion.

Suppose A is an argument attacking N and A does not la-
bel a child of N. Hence A '∈ ΦO(N, Ti). Therefore A ∈
(OPP (Ti) \ TABOO(N, Ti)). Hence there is an opponent
node M in Ti labeled by A. As A does not label a child of N,
M is an adopted child of N. !
Theorem 5.2 Let Φ = (ΦP , ΦO) be an eligible and ground-
edly sound legal environment such that for each derivation
tree T, each frontier opponent node N in T

AttackN \ (Conf(T ) ∪ APRO(N, T ) ) ⊆ ΦP (N, T )

⊆ AttackN \ (OPP (T ) ∪ APRO(N, T ))
where APRO(N, T ) contains all proponent arguments lying
on the path from the root to N.
Then Φ is groundedly complete and terminating

Proof For groundedly accepted (resp rejected) argument A,
define rank(A) to be the smallest number i such that A ∈
F i(∅) (resp. A is attacked by F i(∅)). We prove the theorem
by induction on rank(A).
Let A be a groundedly accepted argument. A successful

derivation T0, . . . , Tn of A is constructed by induction as fol-
lows:
If Tk is obtained from Tk−1 by expanding an opponent

node then select an argument belonging to F j(∅) where j is
the rank of the argument labelling the node that is expanded.



It is not difficult to see that constructing Ti’s that way will
produce a successful derivation wrt Φ. !

6 Discussion and Conclusion
In [Cayrol,Doutre,Mengin, 2003], two proof procedures
called φ1, φ2 are given for credulous semantics. φ1 corre-
sponds to a sequentialization of a legal environment with
Φ1,O(N, T ) = AttackN \ (AttackedPRO(T ) ∪ OPP (T ))
and Φ1,P (N, T ) = AttackN \ Conf(T ). φ2 corre-
sponds to Φ2,O(N, T ) = AttackN \ AttackedAPRO(N,T )

and Φ2,P (N, T ) = AttackN \ Conf(N, T )2. [Mod-
gil,Caminada, 2009] gives also several proof procedures for
credulous semantics. They are somewhat similar to the
φ2 procedure above. For example, one of them corre-
sponds to the legal environment: Φ3,O(N, T ) = AttackN \
AOPP (N, T ) and Φ3,P (N, T ) = AttackN \ Conf(N, T ).
While φ1 is sound, complete and terminating, φ2, Φ3 may not
be eligible and hence are sound only if their successful deriva-
tion trees are consistent. But no condition is given under
what conditions is the consistency of the successful deriva-
tion trees is guaranteed. [Modgil,Caminada, 2009] gives also
proof procedures for grounded semantics. The basic one
corresponds to the sound and complete and terminating le-
gal environment: ΦO(N, T ) = AttackN and ΦP (N, T ) =
AttackN \ APRO(N, T ).
In general, the opponent does not need to unleash all of his

attacks at once. By dropping the ”one-one-correspodence”
condition in the second bullet of the definition 3.3 and
requires an extra condition in theorem 4.1 and 5.1 that
ΦO(N, T ) does not contain any arguments labelling children
of N and allowing the opponent to attack at all proponent
nodes as long as there is an option for him there, we obtain
new dispute procedures with the same characteristics.
A possible application of the insight that the soundness of a

dispute is determined by the opponent moves while its com-
pleteness by the proponent ones, is a modular methodology
for designing dispute procedures. The design consists of four
tasks: ensuring the eligibility of the legal environment, ensur-
ing the soundness by looking at opponent moves and guaran-
teeing completeness by looking at proponent moves and en-
forcing terminating by forbidding one of the participant not
to repeat his moves.
A possible interesting application of this paper lies in the

design of proof procedures for logic-based argumentation
systems [Dung,Kowalski,Toni, 2006; Dung,Mancarella,Toni
, 2007; Eshghi,Kowalski, 1989; Kakas,Toni, 1999; Dung,
1995a] by translating automotacically proof procedures in ab-
stract argumentation into ones for the latter systems.

7 Acknowledgements
We thank the referees for constructive comments and criti-
cisms. This work was partially funded by the Sixth Frame-
work IST program of the European Commission under the
035200 ARGUGRID project.

2Conf(N,T) consists of all arguments that selfattack or attacked
or being attacked by proponent arguments on the path from the root
to N

References
[Bondarenko,Dung,Toni, 1997] A Bondarenko, P M Dung,
R A Kowalski, and F Toni. An abstract, argumentation-
theoretic approach to default reasoning. Artificial Intelli-
gence, 93, 1997.

[Cayrol,Doutre,Mengin, 2003] Claudette Cayrol, Sylvie
Doutre, and Je’rome Mengin. On decision problems
related to the preferred semantics for argumentation
frameworks. Journal of Logic and Computation, 13, 2003.

[Dung,Kowalski,Toni, 2006] Phan Minh Dung, Robert A.
Kowalski, and Francesca Toni. Dialectic proof procedures
for assumption-based, admissible argumentation. Artifi-
cial Intelligence, 170, 2006.

[Dung,Mancarella,Toni , 2007] Phan Minh Dung, Paolo
Mancarella, and Francesca Toni. Computing ideal scep-
tical argumentation. Artificial Intelligence, 2007.

[Dung, 1995a] Phan Minh Dung. An argumentation theo-
retic foundation for logic programming. Journal of Logic
Programming, 1995.

[Dung, 1995b] Phan Minh Dung. On the acceptability of ar-
guments and its fundamental role in nonmonotonic rea-
soning, logic programming and n-person games. Artificial
Intelligence, 77, 1995.

[Dunne,Bench-Capon, 2003] Paul E. Dunne and Trevor J M.
Bench-Capon. Two party immediate response disputes:
Properties and efficiency. Artificial Intelligence, 149,
2003.

[Eshghi,Kowalski, 1989] K. Eshghi and R.A. Kowalski. Ab-
duction compared with negation by failure. In In Proceed-
ings of the Sixth International Conference on LP, 1989.

[Jakobovits,Vermeir, 1999] H. Jakobovits and D. Vermeir
Dialectic Semantics for Argumentation Frameworks In In
Proc ICAIL’99, ACM Press, 1999.

[Kakas,Toni, 1999] T Kakas and F Toni. Computing argu-
mentation in logic programming. Journal of Logic and
Computation, 1999.

[Modgil,Caminada, 2009] S Modgil and M Caminada. Ar-
gumentation in AI, chapter Proof Theories and Algorithms
for Abstract Argumentation. Springer-Verlag, 2009.

[Prakken, 2005] Henry Prakken. Coherence and Flexibility
in dialogue games for argumentation In Journal of Logic
and Computation, 2005.

[Verheij, 2007] Bart Verheij A Labeling Approach to the
Computation of Credulous Acceptance In IJCAI, 2007.

[Vreeswijk,Prakken, 2000] Gerard Vreeswijk and Henry
Prakken. Credulous and sceptical argument games for pre-
ferred semantics. In JELIA, 2000.

[Vreeswijk, 2006] Gerard Vreeswijk. An Algorithm to com-
pute minimally grounded and admissible defence sets in
argument systems. In COMMA, 2006.


